ISL6412. Triple Output, Low-Noise LDO Regulator with Integrated Reset Circuit. Features. Ordering Information. Applications FN9067.

Similar documents
DATASHEET ISL9021A. Features. Pinouts. Applications. 250mA Single LDO with Low I Q, Low Noise and High PSRR LDO. FN6867 Rev 2.

DATASHEET ISL6700. Features. Ordering Information. Applications. Pinouts. 80V/1.25A Peak, Medium Frequency, Low Cost, Half-Bridge Driver

RT mA, Low Input Voltage, Low Dropout, Low Noise Ultra- Fast Without Bypass Capacitor CMOS LDO Regulator. General Description.

RT A, Low Input Voltage, Ultra-Low Dropout LDO Regulator with Enable. Features. General Description. Applications. Ordering Information

ISL Features. Multi-Channel Buffers Plus V COM Driver. Ordering Information. Applications. Pinout FN Data Sheet December 7, 2005

RT A, Ultra-Low Dropout Voltage Regulator. General Description. Features. Applications. Pin Configurations. Ordering Information RT9059(- )

RT2517B. 1A, 6V, Ultra-Low Dropout Linear Regulator. General Description. Features. Applications. Ordering Information. Marking Information

DATASHEET. Features. Applications ISL mA Dual LDO with Low Noise, High PSRR, and Low I Q. FN6832 Rev 1.00 Page 1 of 11.

RT2515A. 2A, Low Input Voltage, Ultra-Low Dropout Linear Regulator with Enable. General Description. Features. Applications

RT mA Dual LDO Regulator. General Description. Features. Applications. Ordering Information. Pin Configurations (TOP VIEW) Marking Information

DATASHEET ISL9005A. Features. Pinout. Applications. Ordering Information. LDO with Low ISUPPLY, High PSRR. FN6452 Rev 2.

RT V, 2μA, I Q, 100mA Low Dropout Voltage Linear Regulator. General Description. Features. Ordering Information RT2558- Applications

HA-2520, HA MHz, High Slew Rate, Uncompensated, High Input Impedance, Operational Amplifiers. Features. Applications. Ordering Information

RT A, Ultra-Low Dropout Voltage Regulator. General Description. Features. Applications. Pin Configurations. Ordering Information

150mA, Low-Dropout Linear Regulator with Power-OK Output

RT2517B. 1A, 6V, Ultra-Low Dropout Linear Regulator. Features. General Description. Applications. Ordering Information. Marking Information

RT9187C. 600mA, Ultra-Low Dropout, CMOS Regulator. General Description. Features. Applications. Ordering Information. Pin Configurations (TOP VIEW)

DATASHEET. Features. Related Literature. Applications ISL9021A. 250mA Single LDO with Low I Q, Low Noise and High PSRR LDO

DATASHEET. Features. Applications. Related Literature ISL V, Low Quiescent Current, 50mA Linear Regulator. FN7970 Rev 2.

RT9059A. 3A, Ultra-Low Dropout Voltage Regulator. General Description. Features. Applications. Ordering Information. Marking Information

RT mA, Low Input Voltage, Low Dropout, Low Noise Ultra- Fast Without Bypass Capacitor CMOS LDO Regulator. General Description.

RT9041E. 500mA, Low Voltage, LDO Regulator with External Bias Supply. General Description. Features. Applications. Ordering Information RT9041E-

RT2517A. 1A, 6V, Ultra Low Dropout Linear Regulator. General Description. Features. Applications. Ordering Information. Marking Information

TOP VIEW. OUTPUT 1.5V TO 3.3V AT 200mA MAX8532 MAX8532EBT

RT9041F. 500mA, Low Voltage, LDO Regulator with External Bias Supply. General Description. Features. Applications. Ordering Information

OUTPUT UP TO 300mA C2 TOP VIEW FAULT- DETECT OUTPUT. Maxim Integrated Products 1

ISL6536A. Four Channel Supervisory IC. Features. Applications. Typical Application Schematic. Ordering Information. Data Sheet May 2004 FN9136.

EL5129, EL5329. Multi-Channel Buffers. Features. Applications. Ordering Information FN Data Sheet May 13, 2005

RT9041A/B. 500mA, Low Voltage, LDO Regulator with External Bias Supply. General Description. Features. Applications. Ordering Information

RT μA I Q, 250mA Low-Dropout Linear Regulator. General Description. Features

MAX8863T/S/R, MAX8864T/S/R. Low-Dropout, 120mA Linear Regulators. General Description. Benefits and Features. Ordering Information.

RT9198/A. 300mA, Low Noise, Ultra-Fast CMOS LDO Regulator. General Description. Ordering Information RT9198/A- Features. Marking Information

RT μA I Q, 300mA Low-Dropout Linear Regulator. General Description. Features. Pin Configuration. Applications

RT9187B. 600mA, Ultra-Low Dropout, Ultra-Fast CMOS LDO Regulator. General Description. Features. Applications. Ordering Information RT9187B

HA MHz Video Buffer. Features. Applications. Ordering Information. Pinouts. Data Sheet February 6, 2006 FN2924.8

TOP VIEW. OUTPUT PRESET 2.5V TO 5V 200mA SHDN 3 4 BP GND. Maxim Integrated Products 1

RTQ2516-QT. 2A, Low Input Voltage, Ultra-Low Dropout LDO Regulator with Enable. General Description. Features. Applications. Ordering Information

id id mA, Low Dropout, Low Noise Ultra-Fast With Soft Start CMOS LDO Regulator Features General Description Applications

500mA Low-Dropout Linear Regulator in UCSP

TOP VIEW. Maxim Integrated Products 1

RT9053A. Low Dropout, 400mA Adjustable Linear Regulator. Features. General Description. Applications. Ordering Information RT9053A. Pin Configurations

Features V OUT = 12V IN TEMPERATURE ( C) FIGURE 3. QUIESCENT CURRENT vs LOAD CURRENT (ADJ VERSION AT UNITY GAIN) V IN = 14V

RT mA, Low Dropout, Low Noise Ultra-Fast With Soft Start CMOS LDO Regulator. General Description. Features. Applications

HA Features. 12MHz, High Input Impedance, Operational Amplifier. Applications. Pinout. Part Number Information. Data Sheet May 2003 FN2893.

RT9064. Ultra Low Power, 14V, 200mA Low-Dropout Linear Regulator. General Description. Features. Pin Configurations. Applications

HI-201HS. Features. High Speed, Quad SPST, CMOS Analog Switch. Applications. Ordering Information. Pinout (Switches Shown For Logic 1 Input) FN3123.

RTQ2569-QA. 200mA, 36V, 2 A IQ, Low Dropout Voltage Linear Regulator. Features. General Description. Applications

EL2142. Features. Differential Line Receiver. Applications. Ordering Information. Pinout. Data Sheet February 11, 2005 FN7049.1

RT9073A. 1μA I Q, 250mA Low-Dropout Linear Regulator. General Description. Features. Ordering Information RT9073A- Applications. Marking Information

MP20142 Dual Channel, 200mA Linear Regulator With Programmable Output Voltage and Output Discharge

RT A, Ultra Low Dropout LDO. General Description. Features. Applications. Pin Configurations. Ordering Information RT9025-

Low-Dropout, 300mA Linear Regulators in SOT23

Low Noise 300mA LDO Regulator General Description. Features

DATASHEET. Features. Applications. Related Literature ISL High Performance 500mA LDO. FN8770 Rev 1.00 Page 1 of 13.

500mA Low Noise LDO with Soft Start and Output Discharge Function

RT9022. High Voltage, Low Quiescent, 60mA LDO Regulator. General Description. Features. Applications. Pin Configurations. Ordering Information

RT9067. Ultra Low Power, 14V, 200mA LDO Regulator

Small 1A, Low-Dropout Linear Regulator in a 2.7mm x 1.6mm Package

Low-Input-Voltage, 500mA LDO Regulator with RESET in SOT and TDFN

RT mA, Ultra-Low Noise, Ultra-Fast CMOS LDO Regulator. General Description. Features. Applications. Ordering Information. Marking Information

Enpirion Power Datasheet EY V, Low Quiescent Current, 50mA Linear Regulator

RT9085A. 1A, 5.5V, Ultra Low Dropout Linear Regulator. Features. General Description. Pin Configuration. Applications. Marking Information

RT9167/A. Low-Noise, Fixed Output Voltage,300mA/500mA LDO Regulator. Features. General Description. Applications. Ordering Information

Features TEMP. RANGE ( C)

id9309 Ultra-Low Noise Ultra-Fast 300mA LDO Regulator Features

RT mA, 0.5% Accuracy Low Dropout, Ultra Low Noise Voltage Regulator. Features. General Description. Applications. Ordering Information

MPQ20051-AEC1 Low Noise, High PSRR, 1A Linear Regulator AEC-Q100 Qualified

500mA, Low-Voltage Linear Regulator in Tiny QFN

MP20249 Dual, Ultra-Low Noise, High PSRR 200mA Linear Regulator

RT9167/A. Low-Noise, Fixed Output Voltage, 300mA/500mA LDO Regulator Features. General Description. Applications. Ordering Information RT9167/A-

DATASHEET ISL6208. Features. Applications. Related Literature. Ordering Information. Pinout. High Voltage Synchronous Rectified Buck MOSFET Driver

RT9018A/B. Maximum 3A, Ultra Low Dropout Regulator. General Description. Features. Applications. Marking Information. Ordering Information

RT9043- High PSRR, Low Dropout, 400mA Adjustable LDO Regulator. Features. General Description. Applications. Ordering Information. Pin Configurations

ISL Ambient Light Photo Detect IC. Features. Applications. Pinout. Ordering Information. Data Sheet August 3, 2006 FN6117.3

MP2002 Low Input Voltage 500mA Linear Regulator

RT mA, Low Dropout, Low Noise Ultra-Fast With Soft Start CMOS LDO Regulator. General Description. Features. Applications. Ordering Information

RT A, Low Noise, Ultra High PSRR, Low-Dropout Linear Regulator. Features. General Description. Applications. Ordering Information

EL5027. Dual 2.5MHz Rail-to-Rail Input-Output Buffer. Features. Applications. Ordering Information. Pinout. Data Sheet May 4, 2007 FN7426.

DATASHEET ISL6207. Features. Applications. Related Literature. Pinouts. High Voltage Synchronous Rectified Buck MOSFET Driver

RT mA, Low Dropout, Low Noise Ultra-Fast Without Bypass Capacitor CMOS LDO Regulator. Features. General Description.

DATASHEET HA Features. Applications. Ordering Information. Pinouts. 250MHz Video Buffer. FN2924 Rev 8.00 Page 1 of 12.

45V, 400mA, Low-Quiescent-Current Linear Regulator with Adjustable Reset Delay

Regulators with BIAS Input

RT mA, Ultra-Low Noise, Ultra-Fast CMOS LDO Regulator. General Description. Features. Applications. Ordering Information. Marking Information

ISL6298. Li-ion/Li-Polymer Battery Charger. Features. Applications. Related Literature. Ordering Information. Pinouts. Data Sheet.

HI-200, HI-201. Dual/Quad SPST, CMOS Analog Switches. Features. Applications. Ordering Information. Functional Diagram FN3121.8

MP2009 Ultra-Low-Noise Low-Dropout, 120mA Linear Regulator

MP20041 Dual, Ultra Low Noise, High PSRR 300mA Linear Regulator

Dual, Low-Noise, Low-Dropout, 160mA Linear Regulators in SOT23

HIP V, 300mA Three Phase High Side Driver. Features. Applications. Ordering Information. Pinout. July 2004

Ultra-Low Noise Ultra-Fast 300mA LDO Regulator. Features

DATASHEET HC5503T. Features. Applications. Ordering Information. Block Diagram. Balanced PBX/Key System SLIC, Subscriber Line Interface Circuit

DATASHEET ISL9001A. Features. Pinout. Applications. LDO with Low ISUPPLY, High PSRR. FN6433 Rev 3.00 Page 1 of 12. December 10, FN6433 Rev 3.

HA Features. Quad, 3.5MHz, Operational Amplifier. Applications. Pinout. Ordering Information. Data Sheet July 2004 FN2922.5

RT V DC-DC Boost Converter. Features. General Description. Applications. Ordering Information. Marking Information

DATASHEET ISL Features. Applications. Simplified Block Diagram. Pinout. Ordering Information. Pin Descriptions

DATASHEET ISL9003A. Features. Pinouts. Applications. Low Noise LDO with Low I Q and High PSRR. FN6299 Rev 5.00 Page 1 of 12.

HA-2640, HA Features. 4MHz, High Supply Voltage Operational Amplifiers. Applications. Ordering Information. Pinouts

PART NC OUT OUT RESET OUTPUT

EVALUATION KIT AVAILABLE Low-Noise 500mA LDO Regulators in a 2mm x 2mm TDFN Package MAX8902AATA+ INPUT 1.7V TO 5.5V LOGIC SUPPLY. R3 100kΩ.

Transcription:

ISL6412 Data Sheet FN9067.1 Triple Output, Low-Noise LDO Regulator with Integrated Reset Circuit The ISL6412 is an ultra low noise triple output LDO regulator with microprocessor reset circuit and is optimized for powering wireless chip sets. The IC accepts an input voltage range of 3.0V to 3.6V and provides three regulated output voltages: 1.8V (LDO1), 2.8V (LDO2), and another ultra-clean 2.8V (LDO3). On chip logic provides sequencing between LDO1 and LDO2 for the BBP/MAC and the I/O supply voltage outputs. LDO3 features ultra low noise that does not typically exceed 30µV RMS to aid VCO stability. High integration and the thin Quad Flat No-lead (QFN) package makes the ISL6412 an ideal choice to power many of today s small form factor industry standard wireless cards such as PCMCIA, mini-pci and Cardbus-32. The ISL6412 uses an internal PMOS transistor as the pass device. The ISL6412 also integrates a reset function, which eliminates the need for the additional reset IC required in WLAN applications. The IC asserts a RESET signal whenever the supply voltage drops below a preset threshold, keeping it asserted for a time set by a capacitor to GND after has risen above the reset threshold. FAULT1 indicates the loss of regulation on LDO1. Ordering Information PART NUMBER PART MARKING TEMP. RANGE ( C) PACKAGE PKG. DWG. # ISL6412IR ISL6412IR -40 to +85 16 Ld 4x4 QFN L16.4x4 ISL6412IR-TK ISL6412IR -40 to +85 16 Ld 4x4 QFN L16.4x4 ISL6412IR-T5K ISL6412IR ISL6412IRZ (Note 2) ISL6412IRZ-TK (Notes 1, 2) 6412IRZ 6412IRZ -40 to +85 16 Ld 4x4 QFN L16.4x4-40 to +85 16 Ld 4x4 QFN (Pb-free) -40 to +85 16 Ld 4x4 QFN (Pb-free) L16.4x4 L16.4x4 NOTES: 1. Tape and Reel available. Add -T suffix for Tape and Reel Packing Option 2. Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. Features Small DC/DC Converter Size - Three LDOs and Reset Circuitry in a Low-Profile 4x4mm QFN Package High Output Current - LDO1, 1.8V............................. 330mA - LDO2, 2.8V............................. 225mA - LDO3, 2.8V............................. 125mA Ultra-Low Dropout Voltage - LDO2, 2.8V................ 125mV (typ.) at 225mA - LDO3, 2.8V................ 100mV (typ.) at 125mA Ultra-Low Output Voltage Noise - <30μV RMS (typ.) for LDO3 (VCO Supply) Stable with Small Ceramic Output Capacitors Extensive Protection and Monitoring Features - Over current protection - Short circuit protection - Thermal shutdown - FAULT indicator Logic-Controlled Shutdown Pin Integrated Microprocessor Reset Circuit - Programmable Reset Delay Proven Reference Design for a Total WLAN System Solution QFN Package - Compliant to JEDEC PUB95 MO-220 QFN - Quad Flat No Leads - Product Outline - Near Chip-Scale Package Footprint Improves PCB Efficiency and Is Thinner in Profile Pb-Free Plus Anneal Available (RoHS Compliant) Applications PRISM 3 Chipsets ISL37106P WLAN Cards - PCMCIA, Cardbus32, MiniPCI Cards - Compact Flash Cards Liberty Chipset Hand-Held Instruments 1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright Intersil Americas Inc. 2004, 2007. All Rights Reserved. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

Pinout ISL6412 (16 LD QFN) TOP VIEW NC FAULT1 16 15 14 13 RESET 1 12 OUT1 CT 2 11 CC1 3 10 OUT2 NC 4 9 CC2 5 6 7 8 OUT3 CC3 GND3 GND Typical Application Schematic +3.3V V IN + C4 3.3μF C8 0.01μF 1 RESET 2 CT 3 4 NC 16 15 NC FAULT1 14 13 ISL6412 OUT1 CC1 OUT2 CC2 12 11 10 9 +1.8V V OUT1 +2.8V V OUT2 OUT3 CC3 GND3 GND C5 0.033μF C6 0.033μF C2 3.3μF C1 3.3μF +2.8V 5 6 7 8 V OUT3 C3 3.3μF C7 0.033μF Typical Bill Of Materials REFERCE DESIGNATOR VALUE PACKAGE MANUFACTURER MANUFACTURER S PART NUMBER C1, C2, C3, C4 3.3µF, X7R 1206 TDK C3216X7R1A106M C5, C6, C7 0.033µF, X7R 0603 TDK/ANY C1608X7R1A333K C8 0.01µF, X7R 0603 TDK/ANY C1608X7R1A103K U1 ISL6412IR QFN16 Intersil ISL6412IR 2 FN9067.1

Functional Block Diagram BAND GAP REF. 1.2V VREF LDO1 13 14 + - OUT1 12 15 FAULT1 WINDOW COMP THERMAL SHUTDOWN 150 C CC1 11 LDO2 CONTROL LOGIC VREF OUT2 OUT2 10 CC2 CC2 9 3 LDO3 2 CT RESET VREF OUT3 OUT3 5 1 RESET CC3 CC3 6 8 GND GND3 7 3 FN9067.1

Absolute Maximum Ratings V IN, to GND/GND3............................. 7.0V SET, CC, FAULT to GND/GND3................. -0.3V to 7.0V Output Current (Continuous) LDO1........................................ 330mA LDO2........................................ 225mA LDO3........................................ 125mA ESD Classification................................. Class 1 Thermal Information Thermal Resistance (Typical) θ JA ( C/W) θ JC ( C/W) QFN Package (Notes 3, 4)........ 46 9 Maximum Junction Temperature (Plastic Package) -55 C to +150 C Maximum Storage Temperature Range..........-65 C to +150 C Maximum Lead Temperature (Soldering 10s)............ +300 C Operating Temperature Range.................-40 C to +85 C CAUTION: Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTES: 3. θ JA is measured in free air with the component mounted on a high effective thermal conductivity test board with direct attach features. See Tech Brief TB379. 4. For θ JC, the case temp location is the center of the exposed metal pad on the package underside. Electrical Specifications V IN = +3.3V, Compensation Capacitor = 33nF, T A = +25 C, unless otherwise noted. PARAMETER TEST CONDITIONS MIN TYP MAX UNITS GERAL SPECIFICATIONS V IN Voltage Range 3.0 3.3 3.6 V Operating Supply Current I OUT = 0mA - 830 1125 μa Shutdown Supply Current = GND - 5 10 μa Input Threshold V IH, V IN = 3V to 3.6V 2.0 - - V V IL, V IN = 3V to 3.6V - - 0.4 V Thermal Shutdown Temperature (Note 7) 145 150 160 C Thermal Shutdown Hysteresis (Note 7) - 20 - C Start-up Time (Note 7) C OUT = 10μF, V OUT = 90% of final value - 120 - μs Input Undervoltage Lockout Rising 75mV Hysteresis 2.4 2.45 2.6 V LDO1 SPECIFICATIONS Output Voltage (V OUT1 ) - 1.8 - V Output Voltage Initial Accuracy I OUT = 10mA, T A = -40 C to 85 C -2.0-2.0 % Line Regulation V IN = 3.0V to 3.6V, I OUT = 10mA -0.15 0.0 0.15 %/V Load Regulation I OUT = 10mA to 330mA -1.5-1.5 % Maximum Output Current (I OUT1 ) (Note 7) 330 - - ma Output Current Limit (Note 7) 500 600 1105 ma Output Voltage Noise (Note 7) LDO2 SPECIFICATIONS 10Hz < f < 100kHz, C OUT = 4.7μF, I OUT = 50mA - 115 - μv RMS Output Voltage (V OUT2 ) - 2.8 - V Output Voltage Accuracy I OUT = 10mA, T A = -40 C to 85 C -2.0-2.0 % Maximum Output Current (I OUT2 ) (Note 7) V IN = 3.6V 225 - - ma Output Current Limit (Note 7) 330-900 ma Dropout Voltage (Notes 5, 7) I OUT = 225mA - 125 160 mv Line Regulation V IN = 3.0V to 3.6V, I OUT = 10mA -0.15 0.0 0.15 %/V Load Regulation I OUT = 10mA to 225mA - 0.2 1.0 % 4 FN9067.1

Electrical Specifications V IN = +3.3V, Compensation Capacitor = 33nF, T A = +25 C, unless otherwise noted. (Continued) PARAMETER TEST CONDITIONS MIN TYP MAX UNITS Output Voltage Noise (Note 7) 10Hz < f < 100kHz, I OUT = 10mA C OUT = 2.2μF - 65 - μv RMS C OUT = 10μF - 60 - μv RMS LDO3 SPECIFICATIONS Output Voltage (V OUT3 ) - 2.8 - V Output Voltage Accuracy I OUT = 10mA, T A = -40 C to +85 C -2.0-2.0 % Maximum Output Current (I OUT3 ) (Note 7) V IN = 3.6V 225 - - ma Output Current Limit (Note 7) 300 450 840 ma Dropout Voltage (Notes 5, 7) I OUT = 125mA - 100 160 mv Line Regulation V IN = 3.0V to 3.6V, I OUT = 10mA -0.15 0.0 0.15 %/V Load Regulation I OUT = 10mA to 125mA - 0.2 1.0 % Output Voltage Noise (Note 7) 10Hz < f < 100kHz, I OUT = 10mA C OUT = 2.2μF - 30 - μv RMS C OUT = 10μF - 20 - μv RMS RESET BLOCK SPECIFICATIONS Reset Threshold 2.564 2.630 2.66 V Reset Threshold Hysteresis (Note 7) 6.3 - - mv V IN to Reset Delay VCC = V TH to V TH - 100mV - 20 - μs RESET Active Timeout Period (Notes 6, 7) CT = 0.01µF 50 - - ms FAULT1 Rising Threshold % of V OUT +5.5 +8.0 +10.5 % Falling Threshold % of V OUT -10.5-8.0-5.5 % NOTES: 5. The dropout voltage is defined as V IN - V OUT, when V OUT is 50mV below the value of V OUT for V IN = V OUT + 0.5V. 6. The RESET time is linear with CT at a slope of ~5ms/nF. Thus, at 10nF (0.01μF) the RESET time is 50ms. 7. Guaranteed by design, not production tested. Typical Performance Curves The test conditions for the Typical Operating Performance are: V IN = 3.3V, T A = +25 C, Unless Otherwise Noted VOUT1 VOUT3 VOUT2 100µs/DIV VOUT1 100µs/DIV VOUT2 VOUT3 FIGURE 1. START-UP SEQUCE FIGURE 2. SHUTDOWN SEQUCE 5 FN9067.1

Typical Performance Curves The test conditions for the Typical Operating Performance are: V IN = 3.3V, T A = +25 C, Unless Otherwise Noted (Continued) 2V/DIV VOUT1 50mV/DIV VOUT1 2V/DIV RESET 2V/DIV FAULT 2V/DIV 20ms/DIV IOUT1 200mA/DIV 1ms/DIV FIGURE 3. SHUTDOWN, FAULT, and RESET OPERATION FIGURE 4. LDO1 TRANSIT RESPONSE (10mA to 330mA) VOUT2 100mV/DIV VOUT3 100mV/DIV IOUT2 100mA/DIV 1ms/DIV IOUT3 50mA/DIV 1ms/DIV FIGURE 5. LDO2 TRANSIT RESPONSE (10mA to 200mA) FIGURE 6. LDO3 TRANSIT RESPONSE (10mA to 100mA) RESET RESET CT CT 20ms/DIV 100ms/DIV FIGURE 7. RESET DELAY DURING START-UP (CT = 0.01µF) FIGURE 8. RESET DELAY DURING START-UP (CT = 0.1µF) 6 FN9067.1

Typical Performance Curves The test conditions for the Typical Operating Performance are: V IN = 3.3V, T A = +25 C, Unless Otherwise Noted (Continued) -10-20 FAULT PSRR (db) -30-40 -50 VOUT1/2/3 500ms/DIV -60 10 100 1k 10k 100k 1M FREQUCY (A) FIGURE 9. THERMAL SHUTDOWN OPERATION FIGURE 10. LDO1 POWER SUPPLY REJECTION (IOUT1 = 100mA, COUT = 10µF MLCC) = 2.7V VOUT1 FAULT FIGURE 11. VOUT1 REGULATION DOWN TO = 2.7V; FAULT MONITORS VOUT1 ONLY Pin Descriptions OUT1 - This pin is the output for LDO1. Bypass with a minimum of 2.2µF, low ESR capacitor to GND for stable operation. V IN - Supply input pins. Connect to input power source. Bypass with a minimum 2.2μF capacitor to GND. Both V IN pins must be tied together on the PC board, close to the IC. GND - Ground for LDO1 and LDO2. CC1 - Compensation Capacitor for LDO1. Connect a 0.033µF capacitor from CC1 to GND. - Shutdown input for all LDOs. Connect to V IN for normal operation. Drive this pin LOW to turn off all LDOs. OUT2 - This pin is the output for LDO2. Bypass with a minimum of 2.2µF, low ESR capacitor to GND for stable operation. CT - Timing pin for the RESET circuit pulse width. CC2 - Compensation capacitor for LDO2. Connect a 0.033µF capacitor from CC2 to GND. OUT3 - This pin is output for LDO3. Bypass with a minimum of 2.2µF, low ESR capacitor to GND3 for stable operation. GND3 - Ground pin for LDO3. CC3 - Compensation capacitor for LDO3. Connect a 0.033µF capacitor from CC3 to GND3. FAULT1 - This is the power good indicator for LDO1. When the 1.8V output is out of regulation this pin goes LOW. This 7 FN9067.1

pin also goes LOW during thermal shutdown or an overcurrent event on LDO1. Connect this pin to GND, if unused. RESET - This pin is the active-low output of the push-pull output stage of the integrated reset supervisory circuit. The reset circuit monitors V IN and asserts a RESET output at this pin, if V IN falls below the RESET threshold. The RESET output remains LOW, while the V IN pin voltage is below the reset threshold, and for at least 25ms, after V IN rises above the RESET threshold. Functional Description The ISL6412 is a 3-in-1 multi-output, low dropout, regulator designed for wireless chipset power applications. It supplies three fixed output voltages 1.8V, 2.8V and 2.8V. Each LDO consists of a 1.2V reference, error amplifier, MOSFET driver, P-Channel pass transistor, dual-mode comparator and internal feedback voltage divider. The 1.2V band gap reference is connected to the error amplifier s inverting input. The error amplifier compares this reference to the selected feedback voltage and amplifies the difference. The MOSFET driver reads the error signal and applies the appropriate drive to the P-Channel pass transistor. If the feedback voltage is lower then the reference voltage, the pass transistor gate is pulled lower, allowing more current to pass and increasing the output voltage. If the feedback voltage is higher then the reference voltage, the pass transistor gate is driven higher, allowing less current to pass to the output. The output voltage is fed back through an internal resistor divider connected to OUT1/OUT2/OUT3 pins. Additional blocks include an output overcurrent protection, thermal sensor, fault detector, RESET function and shutdown logic. Internal P-Channel Pass Transistors The ISL6412 features a typical 0.5Ω r DS(ON) P-channel MOSFET pass transistors. This provides several advantages over similar designs using PNP bipolar pass transistors. The P-Channel MOSFET requires no base drive, which reduces quiescent current considerably. PNP based regulators waste considerable current in dropout when the pass transistor saturates. They also use high base drive currents under large loads. The ISL6412 does not suffer from these problems. The voltage at the CT pin is compared to the 1.2V bandgap voltage. The charging of the CT capacitor behaves like an RC network and the RESET delay can be approximated by: Td = -R*C*ln(1-1.2V/) Where C is the capacitor at CT, and R is 11.1MΩ for = 3.3V. With no capacitor on the CT pin the RESET delay will be close to zero. Figure 12 shows the RESET delay vs CT capacitance. DELAY (ms) 500 400 300 200 100 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0 CT (µf) FIGURE 12. RESET DELAY vs CT CAPACITANCE Output Voltages The ISL6412 provides fixed output voltages for use in Wireless Chipset applications. Internal trimmed resistor networks set the typical output voltages as shown here: V OUT1 = 1.8V; V OUT2 = 2.8V; V OUT3 = 2.8V. Shutdown Pulling the pin LOW puts the complete chip into shutdown mode, and supply current drops to 5μA typical. This input has an internal pull-up resistor, so that in normal operation the outputs are always enabled; external pull-up resistors are not required. Current Limit The ISL6412 monitors and controls the pass transistor s gate voltage to limit the output current. The current limit for LDO1 is 500mA, LDO2 is 330mA and LDO3 is 300mA. The output can be shorted to ground without damaging the part due to the current limit and thermal protection features. Integrated Reset for MAC/Baseband Processors The ISL6412 includes a microprocessor supervisory block. This block eliminates the extra reset IC and external components needed in wireless chipset applications. This block performs a single function; it asserts a RESET signal whenever the V IN supply voltage decreases below a preset threshold, keeping it asserted for a programmable time (set by external capacitor CT) after the V IN pin voltage has risen above the reset threshold. The reset threshold for the ISL6412 is 2.63V typical. 8 FN9067.1

Thermal Overload Protection Thermal overload protection limits total power dissipation in the ISL6412. When the junction temperature (T J ) exceeds +150 C, the thermal sensor sends a signal to the shutdown logic, turning off the pass transistor and allowing the IC to cool. The pass transistor turns on again after the IC s junction temperature typically cools by 20 C, resulting in a pulsed output during continuous thermal overload conditions. Thermal overload protection protects the ISL6412 against fault conditions. For continuous operation, do not exceed the absolute maximum junction temperature rating of +150 C. Operating Region and Power Dissipation The maximum power dissipation of ISL6412 depends on the thermal resistance of the IC package and circuit board, the temperature difference between the die junction and ambient air, and the rate of air flow. The power dissipated in the device is: PT = P1 + P2 + P3, where P1 = I OUT1 (V IN V OUT1 ) P2 = I OUT2 (V IN V OUT2 ) P3 = I OUT3 (V IN - V OUT3 ) The maximum power dissipation is: Pmax = (Tjmax T A )/θja Where Tjmax = +150 C, T A = ambient temperature, and θja is the thermal resistance from the junction to the surrounding environment. The ISL6412 package features an exposed thermal pad on its underside. This pad lowers the thermal resistance of the package by providing a direct heat conduction path from the die to the PC board. Additionally, the ISL6412 s ground (GND/GND3) performs the dual function of providing an electrical connection to system ground and channeling heat away. Connect the exposed backside pad and GND to the system ground using a large pad or ground plane, or through multiple vias to the ground plane layer. Integrator Circuitry The ISL6412 uses an external 33nF compensation capacitor for minimizing load and line regulation errors and for lowering output noise. When the output voltage shifts due to varying load current or input voltage, the integrator capacitor voltage is raised or lowered to compensate for the systematic offset at the error amplifier. Compensation is limited to ±5% to minimize transient overshoot when the device goes out of dropout, current limit, or thermal shutdown. FAULT Functionality Below UVLO threshold EVT V OUT1 = 1.8V ±8% typ V OUT2 /V OUT3 not in regulation TABLE 1. V OUT1 not in regulation V OUT2 and V OUT3 are in regulation Thermal Shutdown Normal Shutdown with pin Overcurrent only on LDO1 Overcurrent only on LDO2/LDO3 Applications Information FAULT1 Capacitor Selection and Regulator Stability Capacitors are required at the ISL6412 s input and output for stable operation over the entire load range and the full temperature range. Use >1µF capacitor at the input of ISL6412. The input capacitor lowers the source impedance of the input supply. Larger capacitor values and lower ESR provides better PSRR and line transient response. The input capacitor must be located at a distance of not more then 0.5 inches from the pins of the IC and returned to a clean analog ground. Any good quality ceramic or tantalum can be used as an input capacitor. The output capacitor must meet the requirements of minimum amount of capacitance and ESR for all three LDO s. The ISL6412 is specifically designed to work with small ceramic output capacitors. The output capacitor s ESR affects stability and output noise. Use an output capacitor with an ESR of 50mΩ or less to insure stability and optimum transient response. For stable operation, a ceramic capacitor, with a minimum value of 3.3μF, is recommended for V OUT1 for 300mA output current, and 2.2μF is recommended for V OUT2 and V OUT3 each at 200mA load current. There is no upper limit to the output capacitor value. Larger capacitor can reduce noise and improve load transient response, stability and PSRR. Higher value of output capacitor (10µF) is recommended for LDO3 when used to power VCO circuitry in wireless chipsets. The output capacitor should be located very close to VOUT pins to minimize impact of PC board inductances and the other end of the capacitor should be returned to a clean analog ground. Input-Output (Dropout) Voltage A regulator s minimum input-output voltage differential (or dropout voltage) determines the lowest usable supply voltage. Because the ISL6412 uses a P-channel MOSFET pass transistor, its dropout voltage is a function of r DS(ON) (typically 0.5) multiplied by the load current. L H L L L L H 9 FN9067.1

Quad Flat No-Lead Plastic Package (QFN) Micro Lead Frame Plastic Package (MLFP) L16.4x4 16 LEAD QUAD FLAT NO-LEAD PLASTIC PACKAGE (COMPLIANT TO JEDEC MO-220-VGGC ISSUE C) MILLIMETERS SYMBOL MIN NOMINAL MAX NOTES A 0.80 0.90 1.00 - A1 - - 0.05 - A2 - - 1.00 9 A3 0.20 REF 9 b 0.23 0.28 0.35 5, 8 D 4.00 BSC - D1 3.75 BSC 9 D2 1.95 2.10 2.25 7, 8 E 4.00 BSC - E1 3.75 BSC 9 E2 1.95 2.10 2.25 7, 8 e 0.65 BSC - k 0.25 - - - L 0.50 0.60 0.75 8 L1 - - 0.15 10 N 16 2 Nd 4 3 Ne 4 3 P - - 0.60 9 θ - - 12 9 Rev. 5 5/04 NOTES: 1. Dimensioning and tolerancing conform to ASME Y14.5-1994. 2. N is the number of terminals. 3. Nd and Ne refer to the number of terminals on each D and E. 4. All dimensions are in millimeters. Angles are in degrees. 5. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. 6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be either a mold or mark feature. 7. Dimensions D2 and E2 are for the exposed pads which provide improved electrical and thermal performance. 8. Nominal dimensions are provided to assist with PCB Land Pattern Design efforts, see Intersil Technical Brief TB389. 9. Features and dimensions A2, A3, D1, E1, P & θ are present when Anvil singulation method is used and not present for saw singulation. 10. Depending on the method of lead termination at the edge of the package, a maximum 0.15mm pull back (L1) maybe present. L minus L1 to be equal to or greater than 0.3mm. All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation s quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com 10 FN9067.1