Newsletter 2.0. Antenna Magus version 2.0 released! New Array synthesis tool. April 2010

Similar documents
Newsletter 3.1. Antenna Magus version 3.1 released! New antennas in the database. Square pin-fed septum horn. July 2011

Newsletter 2.3. Antenna Magus version 2.3 released! New antennas in Version 2.3. Potter horn. Circularly polarised rectangular-biquad antenna

Newsletter 5.4. New Antennas. The profiled horns. Antenna Magus Version 5.4 released! May 2015

Newsletter 4.4. Antenna Magus version 4.4 released! Array synthesis reflective ground plane addition. July 2013

Introducing Antenna Magus. Presenter Location Date

Microstrip Antennas Integrated with Horn Antennas

Broadband Circular Polarized Antenna Loaded with AMC Structure

Conclusion and Future Scope

NOVEL DESIGN BROADBAND CPW-FED MONOPOLE ANTENNA WITH TRAPEZIUM SHAPED-STUB FOR COMMUNICATION SYSTEM

Design of Rectangular-Cut Circular Disc UWB Antenna with Band-Notched Characteristics

Broadband Microstrip Antennas

UNIVERSITI MALAYSIA PERLIS

A Linearly Polarized Patch Antenna for Ultra-Wideband Applications

Aperture Antennas. Reflectors, horns. High Gain Nearly real input impedance. Huygens Principle

ANTENNA THEORY. Analysis and Design. CONSTANTINE A. BALANIS Arizona State University. JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore

New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications

BHARATHIDASAN ENGINEERING COLLEGE NATTARAMPALLI Frequently Asked Questions (FAQ) Unit 1

Chapter 7 Design of the UWB Fractal Antenna

CIRCULARLY POLARIZED SLOTTED APERTURE ANTENNA WITH COPLANAR WAVEGUIDE FED FOR BROADBAND APPLICATIONS

Micro-strip line feed I shaped slot Antenna with finite slotted ground plane for Return Loss enhancement

EC ANTENNA AND WAVE PROPAGATION

ELEC4604. RF Electronics. Experiment 1

The Basics of Patch Antennas, Updated

Radiation Analysis of Phased Antenna Arrays with Differentially Feeding Networks towards Better Directivity

HHTEHHH THEORY ANALYSIS AND DESIGN. CONSTANTINE A. BALANIS Arizona State University

Half-Wave Dipole. Radiation Resistance. Antenna Efficiency

EMG4066:Antennas and Propagation Exp 1:ANTENNAS MMU:FOE. To study the radiation pattern characteristics of various types of antennas.

Antennas 1. Antennas

ANTENNA INTRODUCTION / BASICS

Design and Optimization of Microstrip Patch Antenna for Satellite Applications

DESIGN OF OMNIDIRECTIONAL HIGH-GAIN AN- TENNA WITH BROADBAND RADIANT LOAD IN C WAVE BAND

RADIATION PATTERNS. The half-power (-3 db) beamwidth is a measure of the directivity of the antenna.

Antenna Fundamentals Basics antenna theory and concepts

HYBRID ARRAY ANTENNA FOR BROADBAND MILLIMETER-WAVE APPLICATIONS

ANTENNA INTRODUCTION / BASICS

Design and analysis of antennas for an Automotive Collision Avoidance System using Antenna Magus and CST Microwave Studio

CPW- fed Hexagonal Shaped Slot Antenna for UWB Applications

Design and Development of Tapered Slot Vivaldi Antenna for Ultra Wideband Applications

Notes 21 Introduction to Antennas

Design of center-fed printed planar slot arrays

A 3 20GHz Vivaldi Antenna with Modified Edge

ON THE DESIGN OF ULTRA WIDE BAND RECTAN- GULAR SLOT ANTENNA EXCITED BY A FLARED MI- CROSTRIP FEED LINE

PLANAR BEAM-FORMING ARRAY FOR BROADBAND COMMUNICATION IN THE 60 GHZ BAND

COMPACT FRACTAL MONOPOLE ANTENNA WITH DEFECTED GROUND STRUCTURE FOR WIDE BAND APPLICATIONS

TRIPLE-BAND OMNI-DIRECTIONAL ANTENNA FOR WLAN APPLICATION

Planar Radiators 1.1 INTRODUCTION

Dr. John S. Seybold. November 9, IEEE Melbourne COM/SP AP/MTT Chapters

Antenna Theory and Design

CHAPTER 2 MICROSTRIP REFLECTARRAY ANTENNA AND PERFORMANCE EVALUATION

Department of Technology and Built Environment

Design and Development of a 2 1 Array of Slotted Microstrip Line Fed Shorted Patch Antenna for DCS Mobile Communication System

Microstrip and Printed. Antenna Design. Second Edition. Randy Bancroft. PUBLISHlNeCl SHXNeriNC.

Compact Triple-Band Monopole Antenna with Inverted-L Slots and SRR for WLAN/WiMAX Applications

CHAPTER 5 PRINTED FLARED DIPOLE ANTENNA

Analysis and Design of Microstrip Patch Antenna For Triple Band Applications

Loughborough Antennas And Propagation Conference, Lapc Conference Proceedings, 2009, p

A Millimeter Wave Center-SIW-Fed Antenna For 60 GHz Wireless Communication

A Compact Wide Slot Antenna for Ultra-Wideband Applications. Electrical Engineering Department, University of Missouri, Columbia, Missouri 65211, USA

Ultra-Wideband Antenna Using Inverted L Shaped Slots for WLAN Rejection Characteristics

Design of a Novel Compact Cup Feed for Parabolic Reflector Antennas

Research Article Cross-Slot Antenna with U-Shaped Tuning Stub for Ultra-Wideband Applications

Effect of Open Stub Slots for Enhancing the Bandwidth of Rectangular Microstrip Antenna

Design of Microstrip Array Antenna for WiMAX and Ultra-Wideband Applications

A CPW-FED ULTRA-WIDEBAND PLANAR INVERTED CONE ANTENNA

Antenna with Two Folded Strips Coupled to a T-Shaped Monopole

PRINTED UWB ANTENNA FOR WIMAX /WLAN

Antenna Fundamentals

Development of a directional dual-band planar antenna for wireless applications

Novel Broadband and Multi-band Antennas for Satellite and Wireless Applications

A New Approach to Optimal Design of T-shaped Tri-Band Fractal Microstrip Patch Antenna for Wireless System Applications

High Gain and Wideband Stacked Patch Antenna for S-Band Applications

A Printed Vivaldi Antenna with Improved Radiation Patterns by Using Two Pairs of Eye-Shaped Slots for UWB Applications

Design of Integrated Triple Band Notched for Ultra-Wide Band Microstrip Antenna

A Wideband Dual-polarized Modified Bowtie Antenna for 2G/3G/LTE Base-station Applications

Ultrawideband Elliptical Microstrip Antenna Using Different Taper Lines for Feeding

Design and Simulation of Compact UWB Bow-tie Antenna with Reduced End-fire Reflections for GPR Applications

Triple Band-Notched UWB Planar Monopole Antenna Using Triple-Mode Resonator

BAND NOTCH CHARACTERSTICS OF A ULTRA WIDE BAND ANTENNA USING U SLOT

Performance Analysis of a Patch Antenna Array Feed For A Satellite C-Band Dish Antenna

A NOVEL LOOP-LIKE MONOPOLE ANTENNA WITH DUAL-BAND CIRCULAR POLARIZATION

COMPACT SLOT ANTENNA WITH EBG FEEDING LINE FOR WLAN APPLICATIONS

Effect of Height on Edge Tapered Rectangular Patch Antenna using Parasitic Stubs and Slots

TRANSMITTING ANTENNA WITH DUAL CIRCULAR POLARISATION FOR INDOOR ANTENNA MEASUREMENT RANGE

Offset-fed UWB antenna with multi-slotted ground plane. Sun, YY; Islam, MT; Cheung, SW; Yuk, TI; Azim, R; Misran, N

Design and analysis of T shaped broad band micro strip patch antenna for Ku band application

SEPTUM HORN ANTENNAS AT 47/48 GHz FOR HIGH ALTITUDE PLATFORM STATIONS

Reflectarray Antennas

Study of the Effect of Substrate Materials on the Performance of UWB Antenna

A CPW-fed Microstrip Fork-shaped Antenna with Dual-band Circular Polarization

A New UWB Antenna with Band-Notched Characteristic

Design of a Wideband CPW Fed Monopole Antenna with Fractal Elements for Wireless Applications

Index. Hybrid cylindrical dielectric resonator antenna, 6 Hyperlan/2 systems, 124

BROADBAND SERIES-FED DIPOLE PAIR ANTENNA WITH PARASITIC STRIP PAIR DIRECTOR

Wideband Horn Antennas. John Kot, Christophe Granet BAE Systems Australia Ltd

Broadband Dual Polarized Space-Fed Antenna Arrays with High Isolation

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots

Design of Linearly Polarized Rectangular Microstrip Patch Antenna for GPS Applications at MHz

CIRCULAR DUAL-POLARISED WIDEBAND ARRAYS FOR DIRECTION FINDING

L-slotted Microstrip Patch Antenna for WiMAX and WLAN Applications

Broadband and Gain Enhanced Bowtie Antenna with AMC Ground

Transcription:

Newsletter 2.0 April 2010 Antenna Magus version 2.0 released! We are very proud to announce the second major release of Antenna Magus, Version 2.0. Looking back over the past 11 months since release 1.0 the product has really grown. With 113 antennas in the database (almost double since 1.0), a new Array synthesis tool, report and data exporting, estimation speedups, support for a new simulation tool (CHAMP), more FEKO and CST MWS model options and major rework on the User interface (UI) it calls for a celebration! This newsletter will focus on some of the features and give you a taste of what to expect once you have upgraded to version 2.0. New Array synthesis tool Array synthesis tool interface. The biggest new feature added to Antenna Magus since release 1.0 is the new Array synthesis tool. This tool helps with the initial stages of array design. Typically, the first step in array design is to determine the number of elements, their spacing and relative excitation. The radiation pattern of the element used in the array is usually ignored during this phase, and is substituted with an omnidirectional element. The array synthesis tool contains a number of design algorithms that will determine the required array parameters for given objectives. For example, in the image above, a circular array has been designed for a directive lobe at 45. Array layouts can also be imported into Antenna Magus, for a quick analysis of their performance, using isotropic elements. Synthesised array pattern. excitation formats that are supported by FEKO and CST MICROWAVE studio. The image below shows the calculated far field of an array placed on the mast of a ship. The next step is to see what effect the element pattern has on the array, and to adjust the array parameters to compensate for the element pattern. The array synthesis tool contains a number of typical patterns for common array elements. The next image shows the resultant array if half wavelength dipoles are used in the layout above. The synthesized pattern, as well as the chosen element patterns and designed array distribution can be exported to tab-separated files or to impressed Array point source placed on a ship.

New antennas in Version 2.0 There are 6 new antenna additions to the database since the release of Antenna Magus version 1.6.0. In a radar applications, this frequency dependant squint (shown in the previous image) has to be removed by processing the returned signal to avoid ghosting. Traveling wave slotted guide array Compared to the Resonant waveguide slot array that is already available in Magus, the Traveling wave slotted guide array has some impressive advantages. It can handle higher power and operates over a much wider band (up to 25% bandwidth), where the resonant array suffers from a decreasing bandwidth as the number of elements (and hence gain) increases, whilst this array does not. Typical S11 for (a) 11-element and (b) 95 element arrays Axial-choke conical horn The slots of the Traveling wave slotted guide array are spaced equally on either side of the guide center. The physical distance between each of the slots determines the relative phase shift of each element in the array. Because the physical distance is fixed, the phase shift varies across the band of operation. The end result of this is that the array has a squint that varies with frequency. The image below shows the gain patterns of a 100 slot Traveling wave slotted guide array designed at 7 GHz with 34 dbi gain at the center frequency, simulated over a wide frequency range. Note a total of 7 degrees shift in squint angle over a 10% change in center frequency. Axial-choke with typical 3D radiation pattern. The Axial choke conical horn is a very popular reflector feed as it provides an almost-flat wavefront in the main beam with a sharp roll-off which is ideal for uniform dish illumination with little spillover. This antenna can be seen as a small aperture horn with corrugations placed in the flanges to design for a wide beamwidth with good pattern symmetry and low crosspolarisation. The classical choke horn is the extreme of a scalar horn which has been opened completely thus the corrugations of the choke horn remain directed along the main axis of the horn, while those of the scalar horn remain perpendicular to the flare wall. Traveling wave slotted guide array squint angle pattern shift vs frequency. The design algorithm in Antenna Magus can adjust the design based on the degree of required flatness. The following graph shows pattern cuts for three different main beam designs, with the same gain, but different required levels of flatness in the main beam. 2

Orthogonal LPDA Axial-choke pattern cuts for three different main beam designs. Microstrip Franklin array The Microstrip Franklin array effectively consists of thin rectangular half-wavelength patches which are connected with non-radiating, phase revering phasing lines. The phasing lines are narrow half-wavelength microstrip lines folded into quarter-wave stubs so that the counteracting standing wave currents do not radiate. The natural current distribution is thus converted into a co-phased distribution of currents which produce only one major radiation pattern. The basic LPDA structure is a very popular for applications where a linearly polarised broadband antenna of simple construction, low cost and lightweight is required. The orthogonal LPDA expands on the LPDA by combining two identical ordinary log-periodic dipole antennas, orientated orthogonally with respect to one another. Each co-located LPDA can then be fed independently with the correct phase in order to obtain the most versatile polarisation combinations, namely linear, duallinear, right-hand circular (RHC) and left-hand circular (LHC). As with the linearly polarised LPDA, the bandwidth of this antenna is theoretically unlimited, being classified as a logarithmic periodic structure, with achievable bandwidth ratios of up to 150:1! The typical gain of this antenna is between 6 and 12 dbi. Printed dual band double T monopole The synthesis algorithm in Antenna Magus can design this antenna for gain or number of elements, as well as designing the array on a wide variety of substrates. It has a narrow broadside beam with very narrow impedance bandwidth (1%) and typical gain between 7 and 20 dbi (depending on the number of elements). The advantage of the Franklin array is that it requires no feed network and is ideal for low-cost point to point communication. This antenna is a variation of a basic planar monopole antenna. An additional section is attached to excite a second resonance at a higher frequency. As with several other planar antennas, this monopole can be integrated on the same substrate as other electronics. The T-shape monopole makes the antenna more compact than a straight monopole. The 2D graph below shows the input impedance (S11) with dual resonance. When adjusting either of the resonant frequencies, the impedance at the other resonant frequency will be influenced. Total 3D gain of 6 element Franklin array. 3

Typical S11 impedance of the Printed dual band double T monopole. The following figure shows typical radiation patterns at both resonant frequencies. At the lower resonant frequency, the radiation pattern of the antenna is similar to that of a conventional monopole in free space, with a so-called doughnut shape. The radiation pattern at the higher operating frequency becomes more irregular. For both cases, the shape of the ground plane affects the radiation patterns. The Notched trapezoidal monopole is an alternative version of the CPW-fed monopole which was included in the database for the release of Version 1.6.0. These antennas are popular for ultra-wideband (UWB) applications (especially in the FCC 3.1-10.6 GHz radio band) due to the reduced size and wide impedance bandwidth that can be achieved. The addition of the slot in the monopole adds a narrow-band, highimpedance resonance within the performance band of the antenna. Signals in this rejection-band will be poorly transmitted or received by the antenna. This behavior is useful in rejecting signals at specific frequencies within the operating band and reducing coupling between systems. The antenna is fed using a coplanar waveguide. The slot is U-shaped to allow sufficiently low notch frequencies. The design aims to have a reflection coefficient of below -8 db across a 4:1 bandwidth and a mismatch of above -3 db in the rejection band. An advantage of this type of antenna is that it can be integrated on the same printed circuit board as the transmitter electronics and requires only one metallisation layer. The radiation pattern bandwidth is much smaller than the impedance bandwidth, but this antenna would typically be used in a multi-path environment where radiation pattern should not be a limiting factor. The following image compares S11 vs frequency for the identical monopole with and without the U-shaped slot. Typical gain pattern at (a) lower frequency and (b) upper frequency. Notched trapezoidal monopole S11 comparison of the CPW-fed trapezoidal monopole (no slot) and the CPW-fed notched trapezoidal monopole (with slot). More exciting new features in Version 2.0 Export report and graph data Users can now export their work as a MS PowerPoint document. The *.pptx file contains everything about the design, like design sketches, parameters and graphs. This feature will enable you to put together a presentation about your design work is a few seconds and provide a record of your design in a format other than Antenna Magus. 4

All graph data can also be exported to a tab-separated text format for plotting and comparison outside of Antenna Magus. This feature is useful when comparing the Antenna Magus performance estimation to full wave analysis or measurements. Side-by-side compare Side-by-side compare any two antennas in the info browser The info-browser now has a side-by-side compare feature. Information documents on any two antennas can be viewed side-by-side for ease of comparison. All of the sections of the documents are aligned which makes it easy to compare the different properties of each antenna. Into the future We hope that you enjoy using the features in version 2! If you have something that you want to see in a future version of Antenna Magus, please let your reseller know. Over the next few months we will be releasing regular updates of our database, with interesting new antennas, new models and updated synthesis algorithms for both antennas and arrays. 5