Research Article Ka-Band Slot-Microstrip-Covered and Waveguide-Cavity-Backed Monopulse Antenna Array

Similar documents
Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

Research Article A Design of Wide Band and Wide Beam Cavity-Backed Slot Antenna Array with Slant Polarization

Research Article Modified Dual-Band Stacked Circularly Polarized Microstrip Antenna

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications

Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure

Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers

Research Article A High-Isolation Dual-Polarization Substrate-Integrated Fabry-Pérot Cavity Antenna

Research Article A Miniaturized Triple Band Monopole Antenna for WLAN and WiMAX Applications

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

Research Article Novel Design of Microstrip Antenna with Improved Bandwidth

Research Article Miniaturized Circularly Polarized Microstrip RFID Antenna Using Fractal Metamaterial

Research Article A Miniaturized Meandered Dipole UHF RFID Tag Antenna for Flexible Application

Research Article Bandwidth Extension of a Printed Square Monopole Antenna Loaded with Periodic Parallel-Plate Lines

Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems

Research Article CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

Research Article A Multibeam Antenna Array Based on Printed Rotman Lens

Research Article CPW-Fed Slot Antenna for Wideband Applications

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler

Research Article Harmonic-Rejection Compact Bandpass Filter Using Defected Ground Structure for GPS Application

Research Article A Novel SIW H-Plane Horn Antenna Based on Parabolic Reflector

Research Article High Efficiency and Broadband Microstrip Leaky-Wave Antenna

Research Article BCB-Si Based Wide Band Millimeter Wave Antenna Fed by Substrate Integrated Waveguide

Research Article Cross-Slot Antenna with U-Shaped Tuning Stub for Ultra-Wideband Applications

Research Article Circularly Polarized Microstrip Yagi Array Antenna with Wide Beamwidth and High Front-to-Back Ratio

Research Article A Compact CPW-Fed UWB Antenna with Dual Band-Notched Characteristics

Research Article Small-Size Meandered Loop Antenna for WLAN Dongle Devices

Research Article Compact Antenna with Frequency Reconfigurability for GPS/LTE/WWAN Mobile Handset Applications

Research Article Yagi Array of Microstrip Quarter-Wave Patch Antennas with Microstrip Lines Coupling

Research Article Wideband Microstrip 90 Hybrid Coupler Using High Pass Network

Research Article Suppression of Cross-Polarization of the Microstrip Integrated Balun-Fed Printed Dipole Antenna

Research Article Integrated Filtering Microstrip Duplex Antenna Array with High Isolation

Research Article A MIMO Reversed Antenna Array Design for gsm1800/td-scdma/lte/wi-max/wilan/wifi

Research Article Theoretical and Experimental Results of Substrate Effects on Microstrip Power Divider Designs

A Millimeter Wave Center-SIW-Fed Antenna For 60 GHz Wireless Communication

Research Article A Compact Experimental Planar Antenna with a USB Connector for Mobile Phone Application

Research Article Quad Band Handset Antenna for LTE MIMO and WLAN Application

DESIGN AND TESTING OF HIGH-PERFORMANCE ANTENNA ARRAY WITH A NOVEL FEED NETWORK

A Wideband Dual-polarized Modified Bowtie Antenna for 2G/3G/LTE Base-station Applications

Research Article A High Gain Omnidirectional Antenna Using Negative Permeability Metamaterial

Research Article Very Compact and Broadband Active Antenna for VHF Band Applications

Application Article Improved Low-Profile Helical Antenna Design for INMARSAT Applications

Research Article Design and Optimization of a Millimetre Wave Compact Folded Magic-T

Research Article A Broadband Single-Feed Circularly Polarized Patch Antenna with Wide Beamwidth

Research Article Study on Millimeter-Wave Vivaldi Rectenna and Arrays with High Conversion Efficiency

Research Article Design of a Novel UWB Omnidirectional Antenna Using Particle Swarm Optimization

Research Article Compact Multiantenna

Research Article A Novel CP Horn Antenna with Switchable Polarization by Single Port Feeding

Different gap waveguide slot array configurations for mmwave fixed beam antenna application

First-Order Minkowski Fractal Circularly Polarized Slot Loop Antenna with Simple Feeding Network for UHF RFID Reader

Effect of Various Slot Parameters in Single Layer Substrate Integrated Waveguide (SIW) Slot Array Antenna for Ku-Band Applications

Jae-Hyun Kim Boo-Gyoun Kim * Abstract

Research Article Embedded Spiral Microstrip Implantable Antenna

Research Article A UWB Band-Pass Antenna with Triple-Notched Band Using Common Direction Rectangular Complementary Split-Ring Resonators

Application Article Synthesis of Phased Cylindrical Arc Antenna Arrays

HYBRID ARRAY ANTENNA FOR BROADBAND MILLIMETER-WAVE APPLICATIONS

Research Article Wideband Dual-Element Antenna Array for MIMO Mobile Phone Applications

Design and Development of a 2 1 Array of Slotted Microstrip Line Fed Shorted Patch Antenna for DCS Mobile Communication System

Research Article Effect of Parasitic Element on 408 MHz Antenna for Radio Astronomy Application

Posts and Telecommunications, Mailbox 280#, 66 Xinmofan Road, Nanjing , China

Research Article Multiband Printed Asymmetric Dipole Antenna for LTE/WLAN Applications

Postwall waveguide slot array with cosecant radiation pattern and null filling for base station antennas in local multidistributed systems

Ultra Wideband Slotted Microstrip Patch Antenna for Downlink and Uplink Satellite Application in C band

Planar Leaky-Wave Antennas Based on Microstrip Line and Substrate Integrated Waveguide (SIW)

High gain W-shaped microstrip patch antenna

Development of Low Profile Substrate Integrated Waveguide Horn Antenna with Improved Gain

Research Article Design of a Compact Quad-Band Slot Antenna for Integrated Mobile Devices

World Scientific Research Journal (WSRJ) ISSN: Design and Analysis of a Series-fed Microstrip Antenna Array for 24GHz

Wideband Double-Layered Dielectric-Loaded Dual-Polarized Magneto-Electric Dipole Antenna

Research Article A Dual Band Patch Antenna with a Pinwheel-Shaped Slots EBG Substrate

Research Article Low-Profile Repeater Antenna with Parasitic Elements for On-On-Off WBAN Applications

Broadband transition between substrate integrated waveguide and rectangular waveguide based on ridged steps

A Beam Switching Planar Yagi-patch Array for Automotive Applications

Research Article Compact and Wideband Parallel-Strip 180 Hybrid Coupler with Arbitrary Power Division Ratios

SINGLE-FEEDING CIRCULARLY POLARIZED TM 21 - MODE ANNULAR-RING MICROSTRIP ANTENNA FOR MOBILE SATELLITE COMMUNICATION

A Compact Dual-Polarized Antenna for Base Station Application

Dielectric Leaky-Wave Antenna with Planar Feed Immersed in the Dielectric Substrate

DESIGN OF TRI-BAND PRINTED MONOPOLE ANTENNA FOR WLAN AND WIMAX APPLICATIONS

A K-Band Flat Transmitarray Antenna with a Planar Microstrip Slot-Fed Patch Antenna Feeder

DESIGN OF A NOVEL WIDEBAND LOOP ANTENNA WITH PARASITIC RESONATORS. Microwaves, Xidian University, Xi an, Shaanxi, China

QUADRI-FOLDED SUBSTRATE INTEGRATED WAVEG- UIDE CAVITY AND ITS MINIATURIZED BANDPASS FILTER APPLICATIONS

COMPACT SLOT ANTENNA WITH EBG FEEDING LINE FOR WLAN APPLICATIONS

Broadband and Gain Enhanced Bowtie Antenna with AMC Ground

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China

DUAL-BAND LOW PROFILE DIRECTIONAL ANTENNA WITH HIGH IMPEDANCE SURFACE REFLECTOR

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION

A Broadband Reflectarray Using Phoenix Unit Cell

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

Circularly Polarized Post-wall Waveguide Slotted Arrays

Bandpass-Response Power Divider with High Isolation

NEW DESIGN OF COMPACT SHORTED ANNULAR STACKED PATCH ANTENNA FOR GLOBAL NAVIGA- TION SATELLITE SYSTEM APPLICATION

Chalmers Publication Library

Low-Profile Wideband Circularly Polarized Patch Antenna Using Asymmetric Feeding

Broadband Circular Polarized Antenna Loaded with AMC Structure

Research Article The Simulation and Experiment of a Non-Cross-Feeding Printed Log-Periodic Antenna

Research Article A Dual-Band Printed End-Fire Antenna with DSPSL Feeding

Inset Fed Microstrip Patch Antenna for X-Band Applications

Reduction of Mutual Coupling between Cavity-Backed Slot Antenna Elements

Broadband low cross-polarization patch antenna

A COMPACT UWB MONOPOLE ANTENNA WITH WIMAX AND WLAN BAND REJECTIONS

ENHANCEMENT OF PHASED ARRAY SIZE AND RADIATION PROPERTIES USING STAGGERED ARRAY CONFIGURATIONS

Transcription:

Antennas and Propagation, Article ID 707491, 5 pages http://dx.doi.org/10.1155/2014/707491 Research Article Ka-Band Slot-Microstrip-Covered and Waveguide-Cavity-Backed Monopulse Antenna Array Li-Ming Si, 1 Yong Liu, 1 Yongjun Huang, 2 and Weiren Zhu 3 1 Beijing Key Laboratory of Millimeter Wave and Terahertz Technology, Department of Electronic Engineering, School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China 2 Key Laboratory of Broadband Optical Fiber Transmission & Communication Networks, School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China 3 Advanced Computing and Simulation Laboratory (AχL), Department of Electrical and Computer Systems Engineering, MonashUniversity,Clayton,VIC3800,Australia Correspondence should be addressed to Li-Ming Si; lms@bit.edu.cn Received 6 September 2013; Revised 18 December 2013; Accepted 5 January 2014; Published 10 March 2014 Academic Editor: P. Mohanan Copyright 2014 Li-Ming Si et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A slot-microstrip-covered and waveguide-cavity-backed monopulse antenna array is proposed for high-resolution tracking applications at Ka-band. The monopulse antenna array is designed with a microstrip with 2 32slots, a waveguide cavity, and a waveguide monopulse comparator, to make the structure simple, reduce the feeding network loss, and increase the frequency bandwidth. The 2 32slot-microstrip elements are formed by a metal clad dielectric substrate and slots etched in the metal using the standard printed circuit board (PCB) process with dimensions of 230 mm 10 mm. The proposed monopulse antenna array not only maintains the advantages of the traditional waveguide slot antenna array, but also has the characteristics of wide bandwidth, high consistence, easy of fabrication, and low cost. From the measured results, it exhibits good monopulse characteristics, including the following: the maximum gains of sum pattern are greater than 24 db, the 3 db beamwidth of sum pattern is about 2.2 degrees, the sidelobe levels of the sum pattern are less than 18 db, and the null depths of the difference pattern are less than 25 db within the operating bandwidth between 33.65 GHz and 34.35 GHz for VSWR 2. 1. Introduction Millimeter-wave monopulse antenna arrays have received considerable attention in the radar tracking systems owing to their ultrahigh resolution [1, 2]. Waveguide slot antenna arrays [3] or microstrip antenna arrays [4, 5] are commonly used in traditional monopulse tracking systems. Waveguide slot antenna arrays possess several unique advantages, such as low loss, low coupling effect, low cross-polarization, high radiation efficiency, high polarization purity, high frequency operation, and high power handling capability, but they are of narrow bandwidth and high cost and not suitable for mass production [6 9]. Microstrip antenna arrays have been widely used in monopulse system, showing benefits including high integration capability, low cost, and ease of mass production [4, 5]. However, they have difficulty in achieving low sidelobe levels and high radiation efficiencies duetothestrongmutualcouplingandspuriousradiation among the monopulse comparator, feed network, and radiation elements [10]. Furthermore, the loss in a microstrip line becomes much more significant due to the high conductor loss, dielectric loss, and radiation loss in the millimeter wave and upper bands [11, 12]. To overcome the drawbacks of the conventional waveguide slot and microstrip antenna arrays, dielectric-covered slot arrays were investigated by Montisci et al. [13 16] and Zheng et al. [17], but they did not tell about the monopulse characteristics. Recently, substrate integrated waveguide (SIW) technology based monopulse antenna array is proposed by Cheng et al. [18]. Since SIWs can not only preserve the advantages of conventional rectangular waveguide but also be implemented with printed circuit board (PCB) process, the monopulse comparator and the radiation elements of this array are all integrated on single dielectric substrate [18].

2 Antennas and Propagation Rogers 5880 dielectric layer Difference port 2 32slots Feeding port 2 Sum port Magic T Waveguide monopulse comparator (a) Waveguide cavity Feeding port 1 (b) Side view Covered slot microstrip Four ports Backed waveguide cavity (c) Figure 1: Structure of the monopulse antenna array. (a) Exploded view, (b) waveguide monopulse comparator, and (c) prototype. This work experimentally investigates a Ka-band slotmicrostrip-covered and waveguide-cavity-backed monopulseantennaarraycomposedofamicrostripwith2 32 slots, a waveguide cavity, and a waveguide monopulse comparator. Experimental results exhibit good monopulse characteristics in terms of wide bandwidth, maximum gains, 3 db beamwidths, sidelobe levels, and null depths, which combines the advantages of the waveguide slot antenna array and microstrip antenna array while eliminating their disadvantages. 2. Design, Fabrication, and Test The structure of the monopulse antenna array is shown in Figure 1, which consists of a microstrip with 2 32slots, a waveguide cavity, and a waveguide monopulse comparator. The copper slot microstrip (0.018 mm thick) is fabricated on a Rogers 5880 dielectric layer (0.254 mm thick, ε = 2.2). Four subarrays are connected to the four ports of the feed network. The waveguide monopulse comparator is realized by using a magic-t to obtain a sum and difference feeding network, as shown in Figure 1(b). Each subarray was formed by 1 16 slot-microstrip elements with a Taylor amplitude distribution [19]. In this study, the centre distance between two slots is λ g /2 (6.48 mm), where λ g is the guided wavelength. The slots are placed at a quarter of the guided wavelength (λ g /4) from the shorted wall. They are 0.6 mm in width and 3.2 mm in length, and the approximate offset value from the waveguide centreline is calculated at 34 GHz using the equivalent circuit mode or termed Elliott s method [20, 21]. Elliott s method has been successfully used for waveguide slot antenna arrays [22 28], although it yields the offset value to be approximately effective only. In order to get more accurate offset value and fully account for the coupling effect, it is necessary to optimize the monopulse antenna array by fullwave simulation. Table 1 lists the final optimized offset values usingbothelliott smethodandfembased3dfull-wave simulator Ansys HFSS. Thesizeofthegrooveguideinthewaveguidecavity is 2.74 mm 5.48 mm.theheightofthemetalwallsis 4 mm. The cross-section dimension of the waveguide in this design is 3.556 mm 7.112 mm (WR-28). Four aperturecoupled slots (with 3.6 mm 0.6 mm) are used to excite the 2 32slot-microstrip elements at the feeding ports 1 and 2 of the monopulse comparator, as shown in Figure 1. For the monopulse antenna array, loss is unavoidable

Antennas and Propagation 3 Table 1: Offset value of the subarray slots (16 slot-microstrip elements) from the waveguide centreline, unit in millimeter. Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Offset 0.29 0.30 0.31 0.33 0.36 0.39 0.43 0.47 0.51 0.55 0.58 0.61 0.64 0.65 0.67 0.67 in the feeding network and dielectric. However, in our case, the loss is limited by the metal waveguide based monopulse comparator and very low loss tangent (0.0009) of Rogers 5880 dielectric layer in our design. Note that this design may lead to mass production, reduce the cost, and increase the frequency bandwidth as compared with the standard slotted waveguide technology. The monopulse antenna array is assembled by brazing the waveguides (including waveguide cavity and waveguide monopulse comparator) and using conductive adhesive to adhere the copper slot microstrip and waveguide cavity together. To avoid weak electrical contact between PCB and waveguides during the annealing process, screws are also used to secure stem attachment between them. Figure 2 shows the measured VSWR of the sum port and the difference port. The results show that the measured bandwidth (VSWR 2) of the monopulse antenna array is 700 MHz (from 33.65 GHz to 34.35 GHz) for both the sum port and the difference port. The measured normalized E- plane sum and difference radiation patterns and H-plane sumradiationpatternat34ghzareshowninfigure3. The sum pattern exhibits a 2.2-degree 3 db beamwidth and 18 db sidelobe level. The normalized null depth of the difference pattern is less than 40dB. Table 2 summarizes the measured maximum gains and the null depths at different frequencies. It is seen that the maximum gains of sum pattern are greater than 24 dbi and the null depths of the difference pattern are less than 25 dbi within the operating bandwidth between 33.65 GHz and 34.35 GHz for VSWR 2. The radiation efficiency of the Ka-band slot-microstrip-covered and waveguide-cavity-backed monopulse antenna array is 85.3% which is significantly higher than that of the microstrip antenna array. Such Ka-band slot-microstrip-covered and waveguidecavity-backed monopulse antenna array has better performance in bandwidth than that in conventional waveguide slot monopulse antenna arrays, better sidelobe levels and radiation efficiency, and high polarization purity than those in conventional microstrip monopulse antenna arrays. For instance, the bandwidth of the conventional aperture-coupled waveguide slot monopulse is just 1% [11], whileitisgreaterthan2%fortheproposedmonopulse antenna. In addition, the radiation efficiency of the conventional microstrip monopulse antenna array is about 40%, whilst it is greater than 80% for the proposed monopulse antenna. The first reason is that the slotmicrostrip-covered dielectric above a metal ground can increase the impedance bandwidth of the monopulse antenna array. Furthermore, waveguide has lower loss and is more suitable for high frequency transmission than microstrip line. VSWR 2.4 2.0 1.6 1.2 33.65 34.00 34.35 34.70 Frequency (GHz) Sum Difference Figure 2: Measured VSWR. Table 2: Measured maximum gains and the null depths at different frequencies. f (GHz) Maximum gain (dbi) Null depth (dbi) 33.65 25.24 28.1 33.8 24.79 37.3 34 24.84 29.9 34.2 24.51 26 34.35 24.55 25.7 3. Conclusion Ka-band slot-microstrip-covered and waveguide-cavitybacked monopulse antenna array has been designed and experimentally investigated in this paper. The measured results show that the maximum gains are greater than 24 dbi, the 3 db beamwidths are about 2.2 degrees, the sidelobe levels are less than 18 db, and the null depths are less than 25 dbi, during the 700 MHz operating frequencies. These results demonstrate that the slot-microstrip-covered and waveguide-cavity-backed monopulse antenna array has a broad bandwidth, high consistence, ease of fabrication, and low cost, and it can be successfully applied to millimeter-wave monopulse radar systems. Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper.

4 Antennas and Propagation 0 0 5 10 15 5 Gain (dbi) 20 25 30 35 Gain (dbi) 10 15 40 45 80 60 40 20 0 20 40 60 80 θ (deg) 20 80 60 40 20 0 20 40 60 80 θ (deg) Sum Difference Sum (a) (b) Figure 3: Measured normalized (a) E-plane sum and difference radiation patterns and (b) H-plane sum radiation pattern at 34 GHz. Acknowledgments This work was supported by the National Natural Science Foundation of China (Grant nos. 61307128 and 61371047), the Specialized Research Foundation for the Doctoral Program of Higher Education of China (Grant no. 20131101120027), and the Basic Research Foundation of Beijing Institute of Technology (Grant no. 20120542015). References [1] D. Barton, History of monopulse radar in the US, IEEE Aerospace and Electronic Systems Magazine, vol.25,no.3,pp. C4 C15, 2010. [2] W. Rosloniec, Application of the total least square ESPRIT method to estimation of angular coordinates of moving objects, Antennas and Propagation, vol.2010, Article ID 548953, 9 pages, 2010. [3] R. R. Kinsey, An edge-slotted waveguide array with dual-plane monopulse, IEEE Transactions on Antennas and Propagation, vol.47,no.3,pp.474 481,1999. [4] H.Wang,D.G.Fang,andX.G.Chen, Acompactsinglelayer monopulse microstrip antenna array, IEEE Transactions on Antennas and Propagation,vol.54,no.2,pp.503 509,2006. [5] S.-G. Kim and K. Chang, Low-cost monopulse antenna using bi-directionally-fed microstrip patch array, Electronics Letters, vol. 39, no. 20, pp. 1428 1429, 2003. [6] J. Hirokawa and M. Ando, Efficiency of 76-GHz post-wall waveguide-fed parallel-plate slot arrays, IEEE Transactions on Antennas and Propagation,vol.48,no.11,pp.1742 1745,2000. [7] G. Montisci, M. Musa, and G. Mazzarella, Waveguide slot antennas for circularly polarized radiated field, IEEE TransactionsonAntennasandPropagation,vol.52,no.2,pp.619 623, 2004. [8] T. Suzuki, J. Hirokawa, and M. Ando, Iteration-free design of waveguide slot array with cavities, IEEE Transactions on Antennas and Propagation,vol.58,no.12,pp.3891 3897,2010. [9] S. R. Rengarajan, Genetic algorithm optimization of a planar slot array using full wave method-of-moments analysis, RF and Microwave Computer-Aided Engineering,vol.23,no.4,pp.430 436,2013. [10]H.Singh,H.J.Sneha,andR.M.Jha, Mutualcouplingin phased arrays: a review, Antennas and Propagation, vol. 2013, Article ID 348123, 23 pages, 2013. [11] Y. Liu, L.-M. Si, M. Wei et al., Some recent developments of microstrip antenna, Antennas and Propagation, vol. 2012, Article ID 428284, 10 pages, 2012. [12] L.M.Si,Y.Liu,H.D.Lu,H.J.Sun,X.Lv,andW.Zhu, Experimental realization of high transmittance THz 90-degree-bend waveguide using EMXT structure, IEEE Photonics Technology Letters,vol.25,no.5,pp.519 522,2013. [13] G. Montisci, Z. S. Jin, M. C. Li et al., Design of multilayer dielectric cover to enhance gain and efficiency of slot arrays, Antennas and Propagation, vol.2013, Article ID 917676, 6 pages, 2013. [14] Z. S. Jin, G. Montisci, G. A. Casula, H. Yang, and J. Q. Lu, Efficient evaluation of the external mutual coupling in dielectric-covered waveguide slot antennas, International Journal of Antennas and Propagation, vol. 2012, Article ID 491242, 7 pages, 2012. [15] G. A. Casula and G. Montisci, Design of dielectric-covered planar arrays of longitudinal slots, IEEE Antennas and Wireless Propagation Letters,vol.8,pp.752 755,2009. [16] G. A. Casula, G. Mazzarella, and G. Montisci, Design of slot arrays in waveguide partially filled with dielectric slab, Electronics Letters, vol. 42, no. 13, pp. 730 731, 2006. [17] Y. Zheng, G. Yang, and S. Song, Design of a single-layer waveguide slot array antenna, in Proceedings of the International Workshop on Microwave and Millimeter Wave Circuits and System Technology, pp. 1 3, Chengdu, China, 2012. [18] Y.J.Cheng,W.Hong,andK.Wu, 94GHzsubstrateintegrated monopulse antenna array, IEEE Transactions on Antennas and Propagation, vol. 60, no. 1, pp. 121 129, 2012.

Antennas and Propagation 5 [19] T. T. Taylor, Design of line-source antennas for narrow beamwidth and low side lobes, IRE Transactions on Antennas and Propagation,vol.3,pp.16 28,1955. [20] R. S. Elliott, An improved design procedure for small arrays of shunt slots, IEEE Transactions on Antennas and Propagation, vol.31,no.1,pp.48 53,1983. [21] G. J. Stern and R. S. Elliott, Resonant length of longitudinal slots and validity of circuit representation: theory and experiment, IEEE Transactions on Antennas and Propagation, vol. 33, no. 11, pp. 1264 1271, 1985. [22] L. G. Josefsson, Analysis of longitudinal slots in rectangular waveguides, IEEE Transactions on Antennas and Propagation, vol. 35, no. 12, pp. 1351 1357, 1987. [23] S. R. Rengarajan, L. G. Josefsson, and R. S. Elliott, Waveguidefed slot antennas and arrays: a review, Electromagnetics, vol. 19, no.1,pp.3 22,1999. [24] S. R. Rengarajan, Slot antennas and arrays, Electromagnetics, vol.19,no.1,pp.1 2,1999. [25] S. R. Rengarajan, Improved design procedure for slot array antennas using the mehtod of moments analysis, Electromagnetics,vol.32,no.4,pp.221 232,2012. [26] S. R. Rengarajan, M. S. Zawadzki, and R. E. Hodges, Waveguide-slot array antenna designs for low-averagesidelobe specifications, IEEE Antennas and Propagation Magazine,vol.52,no.6,pp.89 98,2010. [27] G. A. Casula, G. Mazzarella, and G. Montisci, Design of shaped beam planar arrays of waveguide longitudinal slots, Antennas and Propagation, vol.2013, Article ID 767342, 12 pages, 2013. [28] G. A. Casula, G. Mazzarella, and G. Montisci, A truncated waveguide fed by a microstrip as a radiating element for highperformance automotive anticollision radars, International Antennas and Propagation, vol.2012,articleid 983281,9pages,2012.

Rotating Machinery Engineering The Scientific World Journal Distributed Sensor Networks Sensors Control Science and Engineering Advances in Civil Engineering Submit your manuscripts at Electrical and Computer Engineering Robotics VLSI Design Advances in OptoElectronics Navigation and Observation Chemical Engineering Active and Passive Electronic Components Antennas and Propagation Aerospace Engineering Modelling & Simulation in Engineering Shock and Vibration Advances in Acoustics and Vibration