RFIA: A Novel RF-band Interference Attenuation Method in Passive Radar

Similar documents
Performance Analysis of Reference Channel Equalization Using the Constant Modulus Algorithm in an FM-based PCL system So-Young Son Geun-Ho Park Hyoung

Implementation of Sequential Algorithm in Batch Processing for Clutter and Direct Signal Cancellation in Passive Bistatic Radars

SIDELOBES REDUCTION USING SIMPLE TWO AND TRI-STAGES NON LINEAR FREQUENCY MODULA- TION (NLFM)

Combined Use of Various Passive Radar Range-Doppler Techniques and Angle of Arrival using MUSIC for the Detection of Ground Moving Objects

PASSIVE radar, known also as passive coherent location

A Passive Suppressing Jamming Method for FMCW SAR Based on Micromotion Modulation

Design and Experiment of Adaptive Anti-saturation and Anti-jamming Modules for GPS Receiver Based on 4-antenna Array

An Improved DBF Processor with a Large Receiving Antenna for Echoes Separation in Spaceborne SAR

DIGITAL BEAM-FORMING ANTENNA OPTIMIZATION FOR REFLECTOR BASED SPACE DEBRIS RADAR SYSTEM

RANGE resolution and dynamic range are the most important

TRANSMITTING ANTENNA WITH DUAL CIRCULAR POLARISATION FOR INDOOR ANTENNA MEASUREMENT RANGE

The Analysis of the Airplane Flutter on Low Band Television Broadcasting Signal

Mathematical Modeling of Ultrasonic Phased Array for Obstacle Location for Visually Impaired

Active Cancellation Algorithm for Radar Cross Section Reduction

A novel sequential algorithm for clutter and direct signal cancellation in passive bistatic radars

Adaptive Beamforming Applied for Signals Estimated with MUSIC Algorithm

MULTI-CHANNEL SAR EXPERIMENTS FROM THE SPACE AND FROM GROUND: POTENTIAL EVOLUTION OF PRESENT GENERATION SPACEBORNE SAR

University of Bristol - Explore Bristol Research. Link to publication record in Explore Bristol Research PDF-document.

Some Notes on Beamforming.

Adaptive Array Beamforming using LMS Algorithm

Spread Spectrum-Digital Beam Forming Radar with Single RF Channel for Automotive Application

W. Feng 1, G. Cherniak 1, J.-M Friedt 1,2, M. Sato 1. References at manuscript at jmfriedt.free.fr/ursi.pdf.

Code No: R Set No. 1

A NOVEL DIGITAL BEAMFORMER WITH LOW ANGLE RESOLUTION FOR VEHICLE TRACKING RADAR

DESIGN AND IMPLEMENTATION OF AN ALGORITHM FOR MODULATION IDENTIFICATION OF ANALOG AND DIGITAL SIGNALS

On the feasibility of DVB-T based passive radar with a single receiver channel

INTERFERENCE REJECTION OF ADAPTIVE ARRAY ANTENNAS BY USING LMS AND SMI ALGORITHMS

The Reference Signal Equalization in DTV based Passive Radar

Adaptive Digital Beam Forming using LMS Algorithm

GPS Anti-jamming Performance Simulation Based on LCMV Algorithm Jian WANG and Rui QIN

Basic Radar Definitions Introduction p. 1 Basic relations p. 1 The radar equation p. 4 Transmitter power p. 9 Other forms of radar equation p.

Optical Delay Line Application Note

1.2 Theory of Smart Antenna

Aircraft Detection Experimental Results for GPS Bistatic Radar using Phased-array Receiver

DESIGN AND DEVELOPMENT OF SIGNAL

UAV Detection and Localization Using Passive DVB-T Radar MFN and SFN

Detection of Multipath Propagation Effects in SAR-Tomography with MIMO Modes

MITIGATING INTERFERENCE ON AN OUTDOOR RANGE

DESIGN AND DEVELOPMENT OF A SIGNAL AND DATA PROCESSOR TEST BED FOR A PASSIVE RADAR IN THE FM BAND

Analysis of LFM and NLFM Radar Waveforms and their Performance Analysis

EET 223 RF COMMUNICATIONS LABORATORY EXPERIMENTS

A STUDY OF AM AND FM SIGNAL RECEPTION OF TIME MODULATED LINEAR ANTENNA ARRAYS

Know how Pulsed Doppler radar works and how it s able to determine target velocity. Know how the Moving Target Indicator (MTI) determines target

Methodology for Analysis of LMR Antenna Systems

Transport and Aerospace Engineering. Deniss Brodņevs 1, Igors Smirnovs 2. Riga Technical University, Latvia

DESIGN AND USE OF MODERN OPTIMAL RATIO COMBINERS

Adaptive Antennas. Randy L. Haupt

A MINI REVIEW ON RADAR FUNDAMENTALS AND CONCEPT OF JAMMING

Space-Time Adaptive Processing: Fundamentals

Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System

Design of a Rectangular Spiral Antenna for Wi-Fi Application

Comparison of Two Detection Combination Algorithms for Phased Array Radars

C th NATIONAL RADIO SCIENCE CONFERENCE (NRSC 2011) April 26 28, 2011, National Telecommunication Institute, Egypt

The Discussion of this exercise covers the following points:

Speed Estimation in Forward Scattering Radar by Using Standard Deviation Method

Localization of underwater moving sound source based on time delay estimation using hydrophone array

Sub-Millimeter RF Receiver. Sub-Millimeter 19Receiver. balanced using Polarization Vectors. Intrel Service Company

Acknowledgment. Process of Atmospheric Radiation. Atmospheric Transmittance. Microwaves used by Radar GMAT Principles of Remote Sensing

A Simulation Tool for Space-time Adaptive Processing in GPS

Lecture Topics. Doppler CW Radar System, FM-CW Radar System, Moving Target Indication Radar System, and Pulsed Doppler Radar System

ON WAVEFORM SELECTION IN A TIME VARYING SONAR ENVIRONMENT

Kadi Sarva Vishwavidyalaya Gandhinagar

Design of Rotman Lens Antenna at Ku-Band Based on Substrate Integrated Technology

A new fully-digital HF radar system for oceanographical remote sensing

Phd topic: Multistatic Passive Radar: Geometry Optimization

A Low-Power, High Sensitivity, X-Band Rail SAR Imaging System

Channel-based Optimization of Transmit-Receive Parameters for Accurate Ranging in UWB Sensor Networks

Mutual Coupling Estimation for GPS Antenna Arrays in the Presence of Multipath

VHF Radar Target Detection in the Presence of Clutter *

Improvement of Antenna Radiation Efficiency by the Suppression of Surface Waves

Reduction in sidelobe and SNR improves by using Digital Pulse Compression Technique

Electronically Steerable planer Phased Array Antenna

Performance improvement in beamforming of Smart Antenna by using LMS algorithm

High Power 12-Element Triangular-Grid Rectangular Radial Line Helical Array Antenna

Phase Correction System Using Delay, Phase Invert and an All-pass Filter

Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure

The Metrication Waveforms

Time Delay Estimation: Applications and Algorithms

A Method for Analyzing Broadcast Beamforming of Massive MIMO Antenna Array

FDTD Antenna Modeling for Ultrawideband. Electromagnetic Remote Sensing

Beamforming of Frequency Diverse Array Radar with Nonlinear Frequency Offset Based on Logistic Map

AMTI FILTER DESIGN FOR RADAR WITH VARIABLE PULSE REPETITION PERIOD

'y Y. An adaptive antenna for the NMT 900 mobile telephony system.

THE EFFECT of multipath fading in wireless systems can

A Simulation Research on Linear Beam Forming Transmission

The water-bed and the leaky bucket

SIMULATION of EMC PERFORMANCE of GRID CONNECTED PV INVERTERS

Final Report for AOARD Grant FA Indoor Localization and Positioning through Signal of Opportunities. Date: 14 th June 2013

Sidelobe Reduction using Frequency Modulated Pulse Compression Techniques in Radar

Radar Systems Engineering Lecture 12 Clutter Rejection

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering)

Signals and Systems Lecture 9 Communication Systems Frequency-Division Multiplexing and Frequency Modulation (FM)

ANALOGUE TRANSMISSION OVER FADING CHANNELS

WIDE-SWATH imaging and high azimuth resolution pose

IMPLEMENTATION OF DOPPLER RADAR WITH OFDM WAVEFORM ON SDR PLATFORM

Retrodirective Antenna Array Using High Frequency Offset

BYU SAR: A LOW COST COMPACT SYNTHETIC APERTURE RADAR

Eigenvalues and Eigenvectors in Array Antennas. Optimization of Array Antennas for High Performance. Self-introduction

Frequency-Modulated Continuous-Wave Radar (FM-CW Radar)

Null-steering GPS dual-polarised antenna arrays

Transcription:

Journal of Electrical and Electronic Engineering 2016; 4(3): 57-62 http://www.sciencepublishinggroup.com/j/jeee doi: 10.11648/j.jeee.20160403.13 ISSN: 2329-1613 (Print); ISSN: 2329-1605 (Online) RFIA: A Novel RF-band Interference Attenuation Method in Passive Radar Zeinab Shamaee, Mohsen Mivehchy Department of Engineering, University of Isfahan, Isfahan, Iran Email address: z.shamaee@eng.ui.ac.ir (Z. Shamaee), mivehchy@eng.ui.ac.ir (M. Mivehchy) To cite this article: Zeinab Shamaee, Mohsen Mivehchy. RFIA: A Novel RF-band Interference Attenuation Method in Passive Radar. Journal of Electrical and Electronic Engineering. Vol. 4, No. 3, 2016, pp. 57-62. doi: 10.11648/j.jeee.20160403.13 Received: May 2, 2016; Accepted: May 11, 2016; Published: May 25, 2016 Abstract: Passive radars get benefit from transmitter signals in the environment for target detection. One of the most important challenges in these radars is multipath and direct path interferences that enter the target and reference antennas. This article expressed the types of weakening, and multi-step structure to mitigate the mentioned signals in passive radars. In the RF-band Interference Attenuation (RFIA) Method, at the first step the strongest interference component is mitigated by controlling the phase and amplitude. In next steps, other interference components are similarly nulled. This structure leads to separate mitigation for each interference components. Simulation results show the success of RFIA method to reduce dynamic range of analog-to-digital converter and, accordingly, the number of required bits for this converter. Keywords: Passive Radar, Nulling, Interference Signal, Dynamic Range 1. Introduction Passive radar has received much attention in the past decade. Conventional Radars consist of two parts including transmitter and receiver, that they are vulnerable, due to radiation [1-3]. Passive radar has one or more receivers and no dedicated transmitter and get advantage the exist signals in the environment for detecting targets. Since passive radars do not have access to modulating signal, they classified as bistatic radars. Fig. 1 shows the state of a passive bistatic radar [4]. Figure 1. State of passive bistatic radar. This radar composed of reference and target antenna. The reference antenna directly receives the signal from the intended transmitter as reference signal, and the task of target antenna is to receive the return signal from the target. One of the most important issues in passive radar is direct path and multipath interferences (DPI & MPI) that enter mentioned antenna besides the target and the reference signals. These strong interferences cause to enlarge the required dynamic range for analog to digital converter (A/D), and for weak signal it can leads to missing of the target. Also, should be careful to saturation of amplifiers in signal paths [5]. For reduction of dynamic range of entered signals to A/D converter, this article tried to offer RFICPR method for effective mitigation of direct path and multipath interference. In the RFIA method, a structure has been used which, first, reference signal is recovered without interferences and second, the strongest component of the interference signal as DPI is canceled from the target antenna signal. Then, in the further steps, the other interference components are suppressed step by step. Interference signals step mitigation characteristics include: Separate mitigating for each of interference component in each step and its implication for both the target and the reference signal More control capabilities on the appropriate amplitude

Journal of Electrical and Electronic Engineering 2016; 4(3): 57-62 and phase for a specific component in each step in order to further mitigation of that component. In section 2, related literature in interference signal mitigation field are reviewed. Then, in section 3, mitigation basic concepts and the RFIA method are discussed. Besides, section 4 deals with evaluation and stimulation of the method, and section 5 presents the conclusion. 58 In particular statuses, an antenna with polarization perpendicular to the polarization signal transmitter (Fig. 4) can be used to mitigate DPI for some extent. But this method is not that effective and can t have much impact on clutters [17]. 2. Literature Work A set of available methods are trying to solve the problem in software method for reducing signal interference. In these methods, cancellation has been done in digital domain by various adaptive methods to filter out interference [6-9]. Software methods placed after the A/D converter, and don t have effects on the required dynamic range for input of converters [10-12]. Use of physical shielding is one of the first hardware methods. Manastash Ridge Radar is the most important example for this method, in which the receiver placed on the other side of a large mountain [4]. Another hardware methods is adaptive beam forming, in which steering nulls towards the illuminator can lead to canceling the interference; although, the use of array antenna, has more nulls and finally has further canceling [13]. The main problem in these methods is increasing complexity of hardware systems which can be seen in Fig. 2. Figure 4. One of the Disk on rod antennas. Another hardware that can be seen in Fig. 5 is based on the difference between the reference signals from target in analog domain [18]. The reference signal and the received direct path interference are coherent, but time of arrival (TOA) and amplitude of two signals are different. Since the base of interference cancellation in this method is subtraction between the target channel and the reference channel, therefore, the reference signal and DPI in target channel must be matched in amplitude and TOA. In [17] with using this hardware method which is placed before A/D converter, 35 db mitigation is achieved, which is not enough. In order to improve the amount of mitigation in the proposed method, by staging cancelation of different components, totally, more mitigation can be achieved. Figure 2. Adaptive beam forming scheme [14]. Another method is the use of high gain antenna that has a deeper null and more interference cancelling (Fig. 3), but it is impossible to build an antenna with high gain in low frequencies [15]. Figure 5. DPI cancellation with conventional analog method [17]. Figure 3. A typical pattern of high gain antenna [16]. According to previous studies, multi-step nulling and in accordance with a specific component seems to be effective. Therefore, this paper tried to provide a method based on this structure. Details of the proposed method will be described in the next section.

59 Zeinab Shamaee et al.: RFIA: A Novel RF-band Interference Attenuation Method in Passive Radar Figure 6. Applicable signals state and interference signals in passive radar. 3. RFIA Method In passive radar, as seen in Fig. 6, the reference signal that carry out the process of passive radar, other interference signal unintentionally and simultaneously are received. This problem also occurs in the target antenna, where in addition to the target echo, strong interference such as DPI and returning interference are received from fixed objects placed in different distance from transmitter and receiver and have different amplitude and delays [20, 21]. All these are in situation that the radar cross section is much smaller than the DPI and multipath interference, For example, mountain ranges that make the interferences have a length of several kilometers and are distributed near the antennas. The difference between target signal power and interference signals sometimes reaches to 100 db, have other several issues that in first step needs using the A/D converter with many bits. In a typical example to cover the dynamic range of received signals about 100 db need A/D converter with at least 17 bits, and this estimate is in the absence of noise, because in the noise presence, the number of required bits increases [22]. In proposed method for better attenuation of a desired component in each step, it is necessary to dominate the desired component in reference antenna signal with an appropriate method. So a new reference signal is produced and gathered by received signal from the target antenna. The result of this addition is attenuation of direct path components in the received signal from the target antenna, this process is called nulling. But, if over time and under environmental conditions, the received signal changed a little, the nulling is not done properly, and even can worsen the result. But in case of proper functioning after the first step of nulling, reduction interference about 20 to 30 db is expected. And further reduction in one step is impossible due to existing more interference components with different delay, amplitude and phase. In fact the nulling process performs in several steps on received signals; and one of the interference components in each step of attenuation is considered. In order to have a proper process in the second step, it is needed to mitigate DPI simultaneously in the path of received signal from the reference antenna. To simplify analysis, information signal x(t) in (1), is supposed as a sine wave with f frequency (ω 2πf. Equation (2) expresses carrier signal that frequency modulated by x(t) and f is maximum instantaneous frequency deviation around central frequency (ω 2πf ). (1) sin 2 (2) Signal z(t) with amplitude α and delay t!" as DPS accompany with two interference signal with β and # values as amplitude and delays t!$ and t!%, namely R(t) in (3) where α is greater than β and # and t!" is less than t!$ and t!%. & ' 2 ( )" ( )" * 2 ( )$ ( )$ # 2 ( )% ( )% (3) In (4), the signal R(t) with nr(t) noise enters to the reference antenna (Ref (t)). &+ &, (4) On the other hand, transmitter signal goes to target antenna with as amplitude after hitting the moving target produces Doppler frequency fd. Finally information signal enters to target antenna with a coefficient (k) of the reference signal and ns (t) noise, as S(t), that is expressed by (5). -.& / 0 (5)

Journal of Electrical and Electronic Engineering 2016; 4(3): 57-62 60 a b c Figure 7. Frequency spectrum of target antenna signal. a. Before nulling. b. After first step attenuation. c. after second step attenuation. 4. Evaluation Simulation of the RFIA method and also producing required signal for evaluation are done in MATLAB software. The RFIA method is implemented in two steps. In this simulation, the intended transmitter is considered from the FM type with carrier frequency of 100 MHz and the speed target is about 0.9 Mach and Doppler frequency (fd) is about 300 Hz. Evaluation Target signal frequency spectrum with the interference components entered target antenna before nulling operations; is shown in Fig. 7.a. The target signal are placed at a frequency of 300 khz from the carrier. Conventional analog method that described in literature work, is based on subtracting between reference and target

61 Zeinab Shamaee et al.: RFIA: A Novel RF-band Interference Attenuation Method in Passive Radar antenna signal with appropriate phase and amplitude. With this method, 54 db attenuation achieved. Spectrum of target signal after maximum attenuation by first step of RFIA method is shown in Fig. 7.b. Prior to nulling, the target component power difference with the strongest component of interference components, is about 53 db. But after nulling this difference reached to 1.577. This amount of mitigation, is almost the highest weakening in one step. Because of presence of the next interference component that requires a separate setting of amplitude and phase shift, mitigating in this step is limited up to this rate. For further mitigations, the next steps should be passed. Frequency spectrum of target antenna signal after second step attenuation is depicted in Fig. 7.c. The spectrum is related to the optimum gain and phase, so the amount of overall attenuation is about 73 db. By comparing the conventional method attenuation (54 db) and the attenuation of RFIA method (73 db) an improvement about 20 db is obtained as shown in Fig. 8. amount of the overall attenuation is 50 db which is about 11 db higher than the conventional analog method. These results show the proposed method is successful in more attenuation of interferences. 5. Conclusion This paper presented a multi-step structural method to weaken the direct path and multipath interference components in passive radars. In the first step of RFIA method, DPI (the strongest interference component) and in further step, the other components are attenuated. To enter the next step, mitigation first of the interference component is applied in the reference antenna in addition to the target antenna. Indeed, for each step a new reference signal generated. In comparison with earlier works, the mitigation ability of this method is about 11 db more; and at the same time it should be taken in to account that, this interference components mitigation is done before A/D converter. For more cancelation of the remained interference components, still software methods can be used. The success of the RFIA method depends on this proper amplitude and phase shift proportionate for any components. Thus offering an alternative for its automatic determining for various issues is needed. References [1] H. Kuschel and D. O Hagan, Passive radar from history to future, Radar Symp. (IRS), 2010 11th Int., 2010. Figure 8. Comparison between conventional and RFIA method. In RFIA method, About 51 db Attenuation in one step obtained. However in the conventional analog method, the maximum attenuation was about 54 db. The reason behind this discrepancy is that in the multi-step method, due to dominating process, in each step the strongest component itself attenuates with the highest possible amount and the power of other components does not change. But in the conventional method, with attenuating first component, the other components also slightly attenuates. But, finally, in the two step method after accomplishment of the second step, other interference component are also attenuate and generally better outcome is obtained compared to its conventional analog method. Totally by RFIA method, the dynamic range from the target antenna dropped at least about 20 db more than the conventional analog method, which means approximately 3 bits fewer for A/D converter input. The distance between receiver antennas can play a major rule in the maximum limit for interference attenuation. So, the effect of delay between signals which arrives two antennas is not negligible and must be considered. The result of conventional analog method with effect of distances between receiver antennas show the maximum attenuation 39dB. With completion of the proposed method and after second step, the [2] P. Howland, Editorial: Passive radar systems, IEE Proc. - Radar, Sonar Navig., vol. 152, no. 3, p. 105, 2005. [3] H. Kuschel and F. Fhr, T10 Passive bistatic radar, theory Systems Measurements, in 2014 IEEE Radar Conference, 2014, pp. 37 37. [4] H. D. G. and C. J. B. Paul E. Howland, Bistatic Radar: Emerging Technology. Chichester, UK: John Wiley & Sons, Ltd, 2008, pp. 247 313. [5] J. Brown, FM airborne passive radar-phd Thesis, UCL (University College London), 2013. [6] J. Palmer and S. Searle, Evaluation of adaptive filter algorithms for clutter cancellation in passive bistatic radar, Radar Conf. (RADAR), 2012 IEEE, pp. 0493 0498, May 2012. [7] F. Colone, R. Cardinali, and P. Lombardo, Cancellation of Clutter and Multipath in Passive Radar using a Sequential Approach, in 2006 IEEE Conference on Radar, 2006, pp. 393 399. [8] X. Guan, D.-H. Hu, L.-H. Zhong, and C.-B. Ding, Strong Echo Cancellation Based on Adaptive Block Notch Filter in Passive Radar, IEEE Geosci. Remote Sens. Lett., vol. 12, no. 2, pp. 339 343, Feb. 2015. [9] B. W. ; C. L. ; C. C. ; W. C. Feng, An effective CLEAN algorithm for interference cancellation and weak target detection in passive radar, in Synthetic Aperture Radar (APSAR), 2013 Asia-Pacific Conference on, 2013, pp. 160 163.

Journal of Electrical and Electronic Engineering 2016; 4(3): 57-62 62 [10] Z. Shamaee, M. Mivehchy, and M. F. Sabahi, A Chi-square-based induction method for interfernce signals attenuation in passive radar, in The Third Iranian Conference of Engineering Electromagnetics, 2015. [11] P. E. Howland, D. Maksimiuk, and G. Reitsma, FM radio based bistatic radar, IEE Proceedings - Radar, Sonar and Navigation, vol. 152, no. 3. p. 107, 2005. [12] B. Farhang-Boroujeny, Adaptive Filters: Theory and Applications, Second. Chichester, UK: John Wiley & Sons, Ltd, 2013. [13] G. Fabrizio, F. Colone, P. Lombardo, and a. Farina, Adaptive beamforming for high-frequency over-the-horizon passive radar, IET Radar, Sonar Navig., vol. 3, no. 4, p. 384, 2009. [14] http://www.telecomfamily.com. [Accessed: 10- May- 2016]. [15] C. Coleman, Mitigating the Effect of Direct Signal Interference in Passive Bistatic Radar, 2009, no. red X, pp. 1 4. [16] http://www.l-com.com. [Accessed: 10- May- 2016]. [17] R. Saini, M. Cherniakov, and V. Lenive, Direct path interference suppression in bistatic system: DTV based radar, 2003 Proc. Int. Conf. Radar (IEEE Cat. No. 03EX695), 2003. [18] C. L. Zoeller, M. C. Budge, and M. J. Moody, Passive coherent location radar demonstration, in Proceedings of the Thirty-Fourth Southeastern Symposium on System Theory (Cat. No. 02EX540), 2002, pp. 358 362. [19] H. Wan, S. Li, and Z. Wang, Direct Path Interference Cancellation in FM Radio-Based Passive Radar, in 2006 8th international Conference on Signal Processing, 2006, vol. 3, pp. 4 7. [20] H. Griffiths and C. Baker, The Signal and Interference Environment in Passive Bistatic Radar, in 2007 Information, Decision and Control, 2007, pp. 1 10. [21] H. Griffiths, Passive Bistatic Radar and Waveform Diversity, vol. 119, no. c, 2009. [22] M. Skolnik, Radar Handbook, 3rd ed. McGraw-Hill Professional; 3rd edition, 2008.