Solid-State Laser Engineering

Similar documents
Nd: YAG Laser Energy Levels 4 level laser Optical transitions from Ground to many upper levels Strong absorber in the yellow range None radiative to

LASER DIODE MODULATION AND NOISE

Lecture 5: Introduction to Lasers

COMPONENTS OF OPTICAL INSTRUMENTS. Chapter 7 UV, Visible and IR Instruments

COMPONENTS OF OPTICAL INSTRUMENTS. Topics

Fiber Amplifiers. Fiber Lasers. 1*5 World Scientific. Niloy K nulla. University ofconnecticut, USA HONG KONG NEW JERSEY LONDON

Optics and Lasers. Matt Young. Including Fibers and Optical Waveguides

3.C High-Repetition-Rate Amplification of Su bpicosecond Pulses

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

Chapter 14. Tunable Dye Lasers. Presented by. Mokter Mahmud Chowdhury ID no.:

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 18.

Introduction Fundamental of optical amplifiers Types of optical amplifiers

Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO

Dr. Rüdiger Paschotta RP Photonics Consulting GmbH. Competence Area: Fiber Devices

A new picosecond Laser pulse generation method.

Ba 14: Solid State Laser Principles I

DEVELOPMENT OF CW AND Q-SWITCHED DIODE PUMPED ND: YVO 4 LASER

SECOND HARMONIC GENERATION AND Q-SWITCHING

Quantum-Well Semiconductor Saturable Absorber Mirror

1. INTRODUCTION 2. LASER ABSTRACT

Fiber-Optic Communication Systems

Advanced Laser Sources for Industrial Processing and Remote Sensing

Picosecond laser system based on microchip oscillator

R. J. Jones Optical Sciences OPTI 511L Fall 2017

Passively Q-switched m intracavity optical parametric oscillator

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

3.6 An Ultra-Stable Nd:YAG-Based Laser Source. 8. Jayatna Venkataraman (private communication). ACKNOWLEDGMENT

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

The Realization of Ultra-Short Laser Sources. with Very High Intensity

101 W of average green beam from diode-side-pumped Nd:YAG/LBO-based system in a relay imaged cavity

Regenerative Amplification in Alexandrite of Pulses from Specialized Oscillators

Vertical External Cavity Surface Emitting Laser

Elements of Optical Networking

S Optical Networks Course Lecture 2: Essential Building Blocks

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

A continuous-wave Raman silicon laser

Chapter 8. Wavelength-Division Multiplexing (WDM) Part II: Amplifiers

Module 4 : Third order nonlinear optical processes. Lecture 24 : Kerr lens modelocking: An application of self focusing

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc.

dnx/dt = -9.3x10-6 / C dny/dt = -13.6x10-6 / C dnz/dt = ( λ)x10-6 / C

High Average Power Cryogenic Lasers Will Enable New Applications

High-Power, Passively Q-switched Microlaser - Power Amplifier System

Wavelength Control and Locking with Sub-MHz Precision

Supplementary Materials for

6.1 Thired-order Effects and Stimulated Raman Scattering

Designing for Femtosecond Pulses

G. Norris* & G. McConnell

Single-frequency operation of a Cr:YAG laser from nm

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

Thin-Disc-Based Driver

combustion diagnostics

Fundamentals of Laser

Self-organizing laser diode cavities with photorefractive nonlinear crystals

DEVELOPMENT OF A NEW INJECTION LOCKING RING LASER AMPLIFIER USING A COUNTER INJECTION: MULTIWAVELENGTH AMPLIFICATION

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a)

A Coherent White Paper May 15, 2018

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

Ph 77 ADVANCED PHYSICS LABORATORY ATOMIC AND OPTICAL PHYSICS

Fiber Laser Chirped Pulse Amplifier

High Average Power, High Repetition Rate Side-Pumped Nd:YVO 4 Slab Laser

A CW seeded femtosecond optical parametric amplifier

The Optics Revolution

Ring cavity tunable fiber laser with external transversely chirped Bragg grating

Tunable erbium ytterbium fiber sliding-frequency soliton laser

Nonlinear Optics (WiSe 2015/16) Lecture 9: December 11, 2015

High Power and Energy Femtosecond Lasers

All diode-pumped 4 Joule 527 nm Nd:YLF laser for pumping Ti:Sapphire lasers

PGx11 series. Transform Limited Broadly Tunable Picosecond OPA APPLICATIONS. Available models

High-Power Femtosecond Lasers

Survey Report: Laser R&D

Single frequency MOPA system with near diffraction limited beam

Research Article A Polymer Film Dye Laser with Spatially Modulated Emission Controlled by Transversely Distributed Pumping

How to build an Er:fiber femtosecond laser

Variable Pulse Duration Laser for Material Processing

Design and Construction of a High Energy, High Average Power Nd:Glass Slab Amplifier. Dale Martz Department of Electrical & Computer Engineering

High Energy Laser Systems

Spectroscopy of Ruby Fluorescence Physics Advanced Physics Lab - Summer 2018 Don Heiman, Northeastern University, 1/12/2018

Ma 14: Solid State Laser Principles II

Faraday Rotators and Isolators

High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh, C. Panja, P.T. Rudy, T. Stakelon and J.E.

High-power semiconductor lasers for applications requiring GHz linewidth source

Q-switched mode-locking with acousto-optic modulator in a diode pumped Nd:YVO 4 laser

LASERS AND HOLOGRAPHY

White Paper Laser Sources For Optical Transceivers. Giacomo Losio ProLabs Head of Technology

Optical Amplifiers (Chapter 6)

Gigashot TM FT High Energy DPSS Laser

Single pass scheme - simple

Femtosecond to millisecond transient absorption spectroscopy: two lasers one experiment

Romania and High Power Lasers Towards Extreme Light Infrastructure in Romania

High resolution cavity-enhanced absorption spectroscopy with a mode comb.

Photonics and Fiber Optics

Low Noise High Power Ultra-Stable Diode Pumped Er-Yb Phosphate Glass Laser

5kW DIODE-PUMPED TEST AMPLIFIER

Continuum White Light Generation. WhiteLase: High Power Ultrabroadband

Passive Q-Switching of a Flashlamp-Pumped Ti: Sapphire Laser with a. Stimulated Brillouin Scattering Nonlinear Mirror

Lithium Triborate (LiB 3 O 5, LBO)

LOPUT Laser: A novel concept to realize single longitudinal mode laser

Optimization and characterization of a high repetition rate, high intensity Nd:YLF regenerative amplifier

Pulse energy vs. Repetition rate

Transcription:

Walter Koechner Solid-State Laser Engineering Fourth Extensively Revised and Updated Edition With 449 Figures Springer

Contents 1. Introduction 1 1.1 Optical Amplification 1 1.2 Interaction of Radiation with Matter 2 1.2.1 Blackbody Radiation 2 1.2.2 Boltzmann Statistics 3 1.2.3 Einstein Coefficients 4 1.2.4 Phase Coherence of Stimulated Emission 7 1.3 Absorption and Optical Gain 8 1.3.1 Atomic Lineshapes 8 1.3.2 Absorption by Stimulated Transitions 13 1.3.3 Population Inversion 15 1.4 Creation of a Population Inversion 17 1.4.1 The Three-Level System 18 1.4.2 The Four-Level System 19 1.4.3 The Metastable Level 20 1.5 Laser Rate Equations 22 2. Properties of Solid-State Laser Materials 28 2.1 Overview 28 2.1.1 Host Materials 29 2.1.2 Active Ions 35 2.2 Ruby 39 2.3 Nd : Lasers 47 2.3.1 Nd:YAG 48 2.3.2 Nd : Glass 54 2.3.3 Nd : Cr : GSGG 57 2.3.4 Nd : YLF 60 2.4 Er : Lasers 63 2.4.1 Er : YAG 63 2.4.2 Er : Glass 64 2.5 Tunable Lasers 66 2.5.1 Alexandrite Laser 70 2.5.2 Ti : Sapphire 76 2.5.3 Cr : LiSAF 78

VHI Contents 3. Laser Oscillator 81 3.1 Operation at Threshold 82 3.2 Gain Saturation 87 3.3 Circulating Power 89 3.4 Oscillator Performance Model 90 3.4.1 Energy-Transfer Mechanisms 91 3.4.2 Laser Output 97 3.5 Relaxation Oscillations 106 3.5.1 Theory 106 3.5.2 Spike Suppression in Solid-State Lasers 109 3.5.3 Gain Switching 110 3.6 Examples of Regenerative Oscillators Ill 3.6.1 Ruby Ill 3.6.2 Nd : Glass 117 3.6.3 Nd:YAG 118 3.6.4 Alexandrite 125 3.6.5 Laser-Diode-Pumped Systems 127 3.7 Travelling-Wave Oscillator 140 4. Laser Amplifier 144 4.1 Pulse Amplification 146 4.1.1 Ruby Amplifiers 152 4.1.2 Nd : Glass Amplifiers 157 4.1.3 Nd : YAG Amplifiers 163 4.2 Steady-State Amplification 170 4.2.1 Ruby Amplifier 172 4.2.2 Nd : Glass Amplifier 173 4.3 Signal Distortion 174 4.3.1 Spatial Distortions 174 4.3.2 Temporal Distortions 180 4.4 Gain Limitation and Amplifier Stability 181 4.4.1 Amplified Spontaneous Emission 182 4.4.2 Prelasing and Parasitic Modes 186 5. Optical Resonator 189 5.1 Transverse Modes 189 5.1.1 Intensity Distribution of Transverse Modes 189 5.1.2 Characteristics of a Gaussian Beam 192 5.1.3 Resonator Configurations 195 5.1.4 Stability of Laser Resonators 200 5.1.5 Diffraction Losses 201 5.1.6 Higher-Order Modes 203 5.1.7 Active Resonator 204 5.1.8 Resonator Sensitivity 206

, Contents IX 5.1.9 Mode-Selecting Techniques 210 5.1.10 Examples of Advanced Stable Resonator Designs... 217 5.2 Longitudinal Modes 228 5.2.1 Fabry-Perot Resonators 228 5.2.2 Spectral Characteristics of the Laser Output 235 5.2.3 Axial Mode Control 241 5.3 Temporal and Spectral Stability 252 5.3.1 Amplitude Fluctuations 252 5.3.2 Frequency Control 256 5.4 Hardware Design 259 5.5 Unstable Resonators 262 5.5.1 Confocal Positive-Branch Unstable Resonator 265 5.5.2 Negative-Branch Unstable Resonators 268 5.5.3 Variable Reflectivity Output Couplers 270 5.5.4 Gain, Mode Size and Alignment Sensitivity 276 5.6 Wavelength Selection 278 6. Optical Pump Systems 281 6.1 Pump Sources 281 6.1.1 Noble Gas Flashlamps 285 6.1.2 Continuous Arc Lamps 299 6.1.3 Tungsten-Filament Lamps 306 6.1.4 Laser Diodes 308 6.1.5 Nonelectric Pump Sources 325 6.2 Power Supplies 326 6.2.1 Operation of Laser-Diode Arrays 327 6.2.2 Operation of Arc Lamps 330 6.3 Pump Cavities 348 6.3.1 Pump Configurations for Arc Lamps and Laser Diodes 350 6.3.2 Energy Transfer Characteristics 366 6.3.3 Mechanical Design 379 7. Thermo-Optic Effects and Heat Removal 393 7.1 Cylindrical Geometry 393 7.1.1 CW Operation 394 7.1.2 Single-Shot Operation 413 7.1.3 Repetitively Pulsed Lasers 416 7.2 Cooling Techniques 426 7.2.1 Liquid Cooling 426 7.2.2 Air or Gas Cooling 430 7.2.3 Conductive Cooling 432 7.3 Slab and Disc Geometries 433 7.4 End-Pumped Configurations 449

X Contents 8. Q-Switching 452 8.1 Q-Switch Theory 452 8.2 Mechanical Devices 462 8.3 Electrooptical Q-Switches 465 8.4 Acoustooptic Q-Switches 483 8.5 Dye Q-Switch 489 8.6 Cavity Dumping 494 9. Mode Locking 500 9.1 Pulse Formation 501 9.2 Passive Mode Locking 506 9.2.1 Pulsed Passive Mode Locking 507 9.2.2 Continuous Wave Passive Mode Locking 514 9.3 Active Mode Locking 525 9.3.1 CW Mode Locking 525 9.3.2 Transient Active Mode Locking 529 9.4 Picosecond Lasers 533 9.4.1 Oscillators 533 9.4.2 Regenerative Amplifiers 541 9.5 Femtosecond Lasers 548 9.5.1 Oscillators 548 9.5.2 Chirped Pulse Amplifiers 559 10. Nonlinear Devices 562 10.1 Harmonic Generation 564 10.1.1 Basic Equations of Second-Harmonic Generation... 564 10.1.2 Parameters Affecting the Doubling Efficiency 572 10.1.3 Properties of Nonlinear Crystals 578 10.1.4 Intracavity Frequency Doubling 585 10.1.5 Third-Harmonic Generation 593 10.1.6 Examples of Harmonic Generation 595 10.2 Parametric Oscillators 600 10.2.1 Performance Modeling 604 10.2.2 Materials 616 10.2.3 Design and Performance of Optical Parametric Oscillators 618 10.3 Raman Laser 622 10.3.1 Theory 622 10.3.2 Device Implementation 625 10.3.3 Examples of Raman-Shifted Lasers 627 10.4 Optical Phase Conjugation 631 10.4.1 Basic Considerations 631 10.4.2 Material Properties 633

Contents XI 10.4.3 Focusing Geometry 635 10.4.4 Pump Beam Properties 636 10.4.5 System Design 638 11. Damage of Optical Elements 642 11.1»Surface Damage 643 11.2 Inclusion Damage 644 11.3 Self-focusing 645 11.4 Damage Threshold of Optical Materials 651 11.4.1 Scaling Laws 651 11.4.2 Laser Materials 653 11.4.3 Damage in Optical Glass 654 11.4.4 Damage Levels for Nonlinear Materials 655 11.4.5 Laser Induced Damage in Dielectric Thin Films... 656 11.5 System Design Considerations 658 Appendix A Laser Safety 661 Appendix В Conversion Factors and Constants 667 References 669 Subject Index 702