A 14b 40Msample/s Pipelined ADC with DFCA

Similar documents
A Digitally Enhanced 1.8-V 15-b 40- Msample/s CMOS Pipelined ADC

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4

Summary Last Lecture

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.3

Summary Last Lecture

EE247 Lecture 23. EECS 247 Lecture 23 Pipelined ADCs 2008 H.K. Page 1. Pipeline ADC Block Diagram DAC ADC. V res2. Stage 2 B 2.

Low-Power Pipelined ADC Design for Wireless LANs

CMOS High Speed A/D Converter Architectures

A 130mW 100MS/s Pipelined ADC with 69dB SNDR Enabled by Digital Harmonic Distortion Correction. Andrea Panigada, Ian Galton

Workshop ESSCIRC. Low-Power Data Acquisition System For Very Small Signals At Low Frequencies With12-Bit- SAR-ADC. 17. September 2010.

High-Speed Analog to Digital Converters. ELCT 1003:High Speed ADCs

CENG4480 Lecture 04: Analog/Digital Conversions

Fundamentals of Data Converters. DAVID KRESS Director of Technical Marketing

CONTINUOUS DIGITAL CALIBRATION OF PIPELINED A/D CONVERTERS

EECS 247 Lecture 18: Data Converters- Track & Hold- ADC Design 2009 Page 1. EE247 Lecture 18

Eliminate Pipeline Headaches with New 12-Bit 3Msps SAR ADC by Dave Thomas and William C. Rempfer

Proposing. An Interpolated Pipeline ADC

Analog-to-Digital i Converters

Index terms: Analog to Digital conversion, capacitor sharing, high speed OPAMP-sharing pipelined analog to digital convertor, Low power.

MSP430 Teaching Materials

The need for Data Converters

Asynchronous SAR ADC: Past, Present and Beyond. Mike Shuo-Wei Chen University of Southern California MWSCAS 2014

A 12-bit Interpolated Pipeline ADC using Body Voltage Controlled Amplifier

IMPLEMENTING THE 10-BIT, 50MS/SEC PIPELINED ADC

SUCCESSIVE approximation register (SAR) analog-todigital

EE247 Lecture 23. Advanced calibration techniques. Compensating inter-stage amplifier non-linearity Calibration via parallel & slow ADC

Final Exam Spring 2012

MASH 2-1 MULTI-BIT SIGMA-DELTA MODULATOR FOR WLAN L 2 ( ) ( ) 1( 1 1 1

Design of Pipeline Analog to Digital Converter

Lecture 9, ANIK. Data converters 1

Serial Input 18-Bit Monolithic Audio DIGITAL-TO-ANALOG CONVERTER

Working with ADCs, OAs and the MSP430

Analog to Digital Converters (ADC) Rferences. Types of AD converters Direct (voltage comparison)

A 35 fj 10b 160 MS/s Pipelined- SAR ADC with Decoupled Flip- Around MDAC and Self- Embedded Offset Cancellation

A 0.55 V 7-bit 160 MS/s Interpolated Pipeline ADC Using Dynamic Amplifiers

Architectures and Design Methodologies for Very Low Power and Power Effective A/D Sigma-Delta Converters

2008 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS

INTEGRATED CIRCUITS. AN109 Microprocessor-compatible DACs Dec

MEDIUM SPEED ANALOG-DIGITAL CONVERTERS

Pipelined Analog-to-Digital Converters

CMOS ADC & DAC Principles

SPT BIT, 30 MSPS, TTL, A/D CONVERTER

The counterpart to a DAC is the ADC, which is generally a more complicated circuit. One of the most popular ADC circuit is the successive

A 4 GSample/s 8-bit ADC in. Ken Poulton, Robert Neff, Art Muto, Wei Liu, Andrew Burstein*, Mehrdad Heshami* Agilent Laboratories Palo Alto, California

Electronics A/D and D/A converters

Solution to Homework 5

IN the design of the fine comparator for a CMOS two-step flash A/D converter, the main design issues are offset cancelation

Serial Input 18-Bit Monolithic Audio DIGITAL-TO-ANALOG CONVERTER

Sigma-Delta ADC Tutorial and Latest Development in 90 nm CMOS for SoC

Analogue to Digital Conversion

Chapter 2 ADC Architecture

A 25MS/s 14b 200mW Σ Modulator in 0.18µm CMOS

Summary of Last Lecture

Analog to Digital Conversion

EE247 Lecture 22. Figures of merit (FOM) and trends for ADCs How to use/not use FOM. EECS 247 Lecture 22: Data Converters 2004 H. K.

Calibration of current-steering D/A Converters

High-speed ADC techniques - overview and scaling issues - Vladimir Stojanovic

A Low-Power 6-b Integrating-Pipeline Hybrid Analog-to-Digital Converter

12-bit 50/100/125 MSPS 1-channel ADC

Analogue to Digital Conversion

AD9772A - Functional Block Diagram

ISSN:

L9: Analog Building Blocks (OpAmps,, A/D, D/A)

Exploring of Third-Order Cascaded Multi-bit Delta- Sigma Modulator with Interstage Feedback Paths

AD Bit, 20/40/65 MSPS 3 V Low Power A/D Converter. Preliminary Technical Data

L10: Analog Building Blocks (OpAmps,, A/D, D/A)

A Low-Offset Latched Comparator Using Zero-Static Power Dynamic Offset Cancellation Technique

10-Bit 5MHz Pipeline A/D Converter. Kannan Sockalingam and Rick Thibodeau

EE247 Lecture 20. Comparator architecture examples Flash ADC sources of error Sparkle code Meta-stability

Lec. 8: Subranging/Two-step ADCs

Lecture #6: Analog-to-Digital Converter

High-Speed Low-Power CMOS Pipelined Analog-to-Digital Converter

Design of Analog Integrated Systems (ECE 615) Outline

CHAPTER. delta-sigma modulators 1.0

Two- Path Band- Pass Σ- Δ Modulator with 40- MHz IF 72- db DR at 1- MHz Bandwidth Consuming 16 mw

8-Bit, high-speed, µp-compatible A/D converter with track/hold function ADC0820

Assoc. Prof. Dr. Burak Kelleci

Design and Implementation of a Sigma Delta ADC By: Moslem Rashidi, March 2009

Reading: Schwarz and Oldham (light on non-ideal) and comparator viewgraphs. Lecture 14: October 17, 2001

ANALOG CIRCUITS AND SIGNAL PROCESSING

MT-024: ADC Architectures V: Pipelined Subranging ADCs

Software Programmable Gain Amplifier AD526

HIGH-SPEED low-resolution analog-to-digital converters

14-Bit, 40/65 MSPS A/D Converter AD9244

Current Output/Serial Input, 16-Bit DAC AD5543-EP

Transfer Function DAC architectures/examples Calibrations

A 10 bit, 1.8 GS/s Time Interleaved Pipeline ADC

Design of an Assembly Line Structure ADC

Data Converters. Springer FRANCO MALOBERTI. Pavia University, Italy

CHAPTER 3 DESIGN OF PIPELINED ADC USING SCS-CDS AND OP-AMP SHARING TECHNIQUE

A 15.5 db, Wide Signal Swing, Dynamic Amplifier Using a Common- Mode Voltage Detection Technique

NYQUIST-RATE SWITCHED-CAPACITOR ANALOG-TO-DIGITAL CONVERTERS. A Dissertation ANDREAS JOHN INGE LARSSON

A Successive Approximation ADC based on a new Segmented DAC

EE 435 Switched Capacitor Amplifiers and Filters. Lab 7 Spring 2014 R 2 V OUT V IN. (a) (b)

Outline. Analog/Digital Conversion

Architectures and circuits for timeinterleaved. Sandeep Gupta Teranetics, Santa Clara, CA

SPT BIT, 100 MWPS TTL D/A CONVERTER

EE247 Lecture 17. EECS 247 Lecture 17: Data Converters 2006 H.K. Page 1. Summary of Last Lecture

ADC Resolution: Myth and Reality

High Precision 10 V IC Reference AD581

Transcription:

A 14b 40Msample/s Pipelined ADC with DFCA Paul Yu, Shereef Shehata, Ashutosh Joharapurkar, Pankaj Chugh, Alex Bugeja, Xiaohong Du, Sung-Ung Kwak, Yiannis Papantonopoulos, Turker Kuyel Texas Instruments, Inc., Dallas TX

Outline Description of a Pipelined Architecture Error Sources in a Pipelined ADC Technique I: DAC and Feedback Capacitor Averaging (DFCA) Technique II: Mismatch Noise Cancellation (MNC) Conclusion Paul Yu 2 paulyu@alum.mit.edu

A Pipelined Architecture Stage 1 Stage 2 Stage 3 V IN SHA Σ 2 m1-1 V RES1 ADC DAC m1 bits MSB m1 bits m2 bits mn bits LSB Paul Yu 3 paulyu@alum.mit.edu...

Outline Description of a Pipelined Architecture Error Sources in a Pipelined ADC Technique I: DAC and Feedback Capacitor Averaging (DFCA) Technique II: Mismatch Noise Cancellation (MNC) Conclusion Paul Yu 4 paulyu@alum.mit.edu

Error Sources in Pipelined ADC Problems Comparator Offsets Finite Op-Amp Gain kt/c Noise Capacitor Mismatch DAC Error Interstage Gain Error Solutions Digital Error Correction High Gain Op-Amps Large Cap Trimming/Calibration, or DFCA, DFCA+MNC (SFDR), (SFDR/SNR) Paul Yu 5 paulyu@alum.mit.edu

High Resolution ADC Techniques Techniques Pro Con Factory Calibration/ Trimming Digital Self Calibration Simple Test Time, Extra Analog Hardware Min. Analog User Burden Background Calibration Test Time, Background DAC or Interstage Gain Only CFCS Simple DNL Only Proposed DFCA + MNC Test Time, Background Min. Analog Extra Digital Paul Yu 6 paulyu@alum.mit.edu

Block diagram of the ADC Chip I with DFCA Chip II with DFCA + MNC V IN Stage 1 Stage 2 Stage 3 Stage 6 PNG 3 3 3 9 3 3 3 4 Digital Error Correction 12 M N C 14 Paul Yu 7 paulyu@alum.mit.edu

Outline Description of a Pipelined Architecture Error Sources in a Pipelined ADC Technique I: DAC and Feedback Capacitor Averaging (DFCA) Technique II: Mismatch Noise Cancellation (MNC) Conclusion Paul Yu 8 paulyu@alum.mit.edu

Implementation of 2.8b/Stage Feedback Capacitor DAC Capacitors C 1 C 2 V IN C 3 C 4 S Sampling Phase a VREF b VREF c VREF V OUT Paul Yu 9 paulyu@alum.mit.edu C 2 C 3 C 4 Convention al : a,b,c DFCA : a,b,c { 1,0, 1} { 1,0, 1}, f = 2 DFCA Amplifying Phase C 1

DAC Errors Only C2 V REF C1 V RES1 V IN 3 8 1 8 Ideal C2 = 1 + ε C3 = 1 - ε D OUT V IN Paul Yu 10 paulyu@alum.mit.edu

Interstage Gain Error Only V RES1 4 1 C C1 i V IN 3 8 1 8 Ideal C1 = 1 - ε C1 = 1 + ε D OUT V IN Paul Yu 11 paulyu@alum.mit.edu

6 Pre-Amps 3b ADC f1 a1 b1 c1 f0 a0 b0 c0 Parallel Shuffling PN1 PN2 PN1 PN2 Example: PN3 PN3 PN3 PN3 Paul Yu 12 paulyu@alum.mit.edu a1 c1 f1 b1 a0 c0 f0 b0 V REF+ V CM C 1 C 2 C 3 C 4 PN1 = 1, PN2 = 1, PN3 = -1 a1a0 = +1, b1b0 = 0, c1c0 = 0 V REF- VOUT

Analog Domain Shuffling V REF+ V CM V IN V REF- V OUT Preamps Parallel Shuffling Network 3b ADC Latch Bank Cap Select Logic C 1 C 2 C 3 C 4 V OUT φ1 φ2 Paul Yu 13 paulyu@alum.mit.edu

(db) DFCA Results (Chip I) f s = 5MSample/s 100 80 f in 60 40 20 0-20 -40 5th 3rd -60 0.0 0.5 1.0 1.5 2.0 2.5 (MHz) 5th f in 3rd 0.0 0.5 1.0 1.5 2.0 2.5 (MHz) DFCA SFDR SNR THD DFCA SFDR SNR THD Off 83 db 77 db 81 db On 95 db 74 db 93 db Paul Yu 14 paulyu@alum.mit.edu

DFCA Results (Chip I) (db) 100 80 60 40 20 0-20 -40 f s = 40 MSample/s f in f in 3rd 3rd 5th 5th -60 0.0 0.5 1.0 1.5 2.0 2.5 (MHz) DFCA SFDR SNR THD 0.0 0.5 1.0 1.5 2.0 2.5 (MHz) DFCA SFDR SNR THD Off 78 db 77 db 77 db On 84 db 73 db 80 db Paul Yu 15 paulyu@alum.mit.edu

SFDR vs. Conversion Speed (Chip I) f in =1MHz 95 90 DFCA ON DFCA OFF db 85 80 75 0 20 40 60 Msample/s Paul Yu 16 paulyu@alum.mit.edu

Outline Description of a Pipelined Architecture Error Sources in a Pipelined ADC Technique I: DAC and Feedback Capacitor Averaging (DFCA) Technique II: Mismatch Noise Cancellation (MNC) Conclusion Paul Yu 17 paulyu@alum.mit.edu

Transmit Noise Cancellation CDMA Analogy X: -1 1 1-1 Y: 1 1-1 -1 PN: -1 1-1 1 Receive Y: 1 1-1 -1 X: -1 1 1-1 PN: -1 1-1 1 Paul Yu 18 paulyu@alum.mit.edu

V IN ADC m1 bits a 1 = b -1 DAC Noise Cancellation a b PN Stage 1 1+ 1 PN Σ Small D2 Accum & Avg Galton, IEEE CAS II, March 2000 Paul Yu 19 paulyu@alum.mit.edu Σ V 2 m1-1 IN V RES1 :D2 = Q V PN Stage 2... RES ADC DAC Noise 647 48 ' + PN 1 2 D2

Mismatch Noise Cancellation V IN ADC m1 bits Stage 1 DAC Σ 2 m1-1 V RES1 Gain Noise Σ DAC Noise Stage 2... A D2 D C V RES1 { V ' (Gain Noise) DACNoise} D2 = Q RES1 + i D2 Accum i & Avg PN i PN i Paul Yu 20 paulyu@alum.mit.edu

MNC Architecture in Chip II V RES1 Stage 1 Stages 2-6 Estimation Logic PN i 3 3 3 12 PN i 3 Accumulate & Average i (Cap Mismatch) Cancellation Logic 14 Paul Yu 21 paulyu@alum.mit.edu

MNC Experimental Results (Chip II) (db) 0-20 -40-60 -80-100 -120-140 0 5 10 15 (MHz) 0 5 10 15 (MHz) 0 5 10 15 (MHz) DFCA SFDR SNR DFCA SFDR SNR MNC SFDR SNR Off 48dB 55dB ON 80dB 50dB ON 80dB 73dB Paul Yu 22 paulyu@alum.mit.edu

Chip II Micrograph Pipelined Stages 1-6 M N C Clock Paul Yu 23 paulyu@alum.mit.edu

Conclusion DFCA Increases SFDR Parallel Shuffling Reduces Number of Switches in Series Analog Domain Operation Minimizes Non-Overlapping Time MNC Increases SNR by Digitally Removing both DAC and Gain Noise DFCA+MNC Background Calibration Enables High SFDR, High SNR ADC s Paul Yu 24 paulyu@alum.mit.edu

Acknowledgement Discussion of DNC and MNC with Dr. Ian Galton is greatly appreciated. Discussion with Dr. Ranjit Gharpurey and other Members of the Mixed Signal Product Group at TI is acknowledged. Paul Yu 25 paulyu@alum.mit.edu