Power Management and Multimarket

Similar documents
Power Management and Multimarket

Tire Pressure Monitoring Sensor

LED Drivers for High Power LEDs

LED Drivers for Low Power LEDs BCR205W. Data Sheet. Industrial and Multimarket. Ultra low dropout LED controller. Revision 2.

LED Drivers for High Power LEDs

Power Management & Multimarket

Power Management & Multimarket

Power Management & Multimarket

BGA7L1BN6. Data Sheet. RF & Protection Devices. Silicon Germanium Low Noise Amplifier for LTE. Revision 3.1,

BGA729N6. Data Sheet. RF & Protection Devices. Broadband Low Noise Amplifier for Portable and Mobile TV Applications. Revision 3.

LED Driver for High Power LEDs ILD4001. Data Sheet. Industrial and Multimarket. Step down LED Controller for high power LEDs. Revision 2.

Power Management & Multimarket

Power Management & Multimarket

Power Management & Multimarket

Power Management & Multimarket

BGB719N7ESD. Data Sheet. RF & Protection Devices. Low Noise Amplifier MMIC for FM Radio Applications. Revision 1.1,

Power Management & Multimarket

Power Management & Multimarket

BGM1143N9. Data Sheet. RF & Protection Devices. Front-End Module for Global Navigation Satellite Systems (GNSS) Revision 2.0, Preliminary

Power Management & Multimarket

BGS22W2L10. Data Sheet. Power Management & Multimarket. DPDT (Dual-Pole / Double-Throw) Differential RF Switch. Revision October 12, 2012

BFN18. Data Sheet. RF & Protection Devices. NPN Silicon High-Voltage Transistors. Revision 1.0,

BGM1043N7. Data Sheet. RF & Protection Devices. GPS and GLONASS Front-End Module. Revision 3.0,

BGA924N6. Data Sheet. RF & Protection Devices. Silicon Germanium Low Noise Amplifier for Global Navigation Satellite Systems (GNSS)

BGM1034N7. Data Sheet. RF & Protection Devices. GPS and GLONASS Front-End Module. Revision 3.0,

Power Management & Multimarket

Power Management & Multimarket

Power Management & Multimarket

Revision: Rev

BGSF110GN26. Preliminary Datasheet. RF & Protection Devices

BGS12SN6. Data Sheet. Power Management & Multimarket. Wideband RF SPDT Switch in ultra small package with 0.77mm 2 footprint. Revision 1.

Power Management & Multimarket

BGB717L7ESD. Data Sheet. RF & Protection Devices. SiGe:C Low Noise Amplifier MMIC for FM Radio Applications. Revision 3.

BGA7L1N6. Data Sheet. RF & Protection Devices. Silicon Germanium Low Noise Amplifier for LTE. Revision 3.1 (Min/Max),

High Precision Hall Effect Switch for Consumer Applications

High Precision Automotive Hall Effect Switch for 5V Applications

BFP450. Datasheet. RF & Protection Devices. Linear Low Noise Silicon Bipolar RF Transistor. Revision 1.2,

Power Management & Multimarket

BGS12SN6. Data Sheet. Power Management & Multimarket. Wideband RF SPDT Switch in small package with 0.77mm 2 footprint. Revision 2.

Power Management & Multimarket

TVS Diodes ESD5V0L1B-02V. Data Sheet. Industrial and Multi-Market. Transient Voltage Suppressor Diodes. Bi-directional Low Capacitance TVS Diode

Power Management & Multimarket

Power Management & Multimarket

About this document. Table of Contents. Application Note

BGA751N7. Data Sheet. RF & Protection Devices. SiGe Bipolar 3G/3.5G/4G Single-Band LNA. Revision 3.1,

Revision: Rev

Power Management & Multimarket

Revision: Rev

BFP840ESD. Data Sheet. RF & Protection Devices. Robust Low Noise Silicon Germanium Bipolar RF Transistor. Revision 1.2,

BFP843. Data Sheet. RF & Protection Devices. Robust Low Noise Broadband Pre-Matched Bipolar RF Transistor. Revision 1.

Power Management & Multimarket

BFP650. Data Sheet. RF & Protection Devices. High Linearity Silicon Germanium Bipolar RF Transistor. Revision 1.1,

Power Management & Multimarket

BGA713L7. Data Sheet. RF & Protection Devices. Single-Band UMTS LNA (700, 800 MHz) Revision 3.0,

BFP720F. Data Sheet. RF & Protection Devices. Low Noise Silicon Germanium Bipolar RF Transistor. Revision 1.1,

Low Dropout Linear Voltage Regulator

BGA748L16. Data Sheet. RF & Protection Devices. High Linearity Quad-Band UMTS LNA (2100, 1900, 900, 800 MHz) Revision 3.

BGB741L7ESD. Data Sheet. RF & Protection Devices. Robust Low Noise Broadband RF Amplifier MMIC. Revision 2.0,

Overvoltage at the Buck Converter Output

BFP760. Data Sheet. RF & Protection Devices. Low Noise Silicon Germanium Bipolar RF Transistor. Revision 1.1,

Revision: Rev

Ultra Low Quiescent Current Linear Voltage Regulator

BFP740F. Data Sheet. RF & Protection Devices. Low Noise Silicon Germanium Bipolar RF Transistor. Revision 2.0,

BFR840L3RHESD. Data Sheet. RF & Protection Devices. Robust Low Noise Silicon Germanium Bipolar RF Transistor. Revision 1.

EiceDRIVER. High voltage gate drive IC. Application Note. AN Revision 1.3,

BFP740. Data Sheet. RF & Protection Devices. Low Noise Silicon Germanium Bipolar RF Transistor. Revision 1.1,

BFP842ESD. Data Sheet. RF & Protection Devices. Robust Low Noise Silicon Germanium Bipolar RF Transistor. Revision 1.1,

Dual channel 5 A, high-speed, low-side gate driver with high negative input voltage capability and advanced reverse current robustness

BFR720L3RH. Data Sheet. RF & Protection Devices. Low Noise Silicon Germanium Bipolar RF Transistor. Revision 2.0,

BFR740L3RH. Data Sheet. RF & Protection Devices. Low Noise Silicon Germanium Bipolar RF Transistor. Revision 2.0,

BFP450. Data Sheet. RF & Protection Devices. High Linearity Low Noise Si NPN RF Transistor. Revision 1.0,

BFP640ESD. Data Sheet. RF & Protection Devices. Robust Low Noise Silicon Germanium Bipolar RF Transistor. Revision 1.1,

BFP640. Data Sheet. RF & Protection Devices. Low Noise Silicon Germanium Bipolar RF Transistor. Revision 2.0,

Analog Manifold Air Pressure Sensor IC. Analog Absolute Pressure Sensor. Revision 1.0,

Power Management & Multimarket

Angle Sensor TLE5012BD. Data Sheet. Sense & Control. GMR-Based Dual Die Angle Sensor. Rev. 1.2,

BGS12PN10. Data Sheet. Power Management & Multimarket. SPDT high linearity, high power RF Switch. Revision

TVS Diodes. ESD0P2RF Series. Data Sheet. Industrial and Multi-Market. Transient Voltage Suppressor Diodes

TVS Diodes. ESD18VU1B Series. Data Sheet. Industrial and Multi-Market. Transient Voltage Suppressor Diodes

Edition Published by Infineon Technologies AG Munich, Germany 2017 Infineon Technologies AG All Rights Reserved.

TLE4961-3M. Data Sheet. Sense & Control. High Precision Automotive Hall Effect Latch. Revision 1.0,

Revision: Rev

BFP650. Data Sheet. RF & Protection Devices. High Linearity Low Noise SiGe:C NPN RF Transistor. Revision 1.0,

BFP720FESD. Data Sheet. RF & Protection Devices. Robust Low Noise Silicon Germanium Bipolar RF Transistor. Revision 1.

BGSA14GN10. Data Sheet. Power Management & Multimarket. Single-Pole Quad Throw Antenna Tuning Switch. Revision

TLE4997A8D Grade1. Technical Product Description. Sense & Control. Programmable Linear Dual Hall Sensor. Revision 1.0,

Ultra Low Quiescent Current Linear Voltage Regulator

BGA734L16. Data Sheet. RF & Protection Devices. Low Power Tri-Band UMTS LNA (2100, 1900, 800 MHz) Revision 1.1,

SPDT RF CMOS Switch. Revision: Rev

Revision: Rev

Revision: Rev

TLE4922-XIN-F. 1 Product Description

BGSA13GN10. Data Sheet. Power Management & Multimarket. Single-Pole Triple Throw Antenna Tuning Switch. Revision

Revision: Rev

BGA628L7. Data Sheet. RF & Protection Devices. Silicon Germanium Wide Band Low Noise Amplifier. Revision 1.1, Preliminary

AN523. About this document. Scope and purpose

Revision: Rev

1200mA step down - LED controller IC ILD4120

1EDI EiceDRIVER Compact 1EDI20N12AF. Data Sheet. Industrial Power Control. Single Channel MOSFET and GaN HEMT Gate Driver IC 1EDI20N12AF

BGA735N16. Data Sheet. RF & Protection Devices. High Linearity Tri-Band LTE/UMTS LNA (2600/2300/2100, 1900/1800, 900/800/700 MHz)

Transcription:

LED Drivers for High Power LEDs ILD6070 Data Sheet Revision 2.0, 2013-02-25 Preliminary Power Management and Multimarket

Edition 2013-02-25 Published by Infineon Technologies AG 81726 Munich, Germany 2013 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Revision History Page or Item Subjects (major changes since previous revision) Revision 2.0, 2013-02-25 All Initial release of preliminary data sheet Trademarks of Infineon Technologies AG AURIX, C166, CanPAK, CIPOS, CIPURSE, EconoPACK, CoolMOS, CoolSET, CORECONTROL, CROSSAVE, DAVE, DI-POL, EasyPIM, EconoBRIDGE, EconoDUAL, EconoPIM, EconoPACK, EiceDRIVER, eupec, FCOS, HITFET, HybridPACK, I²RF, ISOFACE, IsoPACK, MIPAQ, ModSTACK, my-d, NovalithIC, OptiMOS, ORIGA, POWERCODE ; PRIMARION, PrimePACK, PrimeSTACK, PRO-SIL, PROFET, RASIC, ReverSave, SatRIC, SIEGET, SINDRION, SIPMOS, SmartLEWIS, SOLID FLASH, TEMPFET, thinq!, TRENCHSTOP, TriCore. Other Trademarks Advance Design System (ADS) of Agilent Technologies, AMBA, ARM, MULTI-ICE, KEIL, PRIMECELL, REALVIEW, THUMB, µvision of ARM Limited, UK. AUTOSAR is licensed by AUTOSAR development partnership. Bluetooth of Bluetooth SIG Inc. CAT-iq of DECT Forum. COLOSSUS, FirstGPS of Trimble Navigation Ltd. EMV of EMVCo, LLC (Visa Holdings Inc.). EPCOS of Epcos AG. FLEXGO of Microsoft Corporation. FlexRay is licensed by FlexRay Consortium. HYPERTERMINAL of Hilgraeve Incorporated. IEC of Commission Electrotechnique Internationale. IrDA of Infrared Data Association Corporation. ISO of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB of MathWorks, Inc. MAXIM of Maxim Integrated Products, Inc. MICROTEC, NUCLEUS of Mentor Graphics Corporation. MIPI of MIPI Alliance, Inc. MIPS of MIPS Technologies, Inc., USA. murata of MURATA MANUFACTURING CO., MICROWAVE OFFICE (MWO) of Applied Wave Research Inc., OmniVision of OmniVision Technologies, Inc. Openwave Openwave Systems Inc. RED HAT Red Hat, Inc. RFMD RF Micro Devices, Inc. SIRIUS of Sirius Satellite Radio Inc. SOLARIS of Sun Microsystems, Inc. SPANSION of Spansion LLC Ltd. Symbian of Symbian Software Limited. TAIYO YUDEN of Taiyo Yuden Co. TEAKLITE of CEVA, Inc. TEKTRONIX of Tektronix Inc. TOKO of TOKO KABUSHIKI KAISHA TA. UNIX of X/Open Company Limited. VERILOG, PALLADIUM of Cadence Design Systems, Inc. VLYNQ of Texas Instruments Incorporated. VXWORKS, WIND RIVER of WIND RIVER SYSTEMS, INC. ZETEX of Diodes Zetex Limited. Last Trademarks Update 2011-11-11 Preliminary Data Sheet 3 Revision 2.0, 2013-02-25

Table of Contents Table of Contents Table of Contents................................................................ 4 List of Figures................................................................... 5 List of Tables.................................................................... 6 1 Features........................................................................ 7 2 Product Brief.................................................................... 8 3 Maximum Ratings............................................................... 10 4 Thermal Characteristics.......................................................... 11 5 Electrical Characteristics......................................................... 12 5.1 DC Characteristics............................................................... 12 5.2 Switching Characteristics.......................................................... 14 5.3 Digital ControlSignals............................................................. 15 5.3.1 Switching Parameters........................................................... 16 6 Application Circuit.............................................................. 19 6.1 Inductor Selection Guideline........................................................ 19 7 Package Information............................................................ 21 Preliminary Data Sheet 4 Revision 2.0, 2013-02-25

List of Figures List of Figures Figure 1 Block Diagram................................................................. 8 Figure 2 Total Power Dissipation......................................................... 11 Figure 3 Typical Output Current Duty Cycle of Over-Temperature Protection vs. T J and R Tadj.......... 13 Figure 4 PWM Input................................................................... 15 Figure 5 Typical Integrated PWM Duty Cycle vs. PWM Control Voltage........................... 16 Figure 6 Application Circuit.............................................................. 19 Figure 7 Minimum Inductance for 0.35 A Average LED Current.................................. 20 Figure 8 Minimum Inductance for 0.7 A Average LED Current................................... 20 Figure 9 Package outline PG-DSO-8-27 (dimensions in mm)................................... 21 Figure 10 Recommended PCB Footprint for Reflow Soldering (dimensions in mm)................... 21 Figure 11 Tape Loading (dimensions in mm)................................................. 21 Preliminary Data Sheet 5 Revision 2.0, 2013-02-25

List of Tables List of Tables Table 1 Pin Definition and Function....................................................... 9 Table 2 Maximum Ratings............................................................ 10 Table 3 Maximum Thermal Resistance................................................... 11 Table 4 DC Characteristics............................................................. 12 Table 5 Switching Characteristics........................................................ 14 Table 6 Digital Control Parameter at Enable Pin EN.......................................... 15 Table 7 Digital Control Parameter at Pin PWM.............................................. 15 Table 8 Analog Control Parameter at Pin PWM............................................. 16 Preliminary Data Sheet 6 Revision 2.0, 2013-02-25

1 Features Wide input voltage range from 4.5 V to 60 V Capable to provide up to 0.7 A average output current Up to 1 MHz switching frequency Soft-start capability Separate enable and PWM dimming pins Analog and PWM dimming possible Integrated PWM generator for analog dimming input Typical 3% output current accuracy Very low LED current drift over temperature Adjustable over-temperature protection Undervoltage lockout Over-current protection Thermally optimized package: PG-DSO-8-27 Applications LED driver for general lighting Retail, office and residential downlights Street and tunnel lighting LED ballasts Product Name Package Marking ILD6070 PG-DSO-8-27 ILD6070 Preliminary Data Sheet 7 Revision 2.0, 2013-02-25

Product Brief 2 Product Brief The ILD6070 is a hysteretic buck LED driver IC for driving high power LEDs in general lighting applications with average currents up to 0.7 A. The ILD6070 is suitable for LED applications with a wide range of supply voltages from 4.5 V to 60 V. The enable signal can be used to activate the standby mode. A multifunctional PWM input signal allows dimming of the LEDs with an analog DC voltage or an external PWM signal. To minimize colorshifts of the LEDs an analog PWM voltage is converted to an internal 1.6 khz PWM signal modulating the LED current. The ILD6070 incorporates an undervoltage lock-out that will shut down the IC when the minimum supply voltage threshold is exceeded. The over-current protection turns off the output stage once the output current exceeds the current threshold. An integrated over-temperature protection circuit will start to reduce the LED current by internal PWM modulation once the adjustable junction temperature threshold of the IC is exceeded. Realizing a thermal coupling between LED driver and LEDs this feature eliminates the need of external temperature senors as NTCs or PTCs. Thanks to the hysteretic concept the current control is extremely fast and always stable. A maximum contrast ratio of 3000:1 can be achieved depending of the dimensioning of the external components. The efficiency of the LED driver is remarkable high, reaching up to 98% of efficiency over a wide range. The output current accuracy from device to device and under all load conditions and over temperature is limited to a minimum, making ILD6070 the perfect fit for LED ballasts. ILD6070 Buck LED Driver EN 1 8 Tadj UVLO VSTAB Vstab PWM 2 VREF I / V 7 Vs GND 3 DC to PWM Hysteretic Comparator 6 Vsense OTP OCP GND 4 5 Vswitch EP Figure 1 Block Diagram Preliminary Data Sheet 8 Revision 2.0, 2013-02-25

Product Brief Pin Definition Table 1 Pin Definition and Function Pin No. Name Pin Buffer Function Type Type 1 EN Input IC enable signal 2 PWM Input Dimming signal: Analog dimming PWM dimming 3 GND GND IC ground 4 GND GND IC ground 5 Vswitch Output Power switch output 6 Vsense Input LED current sense input 7 VS Input Supply voltage 8 Tadj Output Over-temperature adjustment EP Exposed Pad GND Heat spreader Preliminary Data Sheet 9 Revision 2.0, 2013-02-25

Maximum Ratings 3 Maximum Ratings Table 2 Maximum Ratings Parameter Symbol Values Unit Note / Min. Typ. Max. Test Condition Supply voltage V S -0.3 60 V EN voltage V EN -0.3 60 V PWM voltage V PWM -0.3 5.5 V Tadj voltage V Tadj -0.3 3.5 V Sense voltage V sense V S - 0.3 V S V Switch voltage V switch -0.3 60 V Average switch output current I out 0.7 A Total power dissipation, T S 118 C P tot 1.6 W Junction temperature T J -40 150 C Storage temperature range T STG -65 150 C ESD capability at all pins 1) V ESD HBM -2 2 kv HBM acc. to JESD22 - A114 1) Two different classes of ESD protection elements are implemented within ILD6070: 1. ESD protection at pin 7 (VS) gets triggered once the slew rate of the applied voltage signal exceeds a threshold of approximately 10 V/ns. In this case ESD protection will be triggered independently from the applied voltage level and won t turn off until supply voltage gets zero. If ESD protection gets triggered while V S is supplied the ESD protection respective the IC might be damaged. Therefore a V S blocking capacitor close to pin 7 is required to keep the slew rate at pin 7 below the threshold and to filter events as turning on the supply voltage or V S voltage spikes. 2. ESD protection at all other pins is triggered once the connected voltage signal exceeds a threshold higher than the maximum voltage rating specified for each pin. No preventions regarding slew rate control need to be taken for these pins. Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Preliminary Data Sheet 10 Revision 2.0, 2013-02-25

Thermal Characteristics 4 Thermal Characteristics Table 3 Maximum Thermal Resistance Parameter Symbol Values Unit Note / Min. Typ. Max. Test Condition Junction - soldering point 1) R thjs 20 K/W 1) For calculation of R thja please refer to application note AN077 (Thermal Resistance Calculation) 2 1.5 P tot [W] 1 0.5 0 0 20 40 60 80 100 120 140 160 T S [ C] Figure 2 Total Power Dissipation The major part of the IC power dissipation is caused by the switch resistance in conductive state. Therefore Equation (1) is a first estimation to calculate the power dissipation of the IC P tot = R ON I 2 out D + I S V S (1) D: Duty cycle of the output switch (2) For a more precise analysis please measure soldering point temperature T S of ILD6070 at GND pin and use Figure 2 as a reference. Preliminary Data Sheet 11 Revision 2.0, 2013-02-25

Electrical Characteristics 5 Electrical Characteristics 5.1 DC Characteristics All parameters at T amb = 25 C, unless otherwise specified. Table 4 DC Characteristics Parameter Symbol Values Unit Note / Min. Typ. Max. Test Condition Operating supply voltage V S 4.5 60 V Under Voltage Lock Out V S, UV, off 4.2 V IC deactivated 1) V S, UV, on 4.3 V IC operative Supply current consumption open load I S,open load 2.2 ma V S = V sense I LED =0mA Supply voltage reset time t S, reset 130 µs Reset time after V S power up 2) Supply standby current consumption I S,stby,12V 0.2 ma V S = V sense =12V V EN =0V I S,stby,60V 0.5 ma V S = V sense =60V V EN =0V Current of V sense input I sense 17 µa At any LED current Output over current protection threshold I out, OCP 1.4 A Output over current protection delay time t delay, OCP 0.2 µs turn off delay Output over current protection time out t timeout, OCP 33 µs turn off duration 3) Over temperature protection threshold range (typical), 10 % reduction Over temperature protection threshold open, 10 % reduction Over temperature protection threshold short, 10 % reduction T OTP, range 75 145 C R Tadj = 35 kω... 0 Ω 4) T OTP, open 115 C R Tadj 150 kω T OTP, short 145 C R Tadj = 0 Ω Tadj pin current source to GND I Tadj, short 57 µa R Tadj = 0 Ω 1) IC gets deactivated once the supply voltage drops below V S, UV, off and gets operative once supply voltage rises above V S, UV, on.. 2) Reset timer starts after supply voltage exceeds the lower limit of the supply voltage. Output stage gets enabled once reset timer expires. 3) Once the over current protection threshold has been exceeded the output switch gets disabled. It s enabled again once the time out expired. 4) Output current gets reduced using internal PWM generator once chip junction temperature exceeds the temperature threshold. Temperature threshold is defined by resistor R Tadj. Valid R Tadj resistor range is 0 to 35 kω. Resistors R Tadj 150 kω are treated as open connection. Typical temperature tuning range is specified. Preliminary Data Sheet 12 Revision 2.0, 2013-02-25

Electrical Characteristics 100 I out Duty Cycle [%] 80 60 40 20 0 0 kω 10 kω 20 kω 35 kω Open 60 70 80 90 100 110 120 130 140 150 160 170 T J [ C] Figure 3 Typical Output Current Duty Cycle of Over-Temperature Protection vs. T J and R Tadj Preliminary Data Sheet 13 Revision 2.0, 2013-02-25

Electrical Characteristics 5.2 Switching Characteristics All parameters at T amb = 25 C, unless otherwise specified. Table 5 Switching Characteristics Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. Switching frequency f switch 1 MHz Mean current sense threshold V sense 125 mv f switch =100kHz voltage Sense threshold hysteresis V sensehys ±20 % peak to average V S =12V, f switch =100kHz Output current drift over supply voltage I out, Vs ±3 % Output current drift over temperature I out, Ts ±4 % for temperatures below OTP threshold Output current drift over load I out, load ±3 % fixed V S Switch on resistance R ON, 25 C 0.43 Ω I SW =0.2A, T J =25 C R ON, 125 C 0.82 Ω I SW =0.2A, T J =125 C Preliminary Data Sheet 14 Revision 2.0, 2013-02-25

Electrical Characteristics 5.3 Digital ControlSignals All parameters at T amb = 25 C, unless otherwise specified. Table 6 Digital Control Parameter at Enable Pin EN 1) Parameter Symbol Values Unit Note / Min. Typ. Max. Test Condition EN voltage logic high level V EN, high 2.5 60 V IC operative EN voltage logic low level V EN, low -0.3 0.5 V IC in standby Input current of EN pin I EN, 3V 10 µa V EN =3V I EN, 60V 55 µa V EN =60V 1) EN pin doesn t have an internal biasing and requires connection to an external voltage signal for operation Table 7 Digital Control Parameter at Pin PWM 1) Parameter Symbol Values Unit Note / Min. Typ. Max. Test Condition PWM voltage logic high level V PWM, high 2.6 5.5 V output stage enabled PWM voltage logic low level V PWM, low -0.3 0.5 V output stage disabled PWM output current I CC,PWM 18 µa V PWM =0V PWM delay time t d, PWM, on 0.8 µs V EN =3V V PWM = rising to 2.5 V V switch = falling to 1V t d, PWM, off 0.5 µs V EN =3V V PWM = falling to 0.5 V V switch = rising to 1V PWM signal frequency f PWM, ext 25 khz 1) PWM pin has an internal pull-up circuit to high level if not connected externally on PCB 4.7 V PWM I CC,PWM Figure 4 PWM Input Preliminary Data Sheet 15 Revision 2.0, 2013-02-25

Electrical Characteristics Analog PWM input voltage signals activate modulation of the LED current by the integrated PWM generator. PWM duty cycle versus PWM control voltage is shown in Figure 5. Table 8 Analog Control Parameter at Pin PWM Parameter Symbol Values Unit Note / Min. Typ. Max. Test Condition PWM input voltage for 0% duty V PWM, 0% 0.67 V cycle PWM input voltage for 50% duty V PWM, 50% 1.55 V cycle PWM input voltage for 100% duty V PWM, 100% 2.43 V cycle Sensitivity of PWM duty cycle vs. D.C./V PWM 57 %/V PWM input voltage Integrated PWM generator frequency f PWM, int 1.6 khz 100 PWM Duty Cycle [%] 80 60 40 20 0 0 0.5 1 1.5 2 2.5 3 V PWM [V] Figure 5 Typical Integrated PWM Duty Cycle vs. PWM Control Voltage 5.3.1 Switching Parameters For all shown switching parameters ILD6070 has been measured on evaluation board ILD6070 at T A = 25 C. Used LEDs have a typical V fled of 3 V. Efficiency figure shows total efficiency of the application board including losses of external components as inductor or Schottky diode. See the application note for further details. Preliminary Data Sheet 16 Revision 2.0, 2013-02-25

Electrical Characteristics Performance vs. supply voltage and number of LEDs: R sense = 178 mω, L = 68 µh, V fled =3V 0.9 I LED versus V S and number of LEDs 5 Relative change of I LED versus V S and number of LEDs 4 I LED [A] 0.8 0.7 0.6 I LEDrelative [%] 3 2 1 0-1 -2-3 -4 0.5 0 5 10 15 20 25 30 35 40 45 50 55 60 V S [V] -5 0 5 10 15 20 25 30 35 40 45 50 55 60 V S [V] 1 LED 2 LEDs 3 LEDs 4 LEDs 5 LEDs 6 LEDs 7 LEDs 8 LEDs 9 LEDs 10 LEDs 1 LED 2 LEDs 3 LEDs 4 LEDs 5 LEDs 6 LEDs 7 LEDs 8 LEDs 9 LEDs 10 LEDs 1 Efficiency versus V S and number of LEDs 800 f Switch versus V S and number of LEDs 0.9 600 Efficiency [-] 0.8 f Switch [khz] 400 0.7 200 0.6 0 5 10 15 20 25 30 35 40 45 50 55 60 V S [V] 0 0 5 10 15 20 25 30 35 40 45 50 55 60 V S [V] 1 LED 2 LEDs 3 LEDs 4 LEDs 5 LEDs 6 LEDs 7 LEDs 8 LEDs 9 LEDs 10 LEDs 1 LED 2 LEDs 3 LEDs 4 LEDs 5 LEDs 6 LEDs 7 LEDs 8 LEDs 9 LEDs 10 LEDs Duty Cycle [-] Duty Cycle versus V S and number of LEDs 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 20 25 30 35 40 45 50 55 60 V S [V] 1 LED 2 LEDs 3 LEDs 4 LEDs 5 LEDs 6 LEDs 7 LEDs 8 LEDs 9 LEDs 10 LEDs Preliminary Data Sheet 17 Revision 2.0, 2013-02-25

Electrical Characteristics Performance vs. supply voltage and number of LEDs: R sense = 353 mω, L = 150 µh, V fled =3V 0.45 I LED versus V S and number of LEDs 5 Relative change of I LED versus V S and number of LEDs 4 I LED [A] 0.4 0.35 0.3 I LEDrelative [%] 3 2 1 0-1 -2-3 -4 0.25 0 5 10 15 20 25 30 35 40 45 50 55 60 V S [V] -5 0 5 10 15 20 25 30 35 40 45 50 55 60 V S [V] 1 LED 2 LEDs 3 LEDs 4 LEDs 5 LEDs 6 LEDs 7 LEDs 8 LEDs 9 LEDs 10 LEDs 1 LED 2 LEDs 3 LEDs 4 LEDs 5 LEDs 6 LEDs 7 LEDs 8 LEDs 9 LEDs 10 LEDs 1 Efficiency versus V S and number of LEDs 800 f Switch versus V S and number of LEDs 0.9 600 Efficiency [-] 0.8 f Switch [khz] 400 0.7 200 0.6 0 5 10 15 20 25 30 35 40 45 50 55 60 V S [V] 0 0 5 10 15 20 25 30 35 40 45 50 55 60 V S [V] 1 LED 2 LEDs 3 LEDs 4 LEDs 5 LEDs 6 LEDs 7 LEDs 8 LEDs 9 LEDs 10 LEDs 1 LED 2 LEDs 3 LEDs 4 LEDs 5 LEDs 6 LEDs 7 LEDs 8 LEDs 9 LEDs 10 LEDs Duty Cycle [-] Duty Cycle versus V S and number of LEDs 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 20 25 30 35 40 45 50 55 60 V S [V] 1 LED 2 LEDs 3 LEDs 4 LEDs 5 LEDs 6 LEDs 7 LEDs 8 LEDs 9 LEDs 10 LEDs Preliminary Data Sheet 18 Revision 2.0, 2013-02-25

Application Circuit 6 Application Circuit Vs R Tadj EN 1 8 UVLO VSTAB Vstab PWM 2 VREF I / V 7 C PWM 1) L R sense 3 DC to PWM Hysteretic Comparator 6 OTP OCP 4 5 1) C PWM is optional for soft start EP Exposed pad to be connected to GND Figure 6 Application Circuit A V S blocking capacitor shall be placed close to pin 7 to enable a low ripple V sense measurement and to avoid a false triggering of the V S ESD protection element inside the IC. 6.1 Inductor Selection Guideline The inductance of the inductor L, the supply voltage V S, the number of LEDs driven and their average LED current significantly influence the slew rate of the LED current in on and off condition of the LED driver output switch. Due to the hysteretic current control ILD6070 will toggle the output driver stage each time upper or lower current threshold are reached. To maintain best regulation capability of the LED driver it s reasonable to keep a margin to the minimum switch on and off time defined by internal propagation delay times. Disregard of this recommendation by choosing too small inductor values might result in an increased LED current ripple and loss of LED current regulation accuracy. Minimum 350 ns on and off time are recommended as a reasonable design target for the inductor selection. Below figures provide a guideline concerning minimum inductance value versus supply voltage and number of LEDs. It s assumed that forward voltage of each LED is within 2.5 V to 3.9 V over temperature and LED production tolerances. Minimum forward voltage (e.g. occuring at high LED temperatures) needs to be considered with respect to the minimum switch on-time while maximum forward voltage (e.g. occuring at low temperatures) needs to be considered with respect to the switch off-time. The saturation current of the chosen inductor has to be higher than the peak LED current and the rating of it s continous current needs to exceed the average LED current. Preliminary Data Sheet 19 Revision 2.0, 2013-02-25

Application Circuit 0.35 A Number of LEDs V S [V] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 5 15 10 22 33 15 47 33 47 20 68 47 47 47 68 25 68 68 68 47 68 68 30 100 100 68 68 68 68 100 35 100 100 100 100 68 68 100 100 40 150 100 100 100 100 100 100 100 100 150 45 150 150 150 100 100 100 100 100 100 150 150 50 150 150 150 150 150 100 100 100 100 150 150 150 55 150 150 150 150 150 150 150 100 100 150 150 150 150 220 60 220 220 150 150 150 150 150 150 150 150 150 150 150 220 220 Inductance in µh; 2.5 V V fled 3.9 V Figure 7 Minimum Inductance for 0.35 A Average LED Current 0.7 A Number of LEDs V S [V] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 5 6.8 10 10 15 15 22 15 22 20 33 22 22 33 33 25 33 33 33 33 33 47 30 47 47 33 33 33 47 47 35 47 47 47 47 33 47 47 47 40 68 68 47 47 47 47 47 47 68 68 45 68 68 68 68 47 47 47 47 68 68 68 50 68 68 68 68 68 68 47 47 68 68 68 68 55 100 100 68 68 68 68 68 68 68 68 68 68 100 60 100 100 100 100 68 68 68 68 68 68 68 68 100 100 100 Inductance in µh; 2.5 V V fled 3.9 V Figure 8 Minimum Inductance for 0.7 A Average LED Current Preliminary Data Sheet 20 Revision 2.0, 2013-02-25

Package Information 7 Package Information 0.35 x 45 +0 0.1-0.1 1.27 Stand Off (1.45) 1.7 MAX. 0.41±0.09 2) 0.2 M C A-B D C 0.08 C Seating Plane 8x 3.9 ±0.1 1) 0.1 CD2x 0.19 +0.06 0.64 ±0.25 8 MAX. 6 ±0.2 0.2 M D 8x D Index Marking 8 1 4 5 A B 0.1 C A-B 2x 4.9 ±0.1 1) Bottom View 3 ±0.2 1 4 8 5 2.65 ±0.2 Figure 9 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Dambar protrusion shall be maximum 0.1 mm total in excess of lead width 3) JEDEC reference MS-012 variation BA Package outline PG-DSO-8-27 (dimensions in mm) PG-DSO-8-27-PO V01 1.31 2.65 1.27 0.65 3 5.69 Figure 10 PG-DSO-8-27-FP V01 Recommended PCB Footprint for Reflow Soldering (dimensions in mm) Pin 1 marking 8 0.3 5.2 12 ±0.3 6.4 1.75 2.1 PG-DSO-8-27-TP V05 Figure 11 Tape Loading (dimensions in mm) Preliminary Data Sheet 21 Revision 2.0, 2013-02-25

www.infineon.com Published by Infineon Technologies AG