DC - 20 GHz Discrete power phemt

Similar documents
TGF Watt Discrete Power GaN on SiC HEMT. Key Features. Measured Performance. Primary Applications Space Military Broadband Wireless

TGF Watt Discrete Power GaN on SiC HEMT. Key Features. Measured Performance. Primary Applications Space Military Broadband Wireless

TGF Watt Discrete Power GaN on SiC HEMT. Key Features. Primary Applications Defense & Aerospace Broadband Wireless. Product Description

Product Data Sheet August 5, 2008

TGA2509. Wideband 1W HPA with AGC

TGA GHz 2.5 Watt, 25dB Power Amplifier. Key Features and Performance. Preliminary Measured Performance Bias Conditions: Vd=7V Id=640mA

17-43 GHz MPA / Multiplier. S-Parameters (db) P1dB (dbm)

33-47 GHz Wide Band Driver Amplifier TGA4522

27-31 GHz 2W Balanced Power Amplifier TGA4513

TGP GHz 180 Phase Shifter. Primary Applications. Product Description. Measured Performance

12-18 GHz Ku-Band 3-Stage Driver Amplifier TGA2507

6-13 GHz Low Noise Amplifier TGA8399B-SCC

6-18 GHz High Power Amplifier TGA9092-SCC

High Power DC - 18GHz SPDT FET Switch

27-31 GHz 1W Power Amplifier TGA4509-EPU

23-29 GHz High Power Amplifier TGA9070-SCC

TGA4801. DC 35 GHz MPA with AGC. Key Features and Performance. Primary Applications: Description

4 Watt Ka-Band HPA Key Features Measured Performance Primary Applications Ka-Band VSAT Product Description

Ka-Band 2W Power Amplifier

TGA4830. Wideband Low Noise Amplifier. Key Features and Performance. Measured Performance V + = 5V, I + = 50mA. Primary Applications

10Gb/s Wide Dynamic Range Differential TIA

TGF um Discrete GaAs phemt

TGA GHz Low Noise Amplifier with AGC. Key Features

TGA4811. DC - 60 GHz Low Noise Amplifier

High Power Ka-Band SPDT Switch

TGA Watt Ka-Band HPA. Key Features. Measured Performance Bias conditions: Vd = 6 V, Idq = 3200 ma, Vg = -0.7 V Typical

TGF Watt Discrete Power GaN on SiC HEMT

TGF Watt Discrete Power GaN on SiC HEMT

TGF Watt Discrete Power GaN on SiC HEMT

QPA1003D. 1 8 GHz 10 W GaN Power. Product Description. Product Features. Functional Block Diagram. Applications. Ordering Information

2 Watt Packaged Amplifier TGA2902-SCC-SG

TGA4532 K-Band Power Amplifier

Measured Fixtured Data Bias: 40mA Isolation (db)

TGA2521-SM GHz Linear Driver Amplifier Key Features Measured Performance

17-24 GHz Linear Driver Amplifier. S11 and S22 (db) -15

17-35GHz MPA/Multiplier TGA4040SM

TGA2521-SM GHz Linear Driver Amplifier. Key Features. Measured Performance

TGA2521-SM GHz Linear Driver Amplifier. Key Features. Measured Performance

TGA4852 DC 35GHz Wideband Amplifier

TGA Gb/s Linear Driver

17-24 GHz Linear Driver Amplifier. S11 and S22 (db -15. TriQuint Semiconductor: www. triquint.com (972) Fax (972)

TGL GHz Voltage Variable Attenuator

1W High Linearity and High Efficiency GaAs Power FETs

TGA2601-SM MHz High IP3 Dual phemt. Key Features and Performance. Measured Performance. Primary Applications. Product Description

TGV2204-FC. 19 GHz VCO with Prescaler. Key Features. Measured Performance. Primary Applications Automotive Radar. Product Description

27-31 GHz 2W Balanced Power Amplifier TGA4513-CP

TGA2602-SM MHz High IP3 Dual phemt. Key Features and Performance. Measured Performance. Primary Applications. Product Description

Features. Output Third Order Intercept (IP3) [2] dbm Power Added Efficiency %

8 11 GHz 1 Watt Power Amplifier

9-10 GHz LOW NOISE AMPLIFIER

TGA2701-SM 3 Watt C-Band Packaged Power Amplifier Key Features Measured Performance Primary Applications Product Description

Data Sheet. AMMC GHz 0.2 W Driver Amplifier. Features. Description. Applications

5 6 GHz 10 Watt Power Amplifier

MECGaNC30. 4 to 6 GHz GaN HEMT Power Amplifier. Main Features. Product Description. Applications

11-15 GHz 0.5 Watt Power Amplifier

NPA105-D. Preliminary GHz GaN 40W Power Amplifier. Product Description: Key Features:

D1H010DA1 10 W, 6 GHz, GaN HEMT Die

TGA2806-SM. CATV Linear Amplifier. Key Features. Measured Performance Small Signal Gain (75 Ω) includes balun losses

Data Sheet. AMMC GHz Amplifier. Description. Features. Applications

2-22GHz LNA with AGC. GaAs Monolithic Microwave IC. Performance (db)

0.5-20GHz Driver. GaAs Monolithic Microwave IC

EC2612 RoHS COMPLIANT

2-18 GHz Low Noise Amplifier TGA8344-SCC

5 6.4 GHz 2 Watt Power Amplifier

GHz Low Noise Amplifier

Electrical Characteristics (Ambient Temperature T = 25 o C) Units GHz db db db db db dbm dbm VDC VDC ma

NPA110-D. Preliminary GHz GaN 38W Power Amplifier. Product Description: Key Features:

5W X Band Medium Power Amplifier. GaN Monolithic Microwave IC

18W X-Band High Power Amplifier. GaN Monolithic Microwave IC

14-17 GHz Packaged Doubler with Amplifier. TriQuint Semiconductor: www. triquint.com (972) Fax (972) April 2012 Rev B

HMC906A. Amplifiers - Linear & Power - CHIP. Electrical Specifications, T A. Typical Applications. Features. General Description. Functional Diagram

Data Sheet AMMC KHz 80 GHz TWA. Description. Features. Typical Performance (Vd=5V, Idsq=0.1A) Component Image.

GHz GaAs MMIC Power Amplifier

2-22GHz LNA with AGC. GaAs Monolithic Microwave IC

2 GHz to 30 GHz, GaAs, phemt, MMIC, Low Noise Amplifier HMC8402

MAAP Power Amplifier, 15 W GHz Rev. V1. Features. Functional Schematic. Description. Pin Configuration 2. Ordering Information

NPA100-D GHz GaN 20W Power Amplifier. Product Description: Key Features:

Data Sheet. AMMC GHz 1W Power Amplifier. Features. Description. Applications

Features. = +25 C, Vdd = +6V, Idd = 375mA [1]

Features. = +25 C, Vdd = Vdd1 = Vdd2 = Vdd3 = Vdd4 = Vdd5 = +7V, Idd = 1200mA [1]

Features. = +25 C Vdd = Vdd1, Vdd2, Vdd3, Vdd4, Vdd5, Vdd6, Vdd7, Vdd8 = +6V, Idd = 1400 ma [1]

Features. = +25 C, Vdd = 5V, Idd = 85mA*

Features OBSOLETE. Output Third Order Intercept (IP3) [2] dbm Total Supply Current ma

Features. = +25 C, Vdd = 5V, Idd = 200 ma*

GaAs, phemt, MMIC, Power Amplifier, HMC1126. Data Sheet FEATURES FUNCTIONAL BLOCK DIAGRAM APPLICATIONS GENERAL DESCRIPTION

81 GHz to 86 GHz, E-Band Power Amplifier With Power Detector HMC8142

0.5-20GHz Driver. GaAs Monolithic Microwave IC

GHz Ultra-wideband Amplifier

DC-12 GHz Tunable Passive Gain Equalizer

Features. Noise Figure db Supply Current (Idd) ma Supply Voltage (Vdd) V

MECGaNLNACX. C- to X-Band GaN HEMT Low Noise Amplifier. Main Features. Product Description. Typical Applications. Measured Data

HMC-AUH232 MICROWAVE & OPTICAL DRIVER AMPLIFIERS - CHIP. GaAs HEMT MMIC MODULATOR DRIVER AMPLIFIER, DC - 43 GHz. Typical Applications.

TGL4203-SM. DC - 30 GHz Wideband Analog Attenuator. Key Features. Measured Performance

Features. = +25 C, Vdd = +10V, Idd = 350mA

Features. = +25 C, Vdd 1, 2, 3 = +3V

Features. = +25 C, Vdd1, Vdd2 = +5V

TEST FREQ. 12 GHz 18 GHz 12 GHz 18 GHz. P1dB Output p1db (Vds = 2V, Id = 10mA) 12 GHz dbm

GHz GaAs MMIC Power Amplifier

Features. = +25 C, Vdd 1, 2, 3 = +3V

20 40 GHz Amplifier. Technical Data HMMC-5040

Transcription:

DC - 20 GHz Discrete power phemt Product Description The TriQuint is a discrete 0.6 mm phemt which operates from DC-20 GHz. The is designed using TriQuint s proven standard 0.3um power phemt production process. The typically provides > 28 dbm of saturated output power with power gain of db. The maximum power added efficiency is 8% which makes the appropriate for high efficiency applications. Key Features and Performance Frequency Range: DC - 20 GHz > 28 dbm Nominal Psat 8% Maximum PAE 36 dbm Nominal OIP3 db Nominal Power Gain Suitable for high reliability applications 0.6mm x 0.3μm Power phemt Nominal Bias Vd = 8-V, Idq = 4-7mA (Under RF Drive, Id rises from 4mA to 1mA) Chip Dimensions: 0.7 x 0.3 x 0. mm (0.0 x 0.021 x 0.004 in) Primary Applications Point-to-point Radio High-reliability space Military Base Stations Broadband Wireless Applications 3 The is also ideally suited for Point-to-point Radio, High-reliability space, and Military applications. The has a protective surface passivation layer providing environmental robustness. Lead-free and RoHS compliant Maximum Gain (db) 2 MSG 20 MAG 1 0 0 2 4 6 8 Frequency (GHz) 1

TABLE I MAXIMUM RATINGS Symbol Parameter 1/ Value Notes V + Positive Supply Voltage. V 2/ V - Negative Supply Voltage Range -V to 0V I + Positive Supply Current 282 ma 2/ I G Gate Supply Current 7 ma P IN Input Continuous Wave Power 23 dbm 2/ P D Power Dissipation See note 3 2/ 3/ T CH Operating Channel Temperature 1 C 4/ T M Mounting Temperature ( Seconds) 320 C T STG Storage Temperature -6 to 1 C 1/ These ratings represent the maximum operable values for this device. 2/ Combinations of supply voltage, supply current, input power, and output power shall not exceed P D. 3/ For a median life time of 1E+6 hrs, Power dissipation is limited to: P D (max) = (1 C TBASE C) / 8.0 ( C/W) 4/ Junction operating temperature will directly affect the device median time to failure (T M ). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels. TABLE II DC PROBE CHARACTERISTICS (T A = 2 C, Nominal) Symbol Parameter Minimum Typical Maximum Unit Idss Saturated Drain Current - 0 - ma Gm Transconductance - - ms V P Pinch-off Voltage -1. -1-0. V V BGS V BGD Breakdown Voltage Gate-Source Breakdown Voltage Gate-Drain - - -8 V - - - V Note: For TriQuint s 0.3um power phemt devices, RF breakdown >> DC breakdown 2

TABLE III RF CHARACTERIZATION TABLE 1/ (T A = 2 C, Nominal) SYMBOL PARAMETER f = GHz f = GHz UNITS Power Tuned: Vd = V Idq = 4 ma Vd = V Idq = 4 ma Vd = V Idq = 4 ma Vd = V Idq = 4 ma Psat Saturated Output Power 28.9 29.6 28.1 28.7 dbm PAE Power Added Efficiency 2.4 1.9 41. 37.0 % Gain Power Gain.9.9 8.3 8.0 db Γ L 2/ Efficiency Tuned: Load Reflection coefficient 0.379 0.6 0.4 4. 0.2 8.9 0.62.7 - Psat Saturated Output Power 28.3 29.3 27. 28.1 dbm PAE Power Added Efficiency 8.3 6.0 46.0 42. % Gain Power Gain 8. 8.3 db Γ L 2/ Load Reflection coefficient 0.44 94.2 0.46 93.4 0.62 6.9 0.673 4.1 - OIP3 Output TOI 37 36 37 36 dbm 1/ Large signal equivalent phemt output network 2/ Optimum load impedance for maximum power or maximum PAE at and GHz. The series resistance and inductance (Rd and Ld) shown in the Figure on page 7 is excluded 3

TABLE IV THERMAL INFORMATION Parameter Test Conditions T CH ( o C) θ JC ( C/W) T M (HRS) θ JC Thermal Resistance Vd = V (channel to backside of carrier) Idq = 4 ma Pdiss = 0.4 W 8 1.6 E+6 Note: Assumes eutectic attach using 1. mil 80/20 AuSn mounted to a 20 mil CuMo Carrier at 70 C baseplate temperature. Measured Fixtured Data IMD3 vs. output power/tone at & GHz 0 - -20 GHz, Vd=V, Id=4mA GHz, Vd=V, Id=4mA GHz, Vd=V,Id=4mA GHz, Vd=V, Id=4mA IMD3 (dbc) - -40 - -60-70 7 8 9 11 1 17 19 20 21 Output power/tone (dbm) 4

Measured Fixtured Data Power tuned data at GHz Pout (dbm) 32 28 24 20 Vd = V, Id = 4mA 8 9 11 1 17 19 20 1 0 1 0 1 0 90 80 70 60 Id (ma) Gain (db) 19 17 1 11 9 8 7 6 Vd = V, Id = 4mA 8 9 11 1 17 19 20 62 8 4 46 42 38 34 PAE (%) For power tuned devices at GHz Input matched for maximum gain & output load is: Vd=V, Idq=4mA: Rp = 7.0 Ω, Cp = 0.27pF, Γ = 0.400, θ = 4.7 Vd=V, Idq=7mA: Rp = 44.6 Ω, Cp = 0.276pF, Γ = 0.382, θ = 0.1 Efficiency tuned data at GHz Pout (dbm) 38 36 34 32 28 24 20 Vd = V, Id = 4mA 8 9 11 1 17 19 20 0 170 0 1 0 1 0 1 0 90 80 70 60 Id (ma) Gain (db) 19 17 1 11 9 8 7 6 Vd = V, Id = 4mA 8 9 11 1 17 19 20 62 8 4 46 42 38 34 PAE (%) For efficiency tuned devices at GHz: Input matched for maximum gain & output load is: Vd=V, Idq=4mA: Rp = 74.2 Ω, Cp = 0.2pF, Γ = 0.466, θ = 93.4 Vd=V, Idq=4mA: Rp = 72. Ω, Cp = 0.22pF, Γ = 0.4, θ = 93.7

Measured Fixtured Data Power tuned data at GHz Pout (dbm) 32 28 24 20 Vd = V, Id = 4mA 11 1 17 19 20 21 23 24 2 1 0 1 0 1 0 90 80 70 60 Id (ma) Gain (db) 11 9 8 7 6 4 3 Vd = V, Id = 4mA 2 11 1 17 19 20 21 23 24 2 46 43 40 37 34 31 28 2 19 PAE (%) For power tuned devices at GHz Input matched for maximum gain & output load is: Vd=V, Idq=4mA: Rp = 48.4 Ω, Cp = 0.432pF, Γ = 0. 6, θ =.1 Vd=V, Idq=7mA: Rp = 43. Ω, Cp = 0.41pF, Γ = 0., θ = 7.7 Efficiency tuned data at GHz Pout (dbm) 28 24 20 Vd = V, Id = 4mA 11 1 17 19 20 21 23 24 2 0 1 0 1 0 90 80 70 60 Id (ma) Gain (db) 11 9 8 7 6 4 3 2 Vd = V, Id = 4mA 11 1 17 19 20 21 23 24 2 4 46 42 38 34 PAE (%) For efficiency tuned devices at GHz: Input matched for maximum gain & output load is: Vd=V, Idq=4mA: Rp = 67.0 Ω, Cp = 0.3pF, Γ = 0.680, θ = 3.0 Vd=V, Idq=4mA: Rp = 1.3 Ω, Cp = 0.49pF, Γ = 0.619, θ = 7.3 6

Linear Model for 0.6 mm Unit phemt cell OUT L Rdg Gate Lg Rg Rgs Cgs + Vi Ri - Cdg gmvi Rds Cds Rd Ld Drain Unit phemt cell Reference Plane L s Source R s Source Gate Source Source UPC Drain L - via = 0.0 nh (2x) UPC = 0.6mm Unit phemt Cell MODEL PARAMETER Vd = 8V Idq = 4mA Vd = 8V Idq = 60mA Vd = 8V Idq = 7mA Vd = V Idq = 4mA Vd = V Idq = 60mA Vd = V Idq = 4mA UNITS Rg 0. 0.23 0.24 0.23 0.24 0.24 Ω Rs 0.40 0.41 0.41 0.46 0.4 0. Ω Rd 0.1 0.2 0.2 0. 0. 0.48 Ω gm 0.19 0.202 0.202 0.8 0.19 0.3 S Cgs 1. 1.63 1.70 1.64 1.73 1.71 pf Ri 1.6 1.9 1.8 1.72 1.64 1.73 Ω Cds 0.11 0.11 0.1 0.1 0.11 0.1 pf Rds 243. 247.08 2. 278.72 279.31 2.49 Ω Cgd 0.072 0.066 0.063 0.064 0.061 0.060 pf Tau.94 6.23 6.1 6.8 6.9 7.36 ps Ls 0.001 0.001 0.001 0.001 0.001 0.001 nh Lg 0.8 0.8 0.8 0.8 0.8 0.8 Ld 0.1 0.0 0.1 0.1 0.1 0.117 nh nh Rgs 1 83 1 420 Ω Rgd 7700 64800 74400 79400 82900 820 Ω 7

Unmatched S-parameters for 0.6 mm phemt Bias Conditions: Vd = V, Idq = 4mA Frequency s11 s11 ang s21 s21 ang s s ang s s ang (GHz) db deg db deg db deg db deg 0. -0.241-36.34.678 19.08-3.863 70.86-2.990 -.01 1-0.419-66.76 21.3 1. -31.020. -3.802-21.21 1. -0.87-89.70 20.08 8.01-28.948 43.7-4.700-27. 2-0.7-6.49.609 117.76-27.903 3.20 -.480-31.06 2. -0.798-1.92 17.0 9.77-27.3 29.07-6.093-33.71 3-0.87-8.3.03 3.28 -.972 24.4-6.4-3.80 3. -0.898 -.70.9 97.82 -.7 20.86-6.896-37.68 4-0.928-1.60.9 93.08 -.602 17.99-7.6-39.1 4. -0.949-6.44.0 88.8 -.1 1.64-7.327-41.37-0.964-1.49.193 8.01 -.4.67-7.47-43.31. -0.976-13.9 11.432 81.46 -.380 11.99-7.47-4.31 6-0.98-16.94.7 78. -.34.4-7.606-47.40 6. -0.992-19.8.079 74.97 -.321 9. -7.641-49.4 7-0.997-1.92 9.473 71.9 -. 8. -7.67-1.7 7. -1.001-4.03 8.90 69.0 -.29 7.11-7.67-4.01 8-1.004 -.94 8.373 66.2 -.290 6.19-7.643-6.31 8. -1.007-7.69 7.872 63.2 -.290.3-7.6-8.64 9-1.008-9. 7.399 60.86 -.293 4.9-7.84-61.01 9. -1.0-170.80 6.9 8.2 -.298 3.88-7.41-63.39-1.0-172.20 6.24.69 -.7 3. -7.491-6.79. -1.011-173.2 6.119 3. -.317 2.61-7.43-68.21 11-1.011-174.76.733.70 -.328 2.04-7.373-70.63 11. -1.011-17.94.363 48.2 -.342 1.1-7.6-73.06-1.0-177.06.0 4.84 -.37 1.01-7.234-7.49. -1.0-178. 4.670 43.44 -.373 0.3-7.18-77.92-1.009-179.1 4.344 41.07 -.390 0.09-7.078-80.3. -1.008 179.86 4.031 38.72 -.408-0.33-6.99-82.78-1.007 178.91 3.728 36.39 -.4-0.72-6.909-8.19. -1.006 177.99 3.436 34.07 -.446-1. -6.819-87.60 1-1.004 177. 3.14 31.77 -.466-1.4-6.728-90.00 1. -1.003 176.24 2.881 29.49 -.486-1.79-6.633-92.39-1.001 17.40 2.6 27.21 -.7-2. -6.37-94.76. -0.999 174.8 2.39 24.9 -.29-2.40-6.439-97. 17-0.998 173.79 2.9.70 -.1-2.69-6.339-99.48 17. -0.996 173.01 1.866 20.46 -.72-2.9-6.238-1.81-0.994 172.24 1.629.23 -.9-3.21-6. -4.. -0.992 171. 1.398.01 -.617-3.4-6.031-6.44 19-0.989 170.76 1.173.79 -.639-3.67 -.9-8.72 19. -0.987 170.04 0.93 11.8 -.661-3.88 -.820-111.00 20-0.98 9.34 0.737 9.38 -.683-4.08 -.7-1.2 20. -0.982 8.64 0. 7.19 -.70-4.27 -.606-11.49 21-0.980 7.96 0.319.00 -.7-4.4 -.498-117.71 21. -0.977 7.28 0.11 2.82 -.748-4.61 -.390-119.91-0.97 6.61-0.08 0.64 -.769-4.77 -.281-1.09. -0.972.96-0.281-1.3 -.789-4.91 -.173-4. 23-0.970.31-0.47-3.69 -.809 -.04 -.064-6.41 23. -0.967 4.67-0.666 -.8 -.829 -.17-4.96-8.4 24-0.964 4.03-0.84-8.01 -.848 -.29-4.848-1.6 24. -0.961 3.41-1.040 -. -.866 -.39-4.740-2.7 2-0.98 2.79-1.4 -.31 -.884 -.49-4.632-4.82 2. -0.9 2. -1.406 -.4 -.901 -.8-4.2-6.88-0.92 1.7-1.86 -.9 -.917 -.67-4.419-8.92 8

NE Mechanical Drawing 0. [0.021] 0.4 [0.0] 1 2 0.4 [0.0] 0.000 [0.000] 0.000 [0.000] 0.119 [0.00] 0.44 [0.0] 0.6 [0.0] Units: millimeters (inches) Thickness: 0.0 (0.004) Chip edge to bond pad dimensions are shown to center of bond pad Chip size tolerance: +/- 0.01 (0.002) GND IS BACKSIDE OF MMIC Bond pad #1 (Vg) 0.090 x 0.090 (0.004 x 0.004) Bond pad #2 (Vd) 0.090 x 0.090 (0.004 x 0.004) GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handing, assembly and test. 9

Assembly Process Notes Reflow process assembly notes: Use AuSn (80/20) solder with limited exposure to temperatures at or above 0 C for sec An alloy station or conveyor furnace with reducing atmosphere should be used. No fluxes should be utilized. Coefficient of thermal expansion matching is critical for long-term reliability. Devices must be stored in a dry nitrogen atmosphere. Component placement and adhesive attachment assembly notes: Vacuum pencils and/or vacuum collets are the preferred method of pick up. Air bridges must be avoided during placement. The force impact is critical during auto placement. Organic attachment can be used in low-power applications. Curing should be done in a convection oven; proper exhaust is a safety concern. Microwave or radiant curing should not be used because of differential heating. Coefficient of thermal expansion matching is critical. Interconnect process assembly notes: Thermosonic ball bonding is the preferred interconnect technique. Force, time, and ultrasonics are critical parameters. Aluminum wire should not be used. Devices with small pad sizes should be bonded with 0.0007-inch wire. Maximum stage temperature is 200 C.