SYLLABUS. osmania university CHAPTER - 1 : OPERATIONAL AMPLIFIER CHAPTER - 2 : OP-AMP APPLICATIONS ARATORS AND CONVERTERS

Similar documents
SYLLABUS. osmania university UNIT - I UNIT - II UNIT - III CHAPTER - 4 : OPERATIONAL AMPLIFIER

Question Paper Code: 21398

LINEAR IC APPLICATIONS


Hours / 100 Marks Seat No.

KINGS COLLEGE OF ENGINEERING* DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

GUJARAT TECHNOLOGICAL UNIVERSITY. INSTRUMENTATION & CONTROL ENGINEERING (17) ANALOG SIGNAL PROCESSING SUBJECT CODE: B.E.

MODEL ANSWER SUMMER 17 EXAMINATION Subject Title: Linear Integrated Circuit Subject Code:

EC0206 LINEAR INTEGRATED CIRCUITS

EE2254 LINEAR INTEGRATED CIRCUITS UNIT-I IC FABRICATION


DMI COLLEGE OF ENGINEERING

Scheme I Sample Question Paper

LESSON PLAN. SUBJECT: LINEAR IC S AND APPLICATION NO OF HOURS: 52 FACULTY NAME: Mr. Lokesh.L, Hema. B DEPT: ECE. Portions to be covered

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK IV SEMESTER

Summer 2015 Examination

Linear Integrated Circuits and Applications

R (a) Explain characteristics and limitations of op-amp comparators. (b) Explain operation of free running Multivibrator using op-amp.

EC6404-LINEAR INTEGRATED CIRCUITS Question bank UNIT-I PART-A 1. What are the advantages of an IC over discrete components?

Preface... iii. Chapter 1: Diodes and Circuits... 1

UNIT-I CIRCUIT CONFIGURATION FOR LINEAR

VALLIAMMAI ENGINEERING COLLEGE

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Linear Integrated Circuits Applications

St.MARTIN S ENGINEERING COLLEGE

EC0206 Linear Integrated Circuits Fourth Semester, (even semester)

explain its operation with clearly indicating the protection mechanisms indicated. [Marks 16] (Nov/dec 2010) Ic 741 Op Amp Of Output Stage Protection

Minnesota State College Southeast ELEC 2260: Linear Integrated Circuits

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK

multivibrator; Introduction to silicon-controlled rectifiers (SCRs).

Devices and Op-Amps p. 1 Introduction to Diodes p. 3 Introduction to Diodes p. 4 Inside the Diode p. 6 Three Diode Models p. 10 Computer Circuit


UNIT- IV ELECTRONICS

SRM UNIVERSITY FACULTY OF ENGINEERING AND TECHNOLOGY SCHOOL OF ELECTRONICS AND ELECTRICAL ENGINEERING DEPARTMENT OF EEE. Section

EE LINEAR INTEGRATED CIRCUITS AND APPLICATIONS TWO MARK QUESTIONS WITH ANSWERS UNIT-I CIRCUIT CONFIGURATION FOR LINEAR ICs

Function Generator Using Op Amp Ic 741 Theory

DEPARTMENT OF ELECTRONICS

UNIT I Circuit Configuration for Linear ICs

III/IV B.Tech. DEGREE EXAMINATIONS, NOV/DEC-2017

Solapur University, Solapur Syllabus for B.Sc. II Electronics Semester System To be implemented from Academic Year ) Course Structure: -

Analog Filter and. Circuit Design Handbook. Arthur B. Williams. Singapore Sydney Toronto. Mc Graw Hill Education

DIGITAL ELECTRONICS ANALOG ELECTRONICS

Introduction to Simulation using EDWinXP

Dev Bhoomi Institute Of Technology Department of Electronics and Communication Engineering PRACTICAL INSTRUCTION SHEET REV. NO. : REV.

Academic Course Description. EC1013 Linear Integrated Circuits Fourth Semester, (Even Semester)

Speed Control of DC Motor Using Phase-Locked Loop

Introductory Electronics for Scientists and Engineers

GATE: Electronics MCQs (Practice Test 1 of 13)

B.E. SEMESTER III (ELECTRICAL) SUBJECT CODE: X30902 Subject Name: Analog & Digital Electronics

SYLLABUS OSMANIA UNIVERSITY (HYDERABAD)

B.Sc. ELECTRONICS (OPTIONAL) Second Year DR. BABASAHEB AMBEDKAR MARATHWADA UNIVERSITY, AURANGABAD

PROPOSED SCHEME OF COURSE WORK

U. Tietze Ch. Schenk E. Gamet. Electronic Circuits. Handbook for Design and Application. 2nd edition. with 1771 Figures and CD-ROM.

ANALOG ELECTRONICS VIVA & INTERVIEW QUESTIONS

Operational Amplifiers

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

OBJECTIVE TYPE QUESTIONS

W.E.From..JllIle.. Jalgaoll S..Ualnis.f'o..,8.Y.B.Sc... c... v Y... l\f()ft11mlihlirlishtr<i. UIli\,eI'~it.y,.

ELC224 Final Review (12/10/2009) Name:

ELECTRONICS WITH DISCRETE COMPONENTS

7.S-[F] SU-02 June All Syllabus Science Faculty B. Sc. II Yr. Eelectronics [Sem.III & I - 1 -

Multivibrators. Department of Electrical & Electronics Engineering, Amrita School of Engineering

Chapter 1 Semiconductors and the p-n Junction Diode 1

Fig 1: The symbol for a comparator

Facility of Engineering. Biomedical Engineering Department. Medical Electronic Lab BME (317) Pre-Report Forms

EE : ELECTRICAL ENGINEERING Module 8 : Analog and Digital Electronics INDEX

Concepts to be Reviewed

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation

Electronics & Comm. Lab

ELT 215 Operational Amplifiers (LECTURE) Chapter 5

Gechstudentszone.wordpress.com

R & D Electronics DIGITAL IC TRAINER. Model : DE-150. Feature: Object: Specification:

Introduction to Op Amps

21/10/58. M2-3 Signal Generators. Bill Hewlett and Dave Packard s 1 st product (1939) US patent No HP 200A s schematic

FIRSTRANKER. 1. (a) What are the advantages of the adjustable voltage regulators over the fixed

AURORA S ENGINEERING COLLEGE BHONGIR, NALGONDA DIST

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING. JNTU World COURSE: LINEAR AND DIGITAL IC APPLICATIONS LECTURE NOTES

Dr.NNCE ECE/IVSEM LIC LAB-LM


3. Increased system reliability due to the elimination of soldered joints.

Q1. Explain the Astable Operation of multivibrator using 555 Timer IC.

ENE/EIE 211 : Electronic Devices and Circuit Design II Lecture 1: Introduction

ELECTRONICS ADVANCED SUPPLEMENTARY LEVEL

UNIT I. Operational Amplifiers

DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EC6202 ELECTRONIC DEVICES AND CIRCUITS

Microelectronic Circuits

Let us consider the following block diagram of a feedback amplifier with input voltage feedback fraction,, be positive i.e. in phase.

15 DETAILED NOTES. 1.3 IC Package Types. 1.4 Metal Can package: Unit- I

ANALOG ELECTRONIC CIRCUITS (EE-325-F) LAB MANUAL

Operational Amplifier as A Black Box

Chapter 2. Operational Amplifiers

Analog Circuits. Operational Amplifiers (Opamps) DC Power Supplies Oscillators

i Intelligent Digitize Emulated Achievement Lab

For input: Peak to peak amplitude of the input = volts. Time period for 1 full cycle = sec

Acknowledgments Introduction

BHARATHIDASAN ENGINEERING COLLEGE

tyuiopasdfghjklzxcvbnmqwertyuiopas dfghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq

PRODUCT CATALOG TRAINER KITS FOR ENGINEERING DEGREE COURSES MICROTECH INDUSTRIES

Electronic PRINCIPLES

SKP Engineering College

Transcription:

Contents i SYLLABUS osmania university UNIT - I CHAPTER - 1 : OPERATIONAL AMPLIFIER Operational Amplifiers-Characteristics, Open Loop Voltage Gain, Output Impedance, Input Impedance, Common Mode Rejection Ratio-Offset Balancing Techniques-Slew Rate, Frequency Response-Stability, Frequency Compensation of an Op-Amp, Voltage Follower. CHAPTER - 2 : OP-AMP APPLICATIONS Basic Applications-Inverter Summer, Analog Integrator, Differentiator, Current to Voltage Converter, Voltage to Current Converter, AC Amplifier, Clipper and Clamper, Precision Rectifier-Full Wave and HalfWave, Peak Detector, Multiplier, Divider, Difference Amplifier, Instrumentation Amplifier Circuits Using Op-Amps. UNIT - II CHAPTER - 3 : COMPARA ARATORS AND CONVERTERS Voltage Limiter, Comparator, Zero Crossing Detector, Schmitt Trigger, Monostable, Astable and Bistable, Multi Vibrator, Voltage to Frequency Converter, A/D and D/A Converters. UNIT - III CHAPTER - 4 : WAVEFORM GENERATION USING OP-AMPS Waveform Generation using Op-Amps-sine, Square, Triangular and Quadrature Oscillators, Voltage Controlled Oscillator. CHAPTER - 5 : 555 TIMER 555 Time Functional Diagram, Operation as Monostable and Astable.

ii Contents CHAPTER - 6 : PHASE-LOCKED LOOP Introduction, Basic Principles, Definitions Related to PLL, Phase Detector (or) Comparator, Voltage Controlled Oscillator (VCO), Low-pass Filter, Monolithic Phaselocked Loop, Phase-looked Loop Applications, Solved Problems. UNIT - IV CHAPTER - 7 : VOLTAGE REGULATORS Series Voltage Regulator using Op-Amp, Shunt Regulators using Op-Amp, Switching Regulators using Op-Amp, Dual Voltage Regulator, Fixed Voltage Regulators, Dual Tracking Regulators, Hybrid Regulator, Current Sensing and Current Feedback Protection. UNIT - V CHAPTER - 8 : ACTIVE FILTERS RC Active Filters, Low Pass, High Pass, Band Pass, Band Reject, Notch, First Order, Second Order Transformation, State Variable Filter, Switched Capacitor Filter, Universal Filter, Balanced Modulator/Demodulator.

Contents iii LINEAR INTEGRATED TED CIRCUITS FOR b.e. (o.u) III year I semester (COMMON TO EEE AND EIE) CONTENTS UNIT - I [CH. H. - 1] ] [OPERATIONAL AMPLIFIER]... 1.1-1.112 1.1 INTRODUCTION... 1.2 1.2 INTEGRATED TED CIRCUITS ICs... 1.2 1.2.1 Classification of ICs... 1.2 1.2.1.1 Based on Mode of Operation (or) Applications... 1.3 1.2.1.2 Based on the Fabrication Method... 1.3 1.2.1.3 Based on the Number of Components Fabricated...... 1.5 1.2.2 Integrated Circuit Package Types... 1.6 1.2.2.1 Selection of IC Package... 1.8 1.2.3 Manufacture Designations for ICs... 1.9 1.2.4 Advantage of ICs... 1.9 1.2.5 Disadvantages of ICs... 1.10 1.3 OP-AMP... 1.10 1.3.1 Basics of an Op-Amp... 1.11 1.3.1.1 Circuit Symbol... 1.11 1.3.1.2 Equivalent Circuit of a Practical Op-Amp... 1.11 1.3.1.3 Pin Configuration of an Op-Amp... 1.12 1.3.1.4 Power Supply Connections... 1.13

iv Contents 1.3.1.5 Op-Amp Parameters... 1.14 1.3.1.5.1 Solved Problems... 1.21 1.3.1.5.2 Measurement of Op-Amp Parameters... 1.23 1.3.1.6 Op-Amp Configuration... 1.29 1.3.1.7 Op-Amp Specifications... 1.32 1.4 IDEAL OP-AMP... 1.32 1.4.1 Ideal Op-Amp... 1.36 1.4.2 Feedback in Ideal Op-Amp... 1.38 1.4.3 Inverting Amplifier... 1.38 1.4.3.1 Ideal Inverting Amplifier... 1.38 1.4.3.1.1 Solved Problems... 1.39 1.4.3.2 Practical Inverting Amplifier... 1.42 1.4.3.2.1 Closed-Loop oop Voltage Gain... 1.42 1.4.3.2.2 Input Resistance with Feedback... 1.44 1.4.3.2.3 Output Resistance with Feedback... 1.45 1.4.3.2.4 Bandwidth with Feedback... 1.46 1.4.3.2.5 Solved Problems... 1.48 1.4.4 Non-Inverting Amplifier... 1.50 1.4.4.1 Ideal Non-Inverting Amplifier... 1.51 1.4.4.1.1 Solved Problem... 1.52 1.4.4.2 Practical Non-Inverting Amplifier... 1.53 1.4.4.2.1 Closed Loop Voltage Gain... 1.54 1.4.4.2.2 Input Resistance with Feedback... 1.55 1.4.4.2.3 Output Resistance with Feedback... 1.56 1.4.4.2.4 Bandwidth with Feedback... 1.56 1.4.4.2.5 Solved Problems... 1.57

Contents v 1.4.5 Comparison between Inverting and Non-Inverting Amplifier... 1.61 1.4.6 Voltage Follower ollower... 1.62 1.4.6.1 Advantages of Voltage Follower... 1.62 1.4.6.2 Practical use of Voltage Follower... 1.62 1.4.6.3 Solved Problem... 1.64 1.4.7 Differential Amplifier... 1.64 1.4.7.1 Differential Gain (A dm )... 1.66 1.4.7.2 Common Mode Gain (A cm )... 1.67 1.4.7.3 Common-Mode Rejection Ratio (CMRR)... 1.67 1.4.7.4 Features of Differential Amplifier... 1.68 1.4.7.5 Solved Problems... 1.69 1.4.8 Virtual Ground Concept... 1.76 1.5 BLOCK DIAGRAM OF AN OP-AMP AMP... 1.76 1.6 OP-AMP IC 741 AND ITS FEATURES... 1.78 1.6.1 741 Op-Amp... 1.78 1.6.2 Characteristics of LM 741 and LM 741C... 1.79 1.6.3 Features of IC 741... 1.80 1.7 OP-AMP CHARACTERISTICS CTERISTICS... 1.81 1.7.1 DC Characteristics of an Op-Amp... 1.81 1.7.1.1 Input Bias Current... 1.81 1.7.1.2 Input Offset Current... 1.83 1.7.1.3 Input Offset Voltage... 1.84 1.7.1.4 Thermal Drift... 1.86 1.7.1.5 Solved Problems... 1.86

vi Contents 1.7.2 AC Characteristics of an Op-Amp... 1.89 1.7.2.1 Frequency Response esponse... 1.89 1.7.2.2 Stability of an Op-Amp... 1.94 1.7.2.3 Frequency Compensation of an Op-Amp... 1.101 1.7.2.3.1 External Frequency Compensation... 1.101 1.7.2.3.2 Internal Frequency Compensation... 1.109 1.8 OFFSET BALANCING TECHNIQUES... 1.111 UNIT - I [CH. H. - 2] ] [OP-AMP APPLICATIONS]... 1.113-1.240 2.1 INTRODUCTION... 1.114 2.2 BASIC APPLICATIONS OF OP-AMP AMP... 1.11 2.2.1 Scale Changer/Inverter... 1.411 2.2.2 Summing Amplifier... 1.416 2.2.2.1 Inverting Summing Amplifier... 1.116 2.2.2.2 Non-Inverting Summing Amplifier... 1.118 2.2.3 Subtractor... 1.120 2.2.3.1 Adder-Subtractor... 1.121 2.2.4 Solved Problems... 1.123 2.3 INSTRUMENTATION TION AMPLIFIER USING OP-AMP AMP... 1.132 2.3.1 Instrumentation Amplifier with Three Op-Amp... 1.133 2.3.2 Instrumentation Amplifier using a Transducer Bridge... 1.136 2.3.3 Applications of Instrumentation Amplifier... 1.138 2.3.3.1 Temperature Controller... 1.138 2.3.3.2 Temperature Indicator... 1.138 2.3.3.3 Light Intensity Meter... 1.139 2.3.3.4 Analog Weight Scale... 1.139 2.3.4 Solved Problems... 1.140

Contents vii 2.4 AC AMPLIFIER... 1.145 2.4.1 Inverting ac Amplifier... 1.145 2.4.2 Non-Inverting ac Amplifier... 1.145 2.4.3 ac Voltage Follower ollower... 1.146 2.4.4 Peaking Amplifier... 1.146 2.4.5 Solved Problem... 1.147 2.5 CURRENT-TO-VOL OLTAGE CONVERTER [TRANSRESISTANCE ANCE AMPLIFIER]... 1.149 2.5.1 Applications of I-to-V Converter... 1.151 2.5.1.1 Photodiode Detector... 1.151 2.5.1.2 Photo FET Detector... 1.151 2.6 VOL OLTAGE GE-TO-CURRENT CONVERTER [TRANSCONDUCTANCE ANCE AMPLIFIER]... 1.152 2.6.1 V-to -to-i -I Converter with Floating Load... 1.152 2.6.2 V-to -to-i -I Converter with Grounded Load oad... 1.153 2.6.3 Applications of V-to -to-i -I Converter... 1.154 2.6.3.1 Low ow Voltage dc Voltmeter... 1.154 2.6.3.2 Low ow Voltage AC C Voltmeter... 1.155 2.6.3.3 Diode Tester and Match Finder inder... 1.156 2.6.3.4 Zener Diode Tester... 1.157 2.7 OP-AMP CIRCUITS USING DIODES... 1.157 2.7.1 Precision Rectifier... 1.158 2.7.1.1 Precision Diodes... 1.158 2.7.1.2 Half-Wave ave Rectifier... 1.159 2.7.1.3 Fullull-Wave Rectifier ectifier... 1.160 2.7.2 Peak Detectors... 1.162 2.7.3 Clipper... 1.164 2.7.3.1 Positive Clippers... 1.164 2.7.3.2 Negative Clippers... 1.166 2.7.4 Clamper... 1.167

viii Contents 2.8 SAMPLE AND HOLD CIRCUIT... 1.168 2.8.1 Performance Characteristics... 1.170 2.8.2 Monolithic S/H Integrated Circuits... 1.171 2.8.3 Fast S/H ICs... 1.172 2.8.4 Advantages of Sample and Hold Circuit... 1.172 2.8.5 Applications of Sample and Hold Circuit... 1.173 2.8.6 Solved Problem... 1.173 2.9 LOGARITHMIC AMPLIFIER... 1.174 2.9.1 Realization of Logarithmic Amplifier using Diode... 1.174 2.9.2 Realization of Logarithmic Amplifier using Transistor (Transdiode Configuration)... 1.176 2.9.3 Drawbacks of Basic Logarithmic Amplifier... 1.178 2.9.4 Temperature Compensated Logarithmic Amplifier using Diode... 1.178 2.9.5 Temperature Compensated Logarithmic Amplifier using Transistor ransistor... 1.180 2.9.6 Disadvantages of Temperature Compensated Logarithmic Amplifier... 1.182 2.9.7 Modified Temperature Compensated Logarithmic Amplifier.. 1.182 2.9.8 Stability Considerations... 1.184 2.9.9 Applications of Log Amplifier... 1.185 2.9.10 Solved Problems... 1.185 2.10 ANTILOGARITHMIC AMPLIFIER... 1.187 2.10.1 Realization of Antilogarithmic Amplifier using Diode... 1.187 2.10.2 Realization of Antilogarithmic Amplifier using Transistor... 1.188 2.10.3 Disadvantages of Basic Antilogarithmic Amplifier... 1.189 2.10.4 Temperature Compensated Antilog Amplifier using Diode... 1.190 2.10.5 Temperature Compensated Antilog Amplifier using Transistor... 1.192 2.10.6 Solved Problems... 1.194

Contents ix 2.11 MULTIPLIER... 1.196 2.11.1 Multiplier Quadrants... 1.198 2.11.2 Applications of Analog Multiplier... 1.199 2.11.3 Solved Problem... 1.205 2.12 DIFFERENTIATOR OR... 1.206 2.12.1 Ideal Differentiator... 1.207 2.12.1.1 Analysis of Ideal Op-Amp Differentiator... 1.207 2.12.1.2 Frequency Response of an Ideal Differentiator... 1.208 2.12.1.3 Input and Output Waveforms for Differentiator... 1.209 2.12.1.4 Limitations of an Ideal Differentiator... 1.212 2.12.2 Practical Differentiator... 1.212 2.12.2.1 Analysis of Practical Differentiator... 1.213 2.12.2.2 Frequency Response of a Practical Differentiator...... 1.214 2.12.2.3 Guidelines to Design Practical Differentiator... 1.216 2.12.2.4 Applications of Practical Differentiator... 1.216 2.12.3 Solved Problems... 1.217 2.13 INTEGRATOR OR... 1.221 2.13.1 Ideal Integrator... 1.221 2.13.1.1 Analysis of an Ideal Op-Amp Integrator... 1.221 2.13.1.2 Frequency Response of an Ideal Integrator... 1.1222 2.13.1.3 Input and Output Waveforms for Integrator... 1.224 2.13.1.4 Limitations of an Ideal Integrator... 1.227 2.13.2 Practical Integrator... 1.227 2.13.2.1 Analysis of Practical Integrator... 1.228 2.13.2.2 Frequency Response of a Practical Integrator... 1.229 2.13.2.3 Applications of a Practical Integrator... 1.232 2.13.3 Solved Problems... 1.232 2.14 DIFFERENCE AMPLIFIER... 1.240

x Contents UNIT - II [CH.. - 3] ] [COMP COMPARA ARATORS AND CONVERTERS]... 2.1-2.110 3.1 INTRODUCTION... 2.2 3.2 COMPARA ARATOR... 2.2 3.2.1 Types of Comparators... 2.2 3.2.1.1 Inverting Comparator... 2.2 3.2.1.2 Non-Inverting Comparator... 2.4 3.2.2 Comparator Characteristics... 2.5 3.2.2.1 Voltage Transfer Curve... 2.7 3.3 APPLICATIONS OF COMPARA ARATORS... 2.8 3.3.1 Zero Crossing Detector... 2.8 3.3.2 Window Detector... 2.10 3.3.3 Time Marker Generator... 2.11 3.3.4 Phase Meter (or) Phase Detector... 2.12 3.3.5 Voltage Limiter... 2.14 3.4 SCHMITT TRIGGER [REGENERATIVE COMPARA ARATOR]... 2.16 3.4.1 Inverting Schmitt Trigger... 2.16 3.4.2 Non-Inverting Schmit Trigger rigger... 2.18 3.5 MULTIVIBRA TIVIBRATORS... 2.20 3.5.1 Astable Multivibrator (or) Free ree Running Oscillator... 2.21 3.5.1.1 Non-Symmetrical Square Wave Generation... 2.25 3.5.2 Monostable Multivibrator... 2.26 3.5.3 Bistable Multivibrator... 2.29 3.5.4 Solved Problems... 2.31 3.6 VOL OLTAGE GE- - TO-FREQUENCY CONVERTERS (VFC)... 2.37 3.6.1 Types of VFC s... 2.38 3.6.1.1 Wide-Sweep Multivibrator VFCs... 2.38 3.6.1.2 Charge Balancing VFCs... 2.40

Contents xi 3.7 FREQUENCY-TO-VOL OLTAGE CONVERTER (FVC)... 2.42 3.7.1 Types of FVCs... 2.42 3.7.1.1 Pulse-Integrating FVC... 2.43 3.8 V/F AND F/V CONVERTER DEVICE TC 9400... 2.45 3.8.1 Features... 2.46 3.8.1.1 Voltage oltage-to -to-f -Frequency requency... 2.46 3.8.1.2 Frequency requency-to -to-voltage oltage... 2.46 3.8.2 Pin Diagram of TC 9400... 2.46 3.8.3 IC 9400 As V/F Converter... 2.48 3.8.4 TC 9400 As F/V Converter... 2.52 3.9 DIGITAL AL-TO-ANAL ANALOG CONVERTER (DAC) C)... 2.55 3.9.1 Performance Parameters of DAC... 2.57 3.9.2 Basic DAC C Techniques echniques... 2.59 3.9.2.1 Weighted Resistor DAC... 2.59 3.9.2.2 R-2R Laddar DAC... 2.60 3.9.2.3 Inverted R-2R Laddar... 2.63 3.9.2.4 Multiplying DACs... 2.65 3.9.3 Sources of Errors in DAC... 2.66 3.9.4 Monolithic DAC... 2.67 3.9.5 Solved Problems... 2.69 3.10 ANALOG OG-TO-DIGIT -DIGITAL AL CONVERTER (ADC)... 2.76 3.10.1 Performance Parameters of ADC... 2.77 3.10.2 Different Types of ADCs... 2.79 3.10.2.1 Parallel Comparator (or) Flash ADC... 2.79 3.10.2.2 Counter Type ADC... 2.82 3.10.2.3 Servo Tracking ADC... 2.84 3.10.2.4 Successive Approximation ADC... 2.85 3.10.2.5 Charge Balancing ADC... 2.86 3.10.2.6 Single Ramp (or) Single Slope ADC... 2.86 3.10.2.7 Dual Slope ADC... 2.87

xii Contents 3.10.3 Monolithic ADC... 2.90 3.10.3.1 ADC 0803 Family... 2.90 3.10.3.2 ADC 0808/0809 Family... 2.91 3.10.3.3 IC 7109... 2.93 3.10.4 Comparison of Flash, Successive Approximation Technique and Dual Slope... 2.94 3.10.5 ADC using Voltage oltage-to -to-f -Frequency Conversion... 2.95 3.10.6 ADC using Voltage oltage-to -to-time Conversion... 2.97 3.10.7 Solved Problems... 2.98 UNIT - III [CH. H. - 4] ] [WAVEFORM GENERATION USING OP-AMPS]... 3.1-3.36 4.1 INTRODUCTION... 3.2 4.2 SINE WAVE VE GENERATOR OR [OSCILLATORS] ORS]... 3.2 4.2.1 RC Phase Shift Oscillator... 3.3 4.2.2 Wien Bridge Oscillator... 3.8 4.2.2.1 Wien Bridge Oscillator using Op-Amp... 3.13 4.2.3 Quadrature Oscillator... 3.16 4.2.4 Function Generator... 3.17 4.2.5 Solved Problems... 3.19 4.3 SQUARE WAVE VE GENERATOR [A STABLE MULTIVIBRA TIVIBRATOR]... 3.21 4.4 TRIANGULAR WAVE VE GENERATOR OR... 3.21 4.4.1 Another Triangular Wave Generator... 3.23 4.4.2 Solved Problems... 3.26 4.5 SAW W TOO OOTH TH WAVE VE GENERATOR OR... 3.28 4.6 VOL OLTAGE CONTROLLED OSCILLATOR OR [VCO]... 3.29 4.6.1 Voltage Controlled Oscillator IC 566... 3.29 4.6.1.1 Operation... 3.30 4.6.1.2 Voltage oltage-to -to-f -Frequency Conversion Factor... 3.33 4.6.2 Features of 566 VCO... 3.34 4.6.3 Applications of 566 VCO... 3.34 4.6.4 Ramp Generator... 3.34

Contents xiii UNIT - III [CH. H. - 5] ] [555 TIMER]... 3.37-3.80 5.1 INTRODUCTION... 3.38 5.2 PIN DIAGRAM OF 555 TIMER... 3.38 5.3 FUNCTIONAL DIAGRAM OF A 555 TIMER... 3.40 5.4 FEATURES OF 555 TIMER... 3.41 5.5 555 TIMER OPERATION AS A MONOSTABLE ABLE... 3.41 5.5.1 Applications in Monostable Mode... 3.45 5.5.1.1 Missing Pulse Detector... 3.45 5.5.1.2 Linear Ramp Generator... 3.46 5.5.1.3 Frequency Divider... 3.49 5.5.1.4 Pulse Width Modulation... 3.51 5.5.1.5 Solved Problems... 3.52 5.6 555 TIMER OPERATION AS A ASTABLE ABLE MULTIVIBRA TIVIBRATOR OR... 3.57 5.6.1 Applications in Astable Mode... 3.61 5.6.1.1 FSK Generator... 3.61 5.6.1.2 Pulse ulse-p -Position Modulator (PPM)... 3.62 5.6.1.3 Square Wave Generator... 3.63 5.6.1.4 Free ree-r -Running Ramp Generator... 3.65 5.6.1.5 Voltage Controlled Oscillator... 3.66 5.6.1.6 Solved Problems... 3.67 5.7 COMPARISON BETWEEN MONOSTABLE AND ASTABLE ABLE MULTIVIBRA TIVIBRATOR OR CIRCUITS... 3.78 5.8 555 TIMER AS SCHMITT TRIGGER... 3.79 UNIT - III [CH. - 6] ] [PHASE-LOCKED LOOP]... 3.81-3.118 6.1 INTRODUCTION... 3.82 6.2 BASIC PRINCIPLES... 3.82 6.3 DEFINITIONS RELATED TO PLL... 3.83

xiv Contents 6.4 PHASE DETECTOR (OR) COMPARA ARATOR OR... 3.84 6.4.1 Analog Phase Detector... 3.84 6.4.1.1 Switch Type Phase Detector... 3.84 6.4.1.2 Balanced Modulator Type Phase Detector... 3.86 6.4.2 Digital Phase Detector... 3.89 6.4.2.1 Exclusive-OR (XOR) Phase Detector... 3.89 6.4.2.2 Edge-Triggered Phase Detector... 3.90 6.4.2.3 Flip-Flop Phase Detectors... 3.92 6.5 VOL OLTAGE CONTROLLED OSCILLATOR OR (VCO)... 3.94 6.6 LOW OW-P -PASS FILTER TER... 3.94 6.7 MONOLITHIC PHASE-LOCKED LOOP... 3.95 6.7.1 Derivation of Lock ock-in -in Range ange... 3.98 6.7.2 Derivation of Capture Range... 3.100 6.8 PHASE-L -LOCKED LOOP APPLICATIONS... 3.102 6.8.1 Frequency Multiplication/Division... 3.103 6.8.2 Frequency Translation... 3.104 6.8.3 AM Detection... 3.104 6.8.4 FM Demodulation... 3.105 6.8.5 Frequency Shift Keying (FSK) Demodulator... 3.106 6.8.6 FM Detector... 3.107 6.8.7 FM Synthesiser... 3.108 6.9 SOLVED PROBLEMS... 3.109 UNIT - IV [CH. - 7] ] [VOLTAGE REGULATORS]... 4.1-4.66 7.1 INTRODUCTION... 4.2 7.2 PERFORMANCE PARAMETERS FOR VOL OLTAGE REGULATORS ORS... 4.2 7.2.1 Solved Problems... 4.6

Contents xv 7.3 CLASSIFICATION OF VOL OLTAGE REGULATORS ORS... 4.8 7.3.1 Series Voltage Regulators... 4.8 7.3.1.1 Block Diagram of Series Voltage Regulators egulators... 4.8 7.3.1.2 Series Voltage Regulator using Op-Amp... 4.9 7.3.1.3 Advantages of Series Voltage Regulators egulators... 4.9 7.3.1.4 Disadvantages of Series Voltage Regulator... 4.10 7.3.2 Shunt Voltage Regulators... 4.10 7.3.2.1 Block Diagram of Shunt Voltage Regulator... 4.10 7.3.2.2 Shunt Voltage Regulator using Op-Amp Amp... 4.11 7.3.3 Comparison between Shunt and Series Voltage Regulators... 4.12 7.4 LINEAR VOL OLTAGE GE REGULATORS ORS... 4.13 7.4.1 Fixed Voltage Regulators... 4.15 7.4.1.1 Fixed Positive Voltage Regulators... 4.15 7.4.1.2 Fixed Negative Voltage Regulators... 4.16 7.4.1.3 Applications of IC 78 XX and 79 XX... 4.17 7.4.1.3.1 7805 as a 0.5 A Current Source... 4.17 7.4.1.3.2 Current Boosting... 4.18 7.4.1.4 Fixed Regulator used as Adjustable Voltage Regulators egulators... 4.20 7.4.1.4.1 Adjustable Voltage Regulator using 78 xx... 4.20 7.4.1.4.2 Adjustable Positive Voltage Regulators egulators... 4.20 7.4.1.4.3 Adjustable Negative Voltage Regulators... 4.22 7.4.1.5 Dual Supply... 4.22 7.4.1.5.1 Dual Voltage Regulator egulator... 4.23 7.4.1.5.2 Dual-tracking regulator... 4.24 7.4.1.6 Solved Problems... 4.26 7.4.2 723 General Purpose Regulator (Adjustable or Variable Voltage Regulator) egulator)... 4.33

xvi Contents 7.4.2.1 Fundamental Block Diagram of IC 723... 4.34 7.4.2.2 Features of IC 723... 4.36 7.4.2.3 Specifications of IC 723... 4.37 7.4.2.4 Applications of IC 723... 4.38 7.4.2.4.1 Low ow-voltage oltage Regulator using 723... 4.38 7.4.2.4.2 High-Voltage Regulator using 723... 4.40 7.4.2.4.3 Current Limit Protection (or) Current Sensing Protection... 4.41 7.4.2.4.4 Current Foldback... 4.43 7.4.2.4.5 Current Boosting... 4.45 7.4.2.5 Solved Problems... 4.46 7.5 SWITCHING REGULATORS... 4.53 7.5.1 Basic Switching Regulator... 4.55 7.5.2 Fundamental Block Diagram of Switching Regulator... 4.55 7.5.3 Types of Switching Regulators... 4.57 7.5.3.1 Step-Down Switching Regulator (Buck Type Switching Regulator)... 4.57 7.5.3.2 Step-Up Switching Regulator (Boost Type Switching Regulator)... 4.58 7.5.3.3 Voltage Inverter Type Switching Regulator (Buck-Boost Type Switching Regulator)... 4.58 7.5.4 Advantages of Switching Regulators... 4.62 7.5.5 Disadvantages of Switching Regulators... 4.62 7.5.6 Applications of Switching Regulators... 4.62 7.5.7 Monolithic Switching Regulators... 4.63 7.6 COMPARISON BETWEEN SWITCHING REGULATOR OR SMPS AND LINEAR REGULATOR... 4.65 7.7 HYBRID (COMBINATION) REGULATOR... 4.66

Contents xvii UNIT - V [CH. H. - 8] ] [ACTIVE FILTERS]... 5.1-5.114 8.1 INTRODUCTION... 5.2 8.2 IMPORTANT TERMS RELATED TO FILTERS... 5.2 8.3 CLASSIFICATION OF FILTERS... 5.5 8.4 RC ACTIVE FILTERS... 5.7 8.4.1 Frequency Response Characteristics of Active Filters... 5.7 8.4.2 Types of Active Filters... 5.12 8.4.2.1 Butterworth Filters... 5.13 8.4.2.2 Chebyshev Filters... 5.14 8.4.2.3 Bessel Filters... 5.15 8.4.3 Models of First-Order Active Filters... 5.16 8.4.3.1 First irst-order Low ow-p -Pass ass Butterworth Filter... 5.16 8.4.3.1.1 Analysis of the Filter Circuit... 5.17 8.4.3.1.2 Design Steps... 5.20 8.4.3.1.3 Frequency Scaling... 5.20 8.4.3.1.4 Solved Problems... 5.20 8.4.3.2 First irst-order High-Pass ass Butterworth Filter... 5.24 8.4.3.2.1 Analysis of the Filter Circuit... 5.24 8.4.3.2.2 Design Steps... 5.27 8.4.3.2.3 Solved Problems... 5.28 8.4.4 Models Second-Order Active Filters... 5.32 8.4.4.1 Second-Order Low ow-p -Pass Butterworth Filter... 5.34 8.4.4.1.1 Analysis of the Filter Circuit... 5.34 8.4.4.1.2 Design Steps... 5.38 8.4.4.1.3 Solved Problems... 5.39

xviii Contents 8.4.4.2 Second-Order High-Pass Butterworth Filter... 5.41 8.4.4.2.1 Analysis of the Filter Circuit... 5.42 8.4.4.2.2 Design Steps... 5.43 8.4.4.2.3 Solved Problems... 5.43 8.4.5 Band-Pass ass Filters ilters... 5.46 8.4.5.1 Narrow Band-Pass ass Filter [Multiple Feedback Band-Pass ass Filter]... 5.48 8.4.5.1.1 Design Steps... 5.53 8.4.5.2 Wide Band-Pass ass Filter ilter... 5.53 8.4.5.3 Comparison Between Wide Band-Pass ass Filter and Narrow Band-Pass ass Filter... 5.56 8.4.5.4 Solved Problems... 5.56 8.4.6 Band-Reject Filters (or) Band-Stop Filters (or) Band-Elimination Filters... 5.69 8.4.6.1 Narrow Band-Reject Filter (Notch-Filters)... 5.70 8.4.6.2 Wide Band-Reject Filter... 5.74 8.4.6.3 Solved Problems... 5.76 8.4.7 All-Pass ass Filters (or) Phase Correction (or) Delay Equalizers... 5.82 8.4.7.1 Solved Problems... 5.84 8.4.8 Advantages of Active Filters... 5.86 8.4.9 Disadvantages of Active Filter... 5.87 8.4.10 Applications of Active Filters... 5.87 8.5 COMPARISON BETWEEN ACTIVE AND PASSIVE FILTERS... 5.87 8.6 FREQUENCY TRANSFORMATION TION IN FILTERS DESIGN... 5.88 8.6.1 Low ow-p -Pass to High-Pass Transformation... 5.88 8.6.2 Low ow-p -Pass to Band-Pass ass Transformation ransformation... 5.89 8.6.3 Low ow-p -Pass to Band-Reject Transformation... 5.90

Contents xix 8.7 STATE TE VARIABLE FILTER (OR) UNIVERSAL FILTER... 5.90 8.7.1 State Variable Formulation ormulation... 5.94 8.8 SWITCHED CAPACIT CITOR OR FILTERS... 5.97 8.8.1 A Low ow-p -Pass Switched Capacitor Filter IC... 5.99 8.8.2 Band-Pass ass Switched Capacitor Filter IC... 5.102 8.8.3 State Variable Switched Capacitor Filter IC... 5.106 8.8.4 Switched Capacitor Integrator... 5.109 8.8.5 Solved Problem... 5.110 8.9 BALANCED MODULATOR/DEMODULA OR/DEMODULATOR... 5.111 8.9.1 Balanced Modulator... 5.111 8.9.2 Balanced Demodulator... 5.113 PREVIOUS UNIVERSITY QUESTION PAPERS [June - 2013] [New] [Supplementary]... QP.1 - QP.2 [Nov./Dec. - 2012] [New] [Main]... QP.3 - QP.4 [July - 2012] [Supplementary]... QP.5 - QP.6 [December - 2011] [Main]... QP.7 - QP.8 [June/July - 2011] [Supplementary]...QP QP.9 - QP.10 [December - 2010] [Main]... QP.11 - QP.12 [July - 2010] [Supplementary]... QP.13 - QP.14 [Nov./Dec. - 2009] [Main]... QP.15 - QP.16 [May/June - 2009] [Supplementary]... QP.17 - QP.18

xx Contents STUDENT NOTES