Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology

Similar documents
Photonic integrated technology for multi-wavelength laser emission

ADVANCED semiconductor lasers are key devices in

Thermal Crosstalk in Integrated Laser Modulators

Semiconductor Optical Active Devices for Photonic Networks

High Power AlGaInAs/InP Widely Wavelength Tunable Laser

InP-based Waveguide Photodetector with Integrated Photon Multiplication

Novel Integrable Semiconductor Laser Diodes

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

Degradation analysis in asymmetric sampled grating distributed feedback laser diodes

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides

HIGH-EFFICIENCY MQW ELECTROABSORPTION MODULATORS

Highly Reliable 40-mW 25-GHz 20-ch Thermally Tunable DFB Laser Module, Integrated with Wavelength Monitor

RECENTLY, studies have begun that are designed to meet

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

SEMICONDUCTOR lasers and amplifiers are important

Investigation of the tapered waveguide structures for terahertz quantum cascade lasers

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser

Ultra-short distributed Bragg reflector fiber laser for sensing applications

Silicon Photonic Device Based on Bragg Grating Waveguide

InP-based Waveguide Photodetector with Integrated Photon Multiplication

Wide Temperature Operation of 40Gbps 1550nm Electroabsorption Modulated Lasers

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

High-Speed Directly Modulated Lasers

Optodevice Data Book ODE I. Rev.9 Mar Opnext Japan, Inc.

Integrated Photonics based on Planar Holographic Bragg Reflectors

Novel Dual-mode locking semiconductor laser for millimetre-wave generation

Intensity-modulated and temperature-insensitive fiber Bragg grating vibration sensor

To generate a broadband light source by using mutually injection-locked Fabry-Perot laser diodes

The Effect of Radiation Coupling in Higher Order Fiber Bragg Gratings

Thermal treatment method for tuning the lasing wavelength of a DFB fiber laser using coil heaters

VCSELs With Enhanced Single-Mode Power and Stabilized Polarization for Oxygen Sensing

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

Stabilisation of Linear-cavity Fibre Laser Using a Saturable Absorber

Novel cascaded injection-locked 1.55-µm VCSELs with 66 GHz modulation bandwidth

Plane wave excitation by taper array for optical leaky waveguide antenna

Ultra-low voltage resonant tunnelling diode electroabsorption modulator

Complex-Coupled Distributed Feedback Laser Monolithically Integrated With Electroabsorption Modulator and Semiconductor Optical Amplifier

IST IP NOBEL "Next generation Optical network for Broadband European Leadership"

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

Nano electro-mechanical optoelectronic tunable VCSEL

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Chapter 1 Introduction

Recent Progress of High Power Semiconductor Lasers for EDFA Pumping

A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product

Spatial Investigation of Transverse Mode Turn-On Dynamics in VCSELs

ASEMICONDUCTOR optical amplifier (SOA) that is linear

White Paper Laser Sources For Optical Transceivers. Giacomo Losio ProLabs Head of Technology

Realization of Polarization-Insensitive Optical Polymer Waveguide Devices

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a)

Three-guide Coupled Rectangular Ring Lasers with Total Internal Reflection Mirrors

Novel fiber Bragg grating fabrication system for long gratings with independent apodization and with local phase and wavelength control

Letters. Takeshi Fujisawa, Naoki Fujiwara, Takashi Tadokoro, and Fumiyoshi Kano

Adaptive multi/demultiplexers for optical signals with arbitrary wavelength spacing.

Robert G. Hunsperger. Integrated Optics. Theory and Technology. Sixth Edition. 4ü Spri rineer g<

Ultracompact Adiabatic Bi-sectional Tapered Coupler for the Si/III-V Heterogeneous Integration

Opto-VLSI-based reconfigurable photonic RF filter

Laser Diode. Photonic Network By Dr. M H Zaidi

IEEE SENSORS JOURNAL, VOL. 8, NO. 11, NOVEMBER X/$ IEEE

Silicon photonic devices based on binary blazed gratings

SUPPLEMENTARY INFORMATION

High brightness semiconductor lasers M.L. Osowski, W. Hu, R.M. Lammert, T. Liu, Y. Ma, S.W. Oh, C. Panja, P.T. Rudy, T. Stakelon and J.E.

Investigation of ultrasmall 1 x N AWG for SOI- Based AWG demodulation integration microsystem

Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes

Nonuniform output characteristics of laser diode with wet-etched spot-size converter

A Low-loss Integrated Beam Combiner based on Polarization Multiplexing

OPTICAL MODE STUDY OF GALIUM NITRIDE BASED LASER DIODES. A Senior Project presented to. the Faculty of the ELECTICAL ENGINEERING DEPARTMENT

Modulation response of a long-cavity, gainlevered quantum-dot semiconductor laser

High-power semiconductor lasers for applications requiring GHz linewidth source

SUPPLEMENTARY INFORMATION

A continuously tunable and filterless optical millimeter-wave generation via frequency octupling

Single-Frequency, 2-cm, Yb-Doped Silica-Fiber Laser

Segmented waveguide photodetector with 90% quantum efficiency

Continuous wave operation of quantum cascade lasers above room temperature

Lecture 1: Course Overview. Rajeev J. Ram

A WDM passive optical network enabling multicasting with color-free ONUs

Photonic Microwave Filter Employing an Opto- VLSI-Based Adaptive Optical Combiner

Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach- Zehnder interferometer couplers

Colorless Amplified WDM-PON Employing Broadband Light Source Seeded Optical Sources and Channel-by-Channel Dispersion Compensators for >100 km Reach

Wavelength-controlled hologram-waveguide modules for continuous beam-scanning in a phased-array antenna system

All-optical NRZ to RZ format and wavelength converter by dual-wavelength injection locking

DC Index Shifted Dual Grating Based Superstructure Fiber Bragg Grating as Multichannel FBG and Multiparameter Sensor

Luminous Equivalent of Radiation

Recent Developments in Fiber Optic Spectral White-Light Interferometry

Realization of 16-channel digital PGC demodulator for fiber laser sensor array

Dual-mode AlGaInAs/InP square microlasers for terahertz generation

Optoelectronics ELEC-E3210

Design of athermal arrayed waveguide grating using silica/polymer hybrid materials

Compact Low-power-consumption Optical Modulator

Heterogeneous Integration of Silicon and AlGaInAs for a Silicon Evanescent Laser

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback

Evaluation of RF power degradation in microwave photonic systems employing uniform period fibre Bragg gratings

Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser

Bistability in Bipolar Cascade VCSELs

FIBER OPTICAL PARAMETRIC OSCILLATOR WITH SWITCHABLE AND WAVELENGTH-SPACING TUN- ABLE MULTI-WAVELENGTH

TECHNICAL BRIEF O K I L A S E R D I O D E P R O D U C T S. OKI Laser Diodes

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode

Title. Author(s)Saitoh, Fumiya; Saitoh, Kunimasa; Koshiba, Masanori. CitationOptics Express, 18(5): Issue Date Doc URL.

3 General Principles of Operation of the S7500 Laser

Fabrication of antenna integrated UTC-PDs as THz sources

Transcription:

Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology Jingsi Li, 1,* Huan Wang, 2 Xiangfei Chen, 1,* Zuowei Yin, 1 Yuechun Shi, 1 Yanqing Lu, 1 Yitang Dai 3 and Hongliang Zhu 2 1 Microwave-Photonics Technology Laboratory, National Laboratory of Microstructures, Nanjing University, Nanjing 210093, P. R. China 2 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Science, Beijing 100083, P. R. China 3 Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA * Corresponding author: lijingsi@gmail.com and chenxf@nju.edu.cn Abstract: In this paper we report, to the best of our knowledge, the first experimental realization of distributed feedback (DFB) semiconductor lasers based on reconstruction-equivalent-chirp (REC) technology. Lasers with different lasing wavelengths are achieved simultaneously on one chip, which shows a potential for the REC technology in combination with the photonic integrated circuits (PIC) technology to be a possible method for monolithic integration, in that its fabrication is as powerful as electron beam technology and the cost and time-consuming are almost the same as standard holographic technology. 2009 Optical Society of America OCIS codes: (060.2330) Fiber optics communications; (140.3490) Lasers, distributedfeedback; (250.5300) Photonic integrated circuits. References and links 1. X. Jia, D. Zhong, F. Wang and H. Chen, Dynamic single-mode and modulation characteristics analyses for λ/4 phase-shifted distributed feedback lasers with chirped grating, Opt. Commun. 279, 356-363 (2007). 2. F. Pozzi, R. M. De La Rue, and M. Sorel, Dual-Wavelength InAlGaAs InP Laterally Coupled Distributed Feedback Laser, IEEE Photon. Technol. Lett. 18, 2563-2565 (2006). 3. M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, Recent Advances in DFB Lasers for Ultradense WDM Applications, IEEE J. Sel. Top. Quantum. Electron. 10, 312-320 (2004). 4. Y. Liu, J. K. White, D. R. Plumb, V. Penty, and I. H. White, Enhanced 10-Gbit/s link performance for directly modulated complex-coupled DFB lasers via resonance frequency, damping rate, and chirp, IEEE J. Sel. Top. Quantum. Electron. 11, 1112-1120 (2005). 5. H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama and T. Otsuji, Very high speed light source module up to 40 Gb/s containing a MQW electroabsorption modulator integrated with a DFB laser, IEEE J. Sel. Top. Quantum. Electron. 3, 336-343 (1997). 6. J. Hong, W. P. Huang, T. Makino and G. Pakulski, Static and dynamic characteristics of MQW DFB lasers with varying ridge width, IEE Proc. Optoelectron. 141, 303-310 (1994). 7. W. K. Chan, J. Chung and R. J. Contolini, Phase-shifted quarter micron holographic gratings by selective image reversal of photoresist, Appl. Opt. 127, 1377-1380 (1988). 8. H. Hillmer, A. Grabmaier, S. Hansmann, H. L. Zhu, H. Burkhard and K. Magari, Tailored DFB Laser Properties by Individually Chirped Gratings Using Bent Waveguides, IEEE J. Sel. Top. Quantum. Electron. 1, 356-362 (1995). 9. Y. Dai, X. Chen, L. Xia, Y. Zhang, and S. Xie, Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp, Opt. Lett. 29, 1333-1335 (2004). 10. D. Jiang, X. Chen, Y. Dai, H. Liu, and S. Xie, A novel distributed feedback fiber laser based on equivalent phase shift, IEEE Photon. Technol. Lett. 16, 2598-2600 (2004). 11. Y. Dai, X. Chen, Y. Zhang, J. Sun, and S. Xie, Phase-error-free 1023-chip OCDMA En/de-coders Based on Reconstruction-equivalent- chirp Technology and Error-correction Method, OFC 2007, JWA28 (2007). 12. Y. Dai, X. Chen, J. Sun, Y. Yao, and S. Xie, High-performance, high-chip-count optical code division multiple access encoders-decoders based on a reconstruction-equivalent-chirp technique, Opt. Lett. 31, 1618-1620 (2006). (C) 2009 OSA 30 March 2009 / Vol. 17, No. 7 / OPTICS EXPRESS 5240

13. Y. Dai, X. Chen, H. Ji, and S. Xie, Optical Arbitrary Waveform Generation Based on Sampled Fiber Bragg Gratings, IEEE Photon. Technol. Lett. 19, 1916-1918 (2007). 14. Y. Dai and X. Chen, DFB semiconductor lasers based on reconstruction equivalent chirp technology, Opt. Express. 15, 2348-2353 (2007). 15. I. P. Kaminow, Optical Integrated Circuits: A Personal Perspective, J. Lightwave Technol. 26, 994-1004 (2008). 16. Y. Dai, X. Chen, D. Jiang, S. Xie, and C. Fan, Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period, IEEE Photon. Technol. Lett. 16, 2284-2286 (2007). 17. S. Hansmann, H. Walter, H. Hillmer, and H. Burkhard, "Static and dynamic properties of InGaAsP-InP distributed feedback lasers-a detailed comparison between experiment and theory," IEEE J. Quantum Electron. 30, 2477-2484 (1994). 18. J. E. A. Whiteaway, G. H. B. Thompson, A. J. Collar and C. J. Armistead, The design and assessment of l/4 phase shifted DFB laser structures, IEEE J. Quantum Electron. 25, 1261-1279 (1989). 1. Introduction Distributed feedback (DFB) semiconductor lasers are considered as reliable light sources for their dynamic single mode, compact size, integration capability, etc.[1-5]. Low cost DFB lasers with excellent performance, however, are still difficult to achieve, mainly because highend DFB laser diodes with complex phase shifts and chirps cannot be cheaply fabricated. Up to now, electron-beam (e-beam) lithography is almost irreplaceable in DFB lasers to achieve exact phase shifts, complex chirps and different center Bragg wavelengths and simultaneously to realize both excellent lasing performance and good control of different lasing wavelengths. However, the high-cost and time-consuming nature of e-beam technology prevents it from being widely used in practical manufacture. On the other hand, although holographic exposure is extremely cheap for its simple setup, low operation cost and fast fabrication speed, it is not capable to produce complicated structure in traditional ways. Although some modifications have been made (e.g., changing the stripe width [6], using positive/negative photoresists [7], utilizing bent waveguide [8], etc.), it is still difficult to realize precise different lasing wavelengths, exact phase shifts and complex chirps. Recently proposed reconstructionequivalent-chirp (REC) technology [9] requiring only conventional fabrication setup with submicrometer precision directly leads to the realization of high performance devices at very low cost, such as high-quality DFB fiber laser [10], record-long 1023-chip OCDMA en/decoder [11,12], special filters [9], optical arbitrary waveform generation [13], etc. Semiconductor laser is also numerically studied [14]. In this paper we report, to the best of our knowledge, the first experimental DFB semiconductor lasers with an equivalent quarter-wave (λ/4) phase shift. The device fabricated by conventional holographic method has a side mode suppression ratio (SMSR) of 45dB when operating in single continuous-wave (CW) mode at room temperature. The lasing is stable and the lasing wavelength varies slowly when the injection current changes. Furthermore, it is well known that multi-wavelength laser array is of great importance in wavelength-division-multiplexing (WDM) system, optical interconnection, high-speed signal processing, etc.[15]. In this experiment lasers with different lasing wavelengths are achieved simultaneously on one chip, which indicates that, combined with the photonic integrated circuits (PIC) technology, the REC technology might have a potential to make an effort for the large-scale integration and mass production to meet the ever increasing demand on optical network elements in the near future. 2. Principle and fabrication The REC technology is demonstrated to realize various physically-realizable functions by a specially designed Sampled Bragg Grating (SBG). The principle of the REC technology can be indicated briefly in the following [10,16]: for a SBG with the index modulation of 2πz n. Λ ( z) = s( z) exp j + c c based on Fourier analysis, the SBG has multiple channels related to superimposed ghost gratings (1) (C) 2009 OSA 30 March 2009 / Vol. 17, No. 7 / OPTICS EXPRESS 5241

2mπz s( z) = Fm exp j (2) m P where Λ is the period of the grating, s(z) is the sampling modulation as a periodic function, P is the sampling period and F m is the Fourier coefficient of the m th order channel of the SBG. When a sampling period increase P is applied to s(z) at z 0 (i.e., the SBG is sampled by s(z- P) when z>z 0 ), the index modulation of the m th order channel will be n m ( z) = F in which the phase θ is obtained as m 2πz 2mπz Fm exp j + j Λ P 2πz 2mπz exp j + j jθ Λ P z z 0 z> z 0 (3) θ = 2 mπ P (4) P When m 0 and P is changed smoothly, an equivalent chirp can be achieved. Correspondingly, when P is changed discretely, an equivalent phase shift can be obtained. This is the core of the REC technology. The device is fabricated by a conventional two-stage lower-pressure metal-organic vapor phase epitaxy (MOVPE). An InP buffer layer, a lower optical confinement layer, a multiplequantum-well (MQW) active structure and an upper optical confinement layer are successively grown on an n-inp (100) substrate in the first epitaxial growth. The MQW structure contains five undoped 8nm-thick 0.7% compressive strain InGaAsP quantum wells. The sampled grating is then formed on the upper separate-confinement-heterostructure (SCH) layer by a conventional holographic exposure combined with conventional photolithography. Figure 1(a) is an illustration of the scanning electron microscope (SEM) morphology of the sampled grating with a quarter-wave equivalent phase shift. Figure 1(b) shows the SEM morphology of the uniform Bragg gratings in a sampling period. After the fabrication of the sampled grating, a p-inp cladding layer and a p + -InGaAs contact layer are successively grown over the entire structure in the second epitaxial growth. Then a conventional ridge waveguide processing is performed. Ti-Au patterned p-contacts and AuGeNi n-contacts are formed on the p-side and the n-side, respectively. The total length of the device is 600µm. Fig. 1. Illustration of the SEM morphology of: (a) sampled grating with a quarter-wave equivalent phase shift; (b) uniform Bragg gratings in a sampling period. 3. Experiment and analysis The laser is tested at room temperature under CW operation and the experimental results are shown in Figs. 2 to 6. (C) 2009 OSA 30 March 2009 / Vol. 17, No. 7 / OPTICS EXPRESS 5242

Figure 2 shows a typical spectrum of the fabricated lasers with a SMSR of about 45dB. The grating period is 243nm, leading to a center Bragg wavelength at around 1559nm. The sampling period is 19.65µm and then the 1 st order Bragg wavelength is designed to be 1539.8nm. As shown in Fig. 2, the lasing wavelength is 1539.5nm at the injection current of 40mA, which fits well with the design. Fig. 2. Typical laser spectrum of the REC based DFB laser at the injection current of 40mA. Figure 3(a) shows a typical light-current characteristic of the laser. The threshold current of the device is 28mA and the slope efficiency is about 0.15W/A. The typical output power is 5mW at the injection current of 60mA. Fig. 3. (a). Light-current characteristic of the REC based DFB laser; (b) lasing wavelengths at different injection currents (above threshold) and temperatures. Figure 3(b) shows the lasing wavelengths of the device under different injection currents and temperatures. It can be seen that the lasing wavelength will have a red-shift of ~8pm/mA with the increase of the injection current, which is much better than the conventional DFB lasers without equivalent phase shifts fabricated in our experiments (~30pm/mA). The wavelength shift with the injection current is mainly caused by the injection current induced refractive index change and can also be caused by the instability of the lasing mode (not the mode jumping). When the laser is operating below threshold, the carrier density increases as the injection current increases, and the effective refractive index decreases, leading the lasing wavelength to a blue-shift; when operating above threshold, the pn junction is heating continuously by the increasing injection current and the effective refractive index increases as the temperature goes up, leading to a red-shift [17]. Although a thermoelectric cooler (TEC) is used and the spatial hole-burning effect may increase the carrier density slightly, heating cannot be fully compensated, which still results in a small red-shift. Because of the spatial hole-burning effect in quarter-wave shifted DFB lasers, the stable single longitude mode will eventually be destroyed as the injection current increases. Such phenomena have been predicted and studied theoretically by Whiteaway et al. [18]. (C) 2009 OSA 30 March 2009 / Vol. 17, No. 7 / OPTICS EXPRESS 5243

Figure 4 shows the laser spectra at different injection currents. Figure 4(a) is at the injection current of 27mA (below the threshold). It can be seen clearly that the lasing wavelength locates accurately in the center of the 1 st order channel, which obviously indicates that a quarter-wave phase-shift occurs in the lasing mode. The lasing begins at the injection current of 28mA. At the injection currents of 60mA, 70mA and 80mA, the lasing wavelengths are 1539.7nm, 1539.8nm and 1540.0nm, with the SMSRs of 43dB, 42dB and 36dB, respectively. Side modes eventually occur when the injection current continues to increase. As shown in Fig. 4(b), two main modes are at 1540.3nm and 1539.5nm at the injection current of 100 ma. The wavelength shift rate of the main mode is 15pm/mA without a TEC, which is also better than conventional DFB lasers we fabricated. Fig. 4. Typical laser spectra at the injection currents of 27mA (a) and 100mA (b). It is very important to measure the possible lasing at the center Bragg wavelength of the 0 th order channel [14]. The gain of the 1 st order mode is higher than that of the center Bragg mode because the material gain curve peak is at around 1537nm, which is very near of the 1 st order channel but far from the 0 th order channel. Furthermore, generally the quarter-wave phase shift will result in the lowest threshold, so the lasing at the center Bragg mode is difficult to occur. Figure 5(a) shows the lasing spectrum measured at the injection current of 70mA in a wide wavelength range. The center Bragg mode at about 1559nm is suppressed significantly by more than 50 db compared to the 1 st order mode. The lasing at the center Bragg mode occurs when the injection current is increased to 140mA, as Fig. 5(b) shows. In fact, such 0 th order lasing mode can be completely diminished by decreasing the sampling period. Decrease of the sampling period results in an increase of the wavelength difference between the 1 st order mode and the center Bragg mode. Fig. 5. Typical laser spectra of the REC based DFB laser in a wide wavelength range at the injection currents of 70mA (a) and 140mA (b). In the fabrication of multi-wavelength laser array, two most important factors are the lasing performance and the wavelength control. On the one hand, the REC technology itself (C) 2009 OSA 30 March 2009 / Vol. 17, No. 7 / OPTICS EXPRESS 5244

provides the laser with a quarter-wave phase shift to ensure a high performance. On the other hand, the REC technology inherits the characteristics of the sampling structures that, with the same grating period, the resonant channel can be varied simply by adjusting the sampling period and the duty cycle. For example, with a decreased sampling period, the 1 st order Bragg wavelength decreases in terms of the Fourier theory. Therefore, in REC based lasers, some lasing performances and the lasing wavelengths can be controlled precisely and easily. In this experiment, lasers with a different lasing wavelength are achieved on the same chip. In a different area of this chip, the sampling period is changed to 9.2 µm, leading to another 1 st order Bragg wavelength at about 1518nm. As shown in Fig. 6, the lasing wavelength is 1517.4nm at the injection current of 20mA (around threshold), which also matches well with the design. Different lasing wavelengths controlled by careful adjustment of the sampling period make the REC technology possible to benefit the design and fabrication of the DFB lasers for PICs [15]. Fig. 6. REC based DFB semiconductor laser with a different wavelength in a different part of the same chip at the injection current of 20mA. 4. Conclusion To our knowledge, this paper reports the first DFB semiconductor laser based on the REC technology, in which quarter-wave shifted DFB lasers are realized by conventional holographic process. REC based DFB lasers can have good performances such as stable single mode operation ability, a SMSR of 45dB under CW operation and room temperature, a steady lasing wavelength shift of 15pm/mA as the injection current changes, etc. Meanwhile, it is also demonstrated that, by a low-cost and high-speed manufacturing method, complex structures and different lasing wavelengths can be arbitrarily controlled and easily achieved simultaneously on one chip. All the aforementioned aspects may provide REC technology with the possibility to combine with PIC technology and contribute to industrial mass production of high-end DFB lasers and multi-wavelength laser arrays. Acknowledgments Jingsi Li would like to thank Prof. Weixi Chen of Peking University and Dr. Jing Zhang of The 44th Research Institute of China Electronics Technology Group Corporation for their insightful discussions and constant encouragements. This work was supported by the National "863" Project of China (No.2007AA03Z417), National Natural Science Foundation of China under Grant 60877043 and the New-Century Excellent Talents Supporting Program of the Ministry of Education, P. R. China. (C) 2009 OSA 30 March 2009 / Vol. 17, No. 7 / OPTICS EXPRESS 5245