Power Quality Survey in a Distribution System, Standard Procedures and Limitations. H. Mokhtari S. Hasani and M. Masoudi

Similar documents
Power Analysis Summary

An Introduction to Power Quality

CHAPTER 5 POWER QUALITY IMPROVEMENT BY USING POWER ACTIVE FILTERS

ACTIVE compensation of harmonics, reactive power and

Southern Company Power Quality Policy

Power Quality Report. A Manufacturing Plant

Power quality report. A Manufacturing Plant

POWER QUALITY MONITORING - PLANT INVESTIGATIONS

OVERVIEW OF IEEE STD GUIDE FOR VOLTAGE SAG INDICES

Multiconverter Unified Power-Quality Conditioning System: MC-UPQC T.Charan Singh, L.Kishore, T.Sripal Reddy

POWER CORPORATION. Power Quality. Specifications and Guidelines for Customers. Phone: Fax:

Power Quality Study of Electrical Installation in Academic Institute Case Study

Power Quality Notes 3-2 (MT)

Power Quality Measurements and Operating Characteristics of Electric Arc Furnaces.

Mitigation of Voltage Sag/Swell Using UPQC

POWER QUALITY SPECIFICATIONS AND GUIDELINES FOR CUSTOMERS ENGINEERING STANDARDS CITY OF LETHBRIDGE ELECTRIC

Harmonic distortion Blackouts Under or over voltage Dips (or sags) and surges, Transients.

INTERIM ARRANGEMENTS FOR GRID TIED DISTRIBUTED ENERGY RESOURCES. Technical Requirements for Grid-Tied DERs

POWER QUALITY AND SAFETY

Harmonics Elimination Using Shunt Active Filter

The University of New South Wales. School of Electrical Engineering and Telecommunications. Industrial and Commercial Power Systems Topic 9

Fundamentals of Power Quality

Harmonic Distortion Evaluations

Induction Machine Test Case for the 34-Bus Test Feeder -Distribution Feeders Steady State and Dynamic Solutions

Power Quality Requirements for Connection to the Transmission System

ENG52 WP1 status and plans TU Eindhoven Project meeting, Glasgow, Vladimir Ćuk, Fei Ni,

PERFORMANCE OF DISTRIBUTION STATIC COMPENSATOR IN LOW VOLTAGE DISTRIBUTION SYSTEM

Fluke 1740 Series. Three-Phase Power Quality Loggers Memobox. Assess power quality and conduct long-term studies with ease

Power Quality Basics. Presented by. Scott Peele PE

UNBALANCED CURRENT BASED TARRIF

Power Quality Measurements the Importance of Traceable Calibration

PQ Monitoring Standards

Quality of supply regulation in Norway c

p. 1 p. 6 p. 22 p. 46 p. 58

Power Quality Improvement By Using DSTATCOM Controller

Electric Power Quality Monitoring and Analysis at a Tri-generation Plant under Development

Roadmap For Power Quality Standards Development

Power Quality - 1. Introduction to Power Quality. Content. Course. Ljubljana, Slovenia 2013/14. Prof. dr. Igor Papič

Harmonic Aggregation Techniques for Power Quality Assesment A review of different methods

ECE 528 Understanding Power Quality

A Review on Power Quality Improvement in Distribution System using UPQC

E6000 E6000. Handheld Power Quality Analyzer. Features. Functions

Impact of Harmonic Resonance and V-THD in Sohar Industrial Port C Substation

Improvement of Power Quality using Unified Power Quality Conditioner with Distributed Generation

Power-Quality Improvement with a Voltage-Controlled DSTATCOM

QUESTION BANK PART - A

Power Quality Analysers

MODELLING & SIMULATION OF ACTIVE SHUNT FILTER FOR COMPENSATION OF SYSTEM HARMONICS

Power Quality and Circuit Imbalances Northwest Electric Meter School Presented by: Chris Lindsay-Smith McAvoy & Markham Engineering/Itron

POWER QUALITY REPORT

Modified Three-Phase Four-Wire UPQC Topology with Reduced DC-Link Voltage Rating

Sizing the neutral wire cross-section and minimization of neutral currents using microgeneration in low voltage networks

Section 11: Power Quality Considerations Bill Brown, P.E., Square D Engineering Services

Simulation of Multi Converter Unified Power Quality Conditioner for Two Feeder Distribution System

Power Quality Overview

Investigation of data reporting techniques and analysis of continuous power quality data in the Vector distribution network

Improvement of Power System Distribution Quality Due to Using Dc-Converter Loads and Electric Arc Furnaces. H.A. Khalik, M. A. Aziz, and E. Farouk.

Fluke 1740 Series. Three-Phase Power Quality Loggers Memobox. Assess power quality and conduct long-term studies with ease

PowerMonitor 5000 Family Advanced Metering Functionality

Introduction to Harmonics and Power Quality

E6500 Power Quality Analyzer

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

I J C T A, 10(9), 2017, pp International Science Press

Compensation for Voltage and Current in Multifeeder System Using MC-UPQC

HARMONIC ANALYSIS IN NON LINEAR LOADS OF POWER SYSTEM

New Time Domain Electric Arc Furnace Model for Power Quality Study

Harmonic Distortion Levels Measured at The Enmax Substations

SHUNT ACTIVE POWER FILTER

Acknowledgements Introduction p. 1 Electric Power Quality p. 3 Impacts of Power Quality Problems on End Users p. 4 Power Quality Standards p.

Power Quality Evaluation of Electrical Distribution Networks

Effective Harmonic Mitigation with Active Filters

CASE STUDY. Implementation of Active Harmonic Filters at Ford Motor Company SA Silverton Plant

Harmonic Mitigation for Variable Frequency Drives. HWEA Conference February 15, Kelvin J. Hurdle Rockwell Bus. Dev. Mgr.

PQVO3H Voltage Waveform Distortion Measurement

Benchmarking Distribution Power Quality at BGE

POWER QUALITY A N D Y O U R B U S I N E S S THE CENTRE FOR ENERGY ADVANCEMENT THROUGH TECHNOLOGICAL I NNOVATION

CHAPTER 1 INTRODUCTION

Harmonics and Their Impact on Power Quality. Wayne Walcott Application Engineering Manager June, 2017

A Versatile Control Scheme for UPQC for Power Quality Improvement using fuzzy controller

Poornima G P. IJECS Volume 3 Issue 6 June, 2014 Page No Page 6453

Reliability and Power Quality Indices for Premium Power Contracts

PERFORMING ACCURATE POWER QUALITY MEASUREMENTS

INTERLINE UNIFIED POWER QUALITY CONDITIONER: DESIGN AND SIMULATION

1 In This Document Elspec

Power Quality Improvement of Unified Power Quality Conditioner Using Reference Signal Generation Method

Power Quality in Metering

UNIT-4 POWER QUALITY MONITORING

A Guide to Power Quality Testing

Power Quality Monitoring using LabView

APQline Active Harmonic Filters. N52 W13670 NORTHPARK DR. MENOMONEE FALLS, WI P. (262) F. (262)

Keywords: unbalanced voltage, unbalanced current, Load balancing transformer

Power Quality and Digital Protection Relays

VALLIAMMAI ENGINEERING COLLEGE

HYSTERESIS CONTROL FOR CURRENT HARMONICS SUPPRESSION USING SHUNT ACTIVE FILTER. Rajesh Kr. Ahuja

Statistical Analysis of Power Quality in Office Buildings

Direct Harmonic Analysis of the Voltage Source Converter

CHAPTER 4 HARMONICS AND POWER FACTOR

HARMONIC DISTURBANCE COMPENSATING AND MONITORING IN ELECTRIC TRACTION SYSTEM

World Academy of Science, Engineering and Technology International Journal of Electrical and Computer Engineering Vol:7, No:6, 2013

Power Quality Analysis of Non- Linear Loads for Industrial Power System

Transcription:

THD Voltage Ubc Power Quality Survey in a Distribution System, Standard Procedures and Limitations H. Mokhtari S. Hasani and M. Masoudi Associate Professor Department of Electrical Engineering Sharif University of Technology, Azadi Ave., Tehran, Iran mokhtari@sharif.edu Project Engineer and Management West Azarbayjan Utility, Oroumieh, Iran sh9b@yahoo.com Abstract This paper presents the results of a power quality survey in a distribution system. More than fifty nodes are selected and monitored. Power quality indices are extracted based on IEEE and IEC Standards. The evaluation includes field data collection, extraction of statistical power quality indices and comparing the results against standard limits. Experimental data as well as clarifying tables and graphs are presented. The results are then discussed to evaluate the strength and weaknesses of applying standard limits when real observations are to be performed. Some proposals are also made in order to make standard procedures and limits more effective based on practical observations Index Terms power quality, standard limits, harmonic content, flicker, survey. I. INTRODUCTION Increase of nonlinear loads such as power-electronics devices and arc furnaces has generated Power Quality (PQ) pollution such as voltage/current harmonics and flicker at both industry and utility sides. The cost of low power quality has been estimated from tens of thousands to millions of dollars depending on the customer sensitivity and severity of power quality disturbances [-]. Therefore, it has become a necessary for engineers to ) define PQ indices, ) propose procedures of how to determine PQ at different locations, ) specify PQ standard limits, and ) take counter measure actions in order to reduce impacts of low PQ. This paper summarizes the results of a power quality monitoring project carried out in West Azarbayjan Utility in north-west of Iran. More than locations in the distribution system and low-voltage network have been monitored for a period of one-week and most PQ indices have been determined. The field data are statistically analyzed based on IEEE proposed procedure, and corresponding PQ indices have been determined. An overview of a typical distribution system in terms of PQ is given and proposals are made for mitigation of those where are out of standard limits. The paper brings up new concerns and issues in applying PQ standard limits and procedures and proposes practical tips for the future research in PQ surveys. II. FIELD DATA Fifty two nodes have selected from the power distribution and low-voltage network, and all power quality parameters are recorded over one-week using a power quality analyzer. The analyzer captures the time-series data with a sampling period of.8 Khz. The time interval is set to ten-minute. Severe transients have also been captured in the form of voltage and current waveforms..... : 7: : : 7: : 7: : : 7: : 6: : : 6: : : : : : : : 9: : : 9: : 9: : : 9: : 8: : : 8:. 8. 6.... 8. 6.... III. POWER QUALITY PARAMETERS The power analyzer calculates voltage/current harmonic indices, voltage/current imbalance, voltage flicker, system frequency, and all power parameters for all three phases. Parameter calculation is done every cycle, and an average is taken over a minute period. Fig. shows a sample of the filed data for voltage and current THD in one of the test locations collected over one week. The test location is a kv line which feeds a granite factory. time (a) TDD Phase A : 7: : : 7: : 7: : : 7: : 6: : : 6: : : : : : : 7: : : 7: : 6: : : 6: : : : : : : time (b) Fig. : Filed data of a feeder supplying a granite factory (a) voltage THD (b) Current TDD III. STATISTICAL ANALYSIS For many PQ parameters, it is recommended that the Cumulative Probability (CP) of the captured data to be tabulated, and the value below which 9% of the measurement data lies is selected as the PQ index at the corresponding node []. This is called CP9% of that PQ parameter. This procedure is applied to all harmonic data as https://doi.org/.8/repqj.6 6 RE&PQJ, Vol., No., March 7

well as imbalance indices. Table summarizes the results of statistical analysis of voltage THD in a granite factory. THD Uab THD Ubc THD Uca TABLE I Voltage THD analysis at a granite factory CP 9.9 %. %.8 % Maximum. %.8 %. % From Fig., it can be seen that at.8% of the nodes in the distribution system, the maximum voltage level is beyond the maximum permissible % defined by the Iranian standard limits. At % of the locations, the minimum voltage is below the minimum permissible limit, i.e..9. Figs. and depict voltage THD and the th harmonic at the tested nodes respectively. The results are compared against IEEE9 Std. limits [].. THD Line Voltage IV. VOLTAGE RESULTS SUMMARY In this section, the study results are summarized. Fig. shows average, maximum, and minimum rms voltage measured at different locations. Maximum... Average Line Voltage... Fig. : Voltage THD at nodes. th Harmonic Line Voltage.9..9..8 6 7 8 9 6 7 8 9 6 7 8 9 6 7 8 9 6 7 8 9 Maximum Line Voltage........9.9.8.8 6 7 8 9 6789678967896789 Minimum Line Voltage....9.9.8 Fig. : Voltage th harmonic at nodes It can be seen that the distribution system is IEEE9 compliant in terms of voltage THD. However, as Fig. shows, the level of the th harmonic is higher than IEEE9 standard at some nodes. At 8. % of the cases, the th harmonic is not complaint with the standard. The same procedure is carried out to determine other harmonics as well. Flicker is the result of voltage fluctuation which is determined by the percentage of voltage change as well as its frequency. It is determined by short term and long term flicker, i.e. Pst and Plt, indices. The flicker level is compared against the level defined by IEC 6-- []. The power analyzer calculates only the Pst. Plt index is then calculated using the following equation:.8 6 7 8 9 6 7 8 9 6 7 8 9 6 7 8 9 6 7 8 9 Fig. : Voltage at nodes Plt i = ( Psti + Psti +... + Psti ) / Fig. depicts the results for flicker determination. From Fig., it can be concluded that the level of flicker is of no concern in the distribution system. https://doi.org/.8/repqj.6 6 RE&PQJ, Vol., No., March 7

.9.8.7 PSt The other parameter which was investigated is the system frequency. Fig. 7 shows the maximum and minimum frequency at steady state operation. Based on Iranian standard, the maximum frequency deviation is. Hz. Therefore, at some moments, the system frequency drops below the minimum permissible threshold..6. Frequency Maximum....... (a) Hz...6. Plt.. Frequency Minimum.. 9.9 9.8.8 9.7.6. Hz 9.6 9. 9.. 9. (b) Fig. : Voltage flicker a) Pst b) Plt 9. 9. Fig. 7: System maximum and minimum Frequency Fig. 6 shows the results of voltage imbalance in the distribution system. Based on IEEE9 Standard, the ratio of the negative sequence to the positive sequence is the imbalance ratio. To determine the imbalance index, the CP9 of the imbalance value calculated for each day, and the maximum CP9 is selected. Voltage Unbalance V. CURRENT RESULTS SUMMARY In this section, the quality of load current is investigated. Fig. 8 shows the results of the current harmonic pollution level. As it can be seen from this figure, at.% of the locations, the TDD is out of limit. The results correspond to the CP9 index of the TDD. TDD.8 6.6...8.6.. Fig. 6: Voltage Imbalance The maximum voltage imbalance was logged at node No. which is.9. Since, the maximum permitted value is, therefore, the distribution system is fine with respect to voltage imbalance. 6 7 8 9 6789678967896789 Fig. 8: Current TDD summary results The analysis is extended to determine the pollution of load current in terms of individual harmonics. Fig. 9 depicts the results corresponding to the rd, th, 7 th and th harmonics. The results indicate that the maximum pollution is related to the th harmonic. At 7.% of the substations, at kv, the th harmonic is beyond the permitted limit set by IEEE9. https://doi.org/.8/repqj.6 6 RE&PQJ, Vol., No., March 7

For the other harmonics, the results are as follows. At.9% of the locations, the rd and 7 th harmonic are more than standard limits. At % of the locations, the th harmonic is out of standard limit. Ah. Average Power Factor.8.6.. 6 7 8 9 6789678967896789 Fig. : Load average power factor Ah 7 6 6 7 8 9 6 7 8 9 6 7 8 9 6 7 8 9 6 7 8 9 Ah7 6 7 8 9 6 7 8 9 6 7 8 9 6 7 8 9 6 7 8 9 Ah VI. ANALYSIS OF THE RESULTS AND STANDARD LIMITATION The PQ survey in the utility under study indicate that the voltage quality is mostly within acceptable limits except for the th harmonic. However, the current distortion may be of concern at some locations. This conclusion is based on the CP9 limit which has the following shortcomings: The CP9 index is silent about the operating condition. In some cases, e.g. at light load conditions, the THD and TDD values may become larger than expected. The CP9 does not directly reflect the effect of harmonic on devices, e.g. extra heat in magnetic systems. The results show that the number of cases in which the th voltage harmonic level is more than standard is higher than that of the th current harmonic. This implies that in some cases, the load is injecting standard level of harmonics into the distribution system, however, the level of the voltage harmonic is not standard. The CP9 of current cannot be easily related to the CP9 of the voltage signal. Fig. 9: Load individual harmonic levels at nodes Load power factor is also checked at the test locations. Fig. shows the average power factor measured at the distribution transformer inputs. It can be seen that in most cases, the average power factor is acceptable. VI. DISCUSSION AND CONCLUSIONS This paper presents the PQ analysis in a utility system. The analysis is based on IEEE standard limits. The study shows that the growth of nonlinear loads is propagating into the utility distribution system gradually. The th harmonic is becoming a concern in terms of standard limits. This problem has to be mitigated at load sites by using proper compensating devices, e.g. harmonic filters. However, the existing procedures have to change in a way to relate the pollution to system malfunction and costs more directly. There are shortcomings associated with the existing procedures and limits when it comes to three-phase unbalanced and non-sinusoidal conditions. At the moment, the quality of voltage at kv distribution level is acceptable https://doi.org/.8/repqj.6 6 RE&PQJ, Vol., No., March 7

considering IEEE and IEC standards. However, this cannot be guaranteed if the rate of increase of non linear loads does not change or counter measure actions are not taken in order to prevent power quality problems to propagate from load sites into distribution and transmission systems. V. REFERENCES [] D. Chapman, The cost of poor power quality, Copper Development Association, March. [] G. W. Massey, Estimation method for power system harmonic effect on power distribution transformer, IEEE Transaction on Industry Applications, vol., no., pp. 8-89, 99. [] G.T. Heydt, R. Ayyanar, R. Thallam, Power Acceptability, IEEE Power Engineering Review,. [] Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, IEEE Standard 9-99. [] Flicker meter-functional and design specification, IEC Standard 6--, 997 VIII. BIOGRAPHIES Hossein Mokhtari was born in 969 in Tehran, Iran. He received his B.Sc. degree in electrical engineering from Tehran University, Tehran, Iran in 989. He worked as a consultant engineer for Electric Power Research Center (EPRC) in Tehran in dispatching projects. In 99, he received his M.A.Sc. degree from University of New Brunswick, Fredericton, N.B., Canada. He obtained his Ph.D. degree in electrical engineering from the University of Toronto in 998. He is currently an associate professor at Sharif University of Technology, Tehran, Iran. His research interests include power quality and power electronics. Sasan Hasani was born in July 976 in Orumieh. He received his B.Sc. in electrical engineering from Shaihd Abbaspour University, Tehran, Iran. He is currently a project engineer working in transmission and distribution network division of West Azarbayjan Regional Electric Company, Orumieh, Iran. Masoud Masoudi was born in April 9 in Orumieh. He received his B.Sc. in electrical engineering from Iran University of Science and Technology, Tehran, Iran. He obtained his masters degree in management from Orumieh University, Orumieh, Iran. He is currently the head of Engineering Department of West Azarbayjan Regional Electric Company. https://doi.org/.8/repqj.6 6 RE&PQJ, Vol., No., March 7