Research Article A Design of Wide Band and Wide Beam Cavity-Backed Slot Antenna Array with Slant Polarization

Similar documents
Research Article A New Kind of Circular Polarization Leaky-Wave Antenna Based on Substrate Integrated Waveguide

Research Article Compact Dual-Band Dipole Antenna with Asymmetric Arms for WLAN Applications

Research Article Cross-Slot Antenna with U-Shaped Tuning Stub for Ultra-Wideband Applications

Research Article Modified Dual-Band Stacked Circularly Polarized Microstrip Antenna

Research Article A Wide-Bandwidth Monopolar Patch Antenna with Dual-Ring Couplers

Research Article Multiband Planar Monopole Antenna for LTE MIMO Systems

Research Article Ka-Band Slot-Microstrip-Covered and Waveguide-Cavity-Backed Monopulse Antenna Array

Research Article A Multibeam Antenna Array Based on Printed Rotman Lens

Research Article Analysis and Design of Leaky-Wave Antenna with Low SLL Based on Half-Mode SIW Structure

Research Article A Miniaturized Triple Band Monopole Antenna for WLAN and WiMAX Applications

Research Article A High-Isolation Dual-Polarization Substrate-Integrated Fabry-Pérot Cavity Antenna

Research Article Novel Design of Microstrip Antenna with Improved Bandwidth

Research Article CPW-Fed Wideband Circular Polarized Antenna for UHF RFID Applications

Research Article Yagi Array of Microstrip Quarter-Wave Patch Antennas with Microstrip Lines Coupling

Research Article Miniaturized Circularly Polarized Microstrip RFID Antenna Using Fractal Metamaterial

Research Article Compact Antenna with Frequency Reconfigurability for GPS/LTE/WWAN Mobile Handset Applications

Research Article A Compact CPW-Fed UWB Antenna with Dual Band-Notched Characteristics

Research Article A Very Compact and Low Profile UWB Planar Antenna with WLAN Band Rejection

Research Article CPW-Fed Slot Antenna for Wideband Applications

Research Article A Miniaturized Meandered Dipole UHF RFID Tag Antenna for Flexible Application

Research Article A Novel SIW H-Plane Horn Antenna Based on Parabolic Reflector

Research Article Harmonic-Rejection Compact Bandpass Filter Using Defected Ground Structure for GPS Application

Research Article Bandwidth Extension of a Printed Square Monopole Antenna Loaded with Periodic Parallel-Plate Lines

Research Article A Parallel-Strip Balun for Wideband Frequency Doubler

Research Article Wideband Microstrip 90 Hybrid Coupler Using High Pass Network

Research Article Integrated Filtering Microstrip Duplex Antenna Array with High Isolation

Research Article Small-Size Meandered Loop Antenna for WLAN Dongle Devices

Research Article Circularly Polarized Microstrip Yagi Array Antenna with Wide Beamwidth and High Front-to-Back Ratio

Research Article Quad Band Handset Antenna for LTE MIMO and WLAN Application

Research Article High Efficiency and Broadband Microstrip Leaky-Wave Antenna

Research Article Suppression of Cross-Polarization of the Microstrip Integrated Balun-Fed Printed Dipole Antenna

Research Article A MIMO Reversed Antenna Array Design for gsm1800/td-scdma/lte/wi-max/wilan/wifi

Broadband Circular Polarized Antenna Loaded with AMC Structure

Research Article Very Compact and Broadband Active Antenna for VHF Band Applications

Research Article Design of a Novel UWB Omnidirectional Antenna Using Particle Swarm Optimization

Research Article Compact Multiantenna

Research Article Multiband Printed Asymmetric Dipole Antenna for LTE/WLAN Applications

Research Article A UWB Band-Pass Antenna with Triple-Notched Band Using Common Direction Rectangular Complementary Split-Ring Resonators

A Compact Dual-Polarized Antenna for Base Station Application

Research Article Embedded Spiral Microstrip Implantable Antenna

Research Article BCB-Si Based Wide Band Millimeter Wave Antenna Fed by Substrate Integrated Waveguide

Research Article Design of a Compact Quad-Band Slot Antenna for Integrated Mobile Devices

Research Article A High Gain Omnidirectional Antenna Using Negative Permeability Metamaterial

High gain W-shaped microstrip patch antenna

Research Article Theoretical and Experimental Results of Substrate Effects on Microstrip Power Divider Designs

Application Article Improved Low-Profile Helical Antenna Design for INMARSAT Applications

A COMPACT MULTIBAND MONOPOLE ANTENNA FOR WLAN/WIMAX APPLICATIONS

Research Article Wideband Dual-Element Antenna Array for MIMO Mobile Phone Applications

Research Article UWB Directive Triangular Patch Antenna

A NOVEL DUAL-BAND PATCH ANTENNA FOR WLAN COMMUNICATION. E. Wang Information Engineering College of NCUT China

Design of a Short/Open-Ended Slot Antenna with Capacitive Coupling Feed Strips for Hepta-Band Mobile Application

Research Article A Broadband Single-Feed Circularly Polarized Patch Antenna with Wide Beamwidth

A Compact Dual Band-Notched Ultrawideband Antenna with λ/4 Stub and Open Slots

Research Article Design and Analysis of Printed Yagi-Uda Antenna and Two-Element Array for WLAN Applications

Research Article Compact and Wideband Parallel-Strip 180 Hybrid Coupler with Arbitrary Power Division Ratios

DESIGN AND TESTING OF HIGH-PERFORMANCE ANTENNA ARRAY WITH A NOVEL FEED NETWORK

High Power 12-Element Triangular-Grid Rectangular Radial Line Helical Array Antenna

Single-Fed Low-Profile Circularly Polarized Antenna Using Quarter-Mode Substrate Integrated Waveguide with Enhanced Bandwidth

Implementation of Polarization Diversity for MIMO Application

DESIGN AND MANUFACTURE OF THE WIDE-BAND APERTURE-COUPLED STACKED MICROSTRIP AN- TENNA

Research Article A Novel CP Horn Antenna with Switchable Polarization by Single Port Feeding

Ultra-Wideband Patch Antenna for K-Band Applications

RCS Reduction of Patch Array Antenna by Complementary Split-Ring Resonators Structure

3D radar imaging based on frequency-scanned antenna

A Wideband Omnidirectional Dielectric Resonator Antenna Array

CIRCULARLY POLARIZED SLOTTED APERTURE ANTENNA WITH COPLANAR WAVEGUIDE FED FOR BROADBAND APPLICATIONS

A Wideband Dual-polarized Modified Bowtie Antenna for 2G/3G/LTE Base-station Applications

First-Order Minkowski Fractal Circularly Polarized Slot Loop Antenna with Simple Feeding Network for UHF RFID Reader

Compact Microstrip Magnetic Yagi Antenna and Array with Vertical Polarization Based on Substrate Integrated Waveguide

A Compact Dual-Band Dual-Polarized Antenna for Base Station Application

DESIGN OF A NOVEL WIDEBAND LOOP ANTENNA WITH PARASITIC RESONATORS. Microwaves, Xidian University, Xi an, Shaanxi, China

Research Article A Reconfigurable Coplanar Waveguide Bowtie Antenna Using an Integrated Ferroelectric Thin-Film Varactor

Research Article A Compact Experimental Planar Antenna with a USB Connector for Mobile Phone Application

A COMPACT DUAL INVERTED C-SHAPED SLOTS ANTENNA FOR WLAN APPLICATIONS

A Compact Wideband Slot Antenna for Universal UHF RFID Reader

QUADRI-FOLDED SUBSTRATE INTEGRATED WAVEG- UIDE CAVITY AND ITS MINIATURIZED BANDPASS FILTER APPLICATIONS

Wideband Double-Layered Dielectric-Loaded Dual-Polarized Magneto-Electric Dipole Antenna

Research Article SAR Reduction Using Integration of PIFA and AMC Structure for Pentaband Mobile Terminals

A CPW-Fed Dual-Band Slot Antenna with Circular Polarization

Jae-Hyun Kim Boo-Gyoun Kim * Abstract

Research Article Low-Profile Repeater Antenna with Parasitic Elements for On-On-Off WBAN Applications

New Design of CPW-Fed Rectangular Slot Antenna for Ultra Wideband Applications

Research Article A Broadband Circularly Polarized Stacked Probe-Fed Patch Antenna for UHF RFID Applications

A Broadband Omnidirectional Antenna Array for Base Station

Research Article Study on Millimeter-Wave Vivaldi Rectenna and Arrays with High Conversion Efficiency

A Printed Vivaldi Antenna with Improved Radiation Patterns by Using Two Pairs of Eye-Shaped Slots for UWB Applications

Research Article Design and Optimization of a Millimetre Wave Compact Folded Magic-T

Multi-Band Microstrip Antenna Design for Wireless Energy Harvesting

Implementation and Applications of Various Feeding Techniques Using CST Microwave Studio

Research Article A 60 GHz Planar Diplexer Based on Substrate Integrated Waveguide Technology

Design of Micro Strip Patch Antenna Array

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Planar Leaky-Wave Antennas Based on Microstrip Line and Substrate Integrated Waveguide (SIW)

Research Article Study on Horizontally Polarized Omnidirectional Microstrip Antenna

Research Article Triband Omnidirectional Circularly Polarized Dielectric Resonator Antenna with Top-Loaded Alford Loop

Design of a Wideband Planar Microstrip-Fed Quasi-Yagi Antenna

RESEARCH AND DESIGN OF QUADRUPLE-RIDGED HORN ANTENNA. of Aeronautics and Astronautics, Nanjing , China

UNIVERSITI MALAYSIA PERLIS

Research Article A DR Loaded Substrate Integrated Waveguide Antenna for 60 GHz High Speed Wireless Communication Systems

Optimized Circularly Polarized Bandwidth for Microstrip Antenna

Transcription:

Antennas and Propagation Volume 216, Article ID 898495, 7 pages http://dx.doi.org/1.1155/216/898495 Research Article A Design of Wide Band and Wide Beam Cavity-Backed Slot Antenna Array with Slant Polarization Huiying Qi, 1,2 Ke Xiao, 1 Fei Zhao, 2 Shunlian Chai, 1 and Wenlu Yin 2 1 College of Electronic Science and Engineering, National University of Defense Technology, Changsha, Hunan 4173, China 2 Southwest Electronics and Telecommunication Technology Research Institute, Chengdu, Sichuan 6141, China Correspondence should be addressed to Huiying Qi; qiqhy@163.com Received 11 June 216; Accepted 29 September 216 Academic Editor: Jaume Anguera Copyright 216 Huiying Qi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Design of antenna array under the limitation of restricted size is a challenging problem. Cavity-backed slot antenna is widely used because of its advantages of small size, wide band, and wide beam. In this paper, a design of wide band and wide beam cavity-backed slot antenna array with the slant polarization is proposed. To obtain wide band and wide beam with limited size, the inverted microstrip-fed cavity-backed slot antenna (IMF-CBSA) is adopted as the element of 1 4 antenna array. The slant polarized antennas and their feeding networks are adopted because of their simple structures. The performance of the proposed antenna array is verified by the simulations and experiments. The measured VSWR < 2 bandwidth is 55% at the center frequency 21.8 GHz, and the gain is larger than 12.2 db. Experimental results demonstrate that the proposed design achieves wide band and beam with the size of 68 mm 56 mm 14.5 mm. 1. Introduction Slot antennas have advantages of low-profile, light weight, and ease of integration [1, 2]. The cavity-backed slot antenna (CBSA), where the slot is backed with rectangular cavity, achieves unidirectional radiation [3 5]. The CBSA can be fed by probe [5], metal waveguide, substrate integrated waveguide (SIW) [6], and microstrip [7, 8]. With the use of printedcircuitboard,thestructureofthesiwandmicrostrip is simpler than the probe and metal waveguide. The size of microstrip is smaller than the SIW. Therefore, the microstripfed CBSA (MF-CBSA) has simple structure and small size. The bandwidth of the MF-CBSA element depends on the parameters of the slot. By the slot design, the slot antennas can have wider band than patch antennas. In general, the wide-slot MF-CBSA has larger bandwidth than the narrowslot MF-CBSA [9, 1]. For example, the bandwidth of the MF- CBSA in [1] achieves up to 35%. The inverted microstripfed CBSA (IMF-CBSA) has better performance on the gain and bandwidth than the MF-CBSA [11]. For example, the bandwidth of the IMF-CBSA in [11] is 43% which is larger than that of the MF-CBSA in [1]. Though the IMF-CBSA element has wide beam, the beam widths of the IMF-CBSA arrays in [11, 12] are not enough large because they are plane arrays. To obtain the wide beam array, the element should have wide beam and the array should be a linear array. The purpose of this study is to design an antenna array with the wide band, wide beam, high gain, and slant polarization. Though the IMF-CBSA arrays in [11, 12] obtain wide band and high gain, the polarization is horizontal polarization and circular polarization, respectively. The slant polarized and circular polarized antennas can receive both vertical and horizontally polarized waves. The slant polarized antennas and their feeding networks are simpler than those circular polarized antennas [13]. The slant polarization can be obtained by two methods: the simultaneously excited horizontal and vertical polarized element or rotating horizontal or vertical polarized element [14 17]. The antenna and feeding network designed by the second method are simpler than those of the first method. In this paper, a design of wide band and wide beam cavity-backed slot antenna array with the slant polarization is proposed. To obtain wide band and wide beam with limited

2 Antennas and Propagation Metal fixed strip Dielectric substrate Metal board Shielded cavity Feed line Via hole Rigid foam Dielectric substrate Slots X Y Z Feed hole Metal cavity Figure 1: 3D structure model of IMF-CBSA array. size, the inverted microstrip-fed cavity-backed slot antenna (IMF-CBSA) is adopted as the element of 1 4antenna array. The 45 slant polarization is achieved by slanting the IMF-CBSA. The good performance of the proposed antenna array is verified by the simulations and experiments. The measured VSWR < 2bandwidthis55%atthecenter frequency21.8ghz,andthegainislargerthan12.2db. 2. Structure of Slant Polarized IMF-CBSA Array 2.1. Structure of IMF-CBSA Array with Feeding Network. The structure design of the IMF-CBSA array with the feeding network is illustrated in Figure 1. The metal strips are added to fix the structure. The feeding network is designed and added. The exciting port of the array is a coaxial probe. Through a converting structure from the coaxial probe to the shielded microstrip line, the electromagnetic wave is transmitted to the shielded microstrip line. A 1-4 power divided network based on the shielded microstrip line is designed to feed four antenna elements with the equal amplitude and phase. Thewholesizeofthearraystructureis68mm 56 mm 14.5 mm. Figure 2 shows a block diagram of the feeding network configurations. As shown in Figure 3, the coaxial probe and the1-4powerdividerbasedontheshieldedmicrostripline are regarded as Region I. Region II is the converter from the shielded microstrip line to the microstrip line. 2.2. Slant Polarized IMF-CBSA Element Design. The configuration of the slant polarized IMF-CBSA element is shown in Figure 4. From the top to the bottom, there are four layers including a dielectric substrate covered on the top layer, a rigid foam layer, a dielectric substrate with a feeding line on the upper surface and a slot on the lower surface, and a back cavity on the bottom layer. The dielectric substrate is Rogers 588 with the relative permittivity ε r = 2.2 and the thickness Table 1: Geometrical parameters of the slant polarized IMF-CBSA element. Symbol Value (mm) Description l s 8.4 Slot length w s 5.6 Slot width l c 9. Cavity length w c 6.2 Cavity width h c 3.4 Cavity depth t.254 Dielectric substrate thickness h p 1.5 Rigid foam thickness s 4.8 Distance from the feeding line to the cavity short edge l m 2.95 Feed line extension from the cavity long edge w m.3 Width of the microstrip line.254 mm. The coordinate system is also shown in Figure 4. As shown in Figure 1, the antenna is rotated to have 45 slant polarization. The detailed geometrical parameters of the slant polarized IMF-CBSA element are listed in Table 1. These parameters are determined through the optimization process of simulations. The slant polarized IMF-CBSA is simulated to verify the performances. The voltage standing wave ratio (VSWR) of the antenna is shown in Figure 5, where the bandwidth of VSWR < 2 at the center frequency 23.45 GHz is about 61%. The radiation pattern at 22 GHz is shown in Figure 5. Themaximumgainis5.6dB.AttheXOZ-plane (i.e., φ = plane) and YOZ-plane (i.e., φ =9 plane), the 3 db beam width is 91 and 97, respectively. The maximum radiation direction is not perfectly perpendicular to the plane of the antenna (XOY-plane). This is because the feeding line is unsymmetrical along the long side and wide side direction of the slot. By adjusting the location of the feeding line, well radiation pattern direction is achieved.

Antennas and Propagation 3 Coaxial probe 1-4 power divider based on shielded microstrip line Region I Microstrip line Region II Figure 2: Block diagram of the feeding network configurations. 3.3 8.5 1 3.254.3 Section F-F 5 R.5 F F R3.5 3 2.75 3.6 4.3 R2.6 5.5.3 45 5.35.3.75 Unit: mm Figure 3: Structures of Region I in the feeding network. Dielectric substrate Slot Feeding line Z 45 O X Y Rigid foam Dielectric substrate Metal cavity w c w s S l c l s l m w m X O Y h c h p t t Cavity Rigid foam O (c) Z Figure 4: Configuration of the slant polarized IMF-CBSA element. 3D model; top view; (c) side view. 4. 3.5 3. 27 3 33 1 5 5 1 15 2 3 6 9 VSWR 2.5 2. 24 12 1.5 21 18 15 1. 16 18 2 22 24 26 28 3 φ= φ = 9 Figure 5: VSWR of slant polarized IMF-CBSA element obtained in the simulation; radiation pattern of slant polarized IMF-CBSA element obtained in the simulation.

4 Antennas and Propagation Figure 6: Photograph of the fabricated IMF-CBSA array. The unassembled product; the final product. 4. 3.5 3. VSWR 2.5 2. 1.5 1. 16 18 2 22 24 26 28 Figure 7: and measured VSWR of IMF-CBSA array. 3. Experimental Results and Discussions The photograph of fabricated IMF-CBSA array is shown in Figure 6. Both the simulated and measured VSWR for the IMF-CBSA array are presented in Figure 7. For VSWR < 2, the measured frequency ranges from 15.8 GHz to 27.8 GHz. Thus, the bandwidth of IMF-CBSA array is about 12 GHz, and the relative bandwidth is 55% at the center frequency 21.8 GHz. From Figure 7, we can observe that the simulated and measured performance achieves good coherence. However there is a little difference at 15.5 GHz and 28 GHz. This is because the simulation model does not have fixed screws and the via holes of shield microstrip line on the PCB adopt metal wall to reduce calculated amount. Figure8showsthesimulatedandmeasuredradiation patterns in XZ-plane and YZ-plane at 18 GHz, 22 GHz, and26ghz.fromfigure8,wecanobservethatthemeasured radiation patterns show good coherence with the simulated radiation pattern. The measured values of the beam width and the gain are listed in Table 2. At YZ-plane, the radiation pattern has wide beam which is larger than 59.1. Table2:beamwidthandgainofIMF-CBSAarray. Beam width ( ) Gain (db) φ = φ =9 φ = φ =9 18 24.3 59.1 12.2 9.98 22 21.3 84.3 13.46 9.67 26 18.3 84.3 13.11 1.37 Themaximumgainismorethan12.2dBwithinthewhole band. The radiation and aperture efficiencies are 86.8% and 91.8% at 22 GHz, respectively. To analyze the performance of feeding network, the feeding network simulation is conducted and the corresponding VSWR performance is shown in Figure 9. For Region I shown in Figure 2, the frequency of VSWR < 2rangesfrom15.5GHz to 28.5 GHz. For Region II shown in Figure 2, the VSWR value is below 1.7 in this whole band. From the results in Figure 9, we conclude that feeding network achieves good performance.

Antennas and Propagation 5 27 3 33 1 2 3 4 3 6 9 27 3 33 1 2 3 4 3 6 9 27 3 33 1 2 3 4 3 6 9 24 12 24 12 24 12 21 18 15 21 18 15 21 18 15 (c) 27 3 33 1 2 3 4 3 6 9 27 3 33 1 2 3 4 3 6 9 27 3 33 1 2 3 4 3 6 9 24 12 24 12 24 12 21 18 15 21 18 15 21 18 15 (d) (e) (f) Figure 8: and measured radiation patterns of IMF-CBSA array in XZ-plane (φ = )andyz-plane (φ =9 ): 18 GHz in XZ-plane; 18GHz in YZ-plane; (c) 22GHz in XZ-plane; (d) 22GHz in YZ-plane; (e) 26 GHz in XZ-plane; (f)26 GHz in YZ-plane. The simulated radiation pattern of the antenna array without the feeding network is also discussed. The configuration of the 1 4 IMF-CBSA array without feeding network is shown in Figure 1. In order to obtain the 45 slant polarization, each antenna element has a 45 rotation around the z-axis. To avoid producing grating lobe and reduce the mutual coupling, the distance d e between antenna elements is chosen to be 8.5 mm after the optimization process of simulation. The simulated performance of the antenna array without thefeedingnetworkisshowninfigure11andtable3.inthe φ =9 plane within the whole band, the gain of the array achieves at least 1.6 db, and the 3 db beam width of the array achieves at least 84.6.TheS-parameters of the IMF-CBSA array without feeding network are shown in Figure 12. The Sparameters of each port are less than 2 db; thus the mutual coupling between the elements is acceptable. Table 3: Beam width and gain of the IMF-CBSA array without feeding network obtained in the simulation. Beam width ( ) Gain (db) φ = φ =9 φ = φ =9 18 24.9 111.2 1.62 1.61 2 22.9 19.7 1.9 1.96 22 21.4 12. 11.64 11.79 24 19.5 94.1 12.52 12.55 26 18. 84.6 13.12 13.31 4. Conclusion A wide band and wide beam CBSA array with the slant polarization is proposed and investigated in this paper. The IMF-CBSA is chosen as the element of array to obtain the

6 Antennas and Propagation 2.2 2. 1.8 VSWR 1.6 1.4 1.2 1. 16 18 2 22 24 26 28 Region I Region II Figure 9: VSWR of feeding network in the simulation. Antenna element Feeding microstrip line 1 2 3 4 d X Y O e Figure 1: Configuration of the 1 4 IMF-CBSA array without feeding network. 27 3 33 1 1 2 3 3 6 9 27 3 33 1 1 2 3 3 6 9 27 3 33 1 1 2 3 3 6 9 24 21 18 15 12 24 21 18 15 12 24 21 18 15 12 φ= φ = 9 φ= φ = 9 φ= φ = 9 (c) Figure 11: Radiation pattern of the IMF-CBSA array without feeding network obtained in the simulation: 18 GHz; 22 GHz; (c) 26 GHz. wide band and wide beam. The 45 slant polarization is achieved by slanting the IMF-CBSA. The antenna array is simulated, fabricated, and tested. The measured VSWR < 2 bandwidth is 55% (15.8 27.8 GHz) at the center frequency 21.8 GHz. The gain is larger than 12.2 db. It exhibits wide beam and slant linear polarization with small size of 68 mm 56mm 14.5 mm. The experimental results also demonstrate that the measured radiation patterns are coherent with the simulated radiation patterns. Competing Interests The authors declare that there is no conflict of interests regarding the publication of this paper.

Antennas and Propagation 7 1 S-parameters (db) 2 3 4 5 16 18 2 22 24 26 28 S 21 S 31 S 32 S 41 S 42 S 43 Figure 12: S-parameters of the IMF-CBSA array without feeding network. Acknowledgments This work was supported by the Program of 214BAK12B3. References [1] H. G. Booker, Slot aerials and their relation to complementary wire aerials (Babinet s principle), JournaloftheInstitutionof Electrical Engineers, Part IIIA: Radiolocation, vol.93,no.4,pp. 62 626, 1946. [2] Y. Yoshimura, A microstripline slot antenna (short papers), IEEE Transactions on Microwave Theory and Techniques,vol.2, no. 11, pp. 76 762, 1972. [3] J. Galejs, Admittance of a rectangular slot which is backed byarectangularcavity, IEEE Transactions on Antennas and Propagation, vol. 11, no. 2, pp. 119 126, 1963. [4] C. Cockrell, The input admittance of the rectangular cavitybacked slot antenna, IEEE Transactions on Antennas and Propagation, vol. 24, no. 3, pp. 288 294, 1976. [5] S. A. Long, Experimental study of the impedance of cavitybacked slot antennas, IEEE Transactions on Antennas and Propagation,vol.23,no.1,pp.1 7,1975. [6] Q. Zhang and Y. Lu, 45 Linearly polarized substrate integrated waveguide-fed slot array antennas, in Proceedings of the International Conference on Microwave and Millimeter Wave Technology (ICMMT 8), pp. 1214 1217, Nanjing, China, April 28. [7] Q.Li,Z.Shen,andP.T.Teo, Microstrip-fedcavity-backedslot antennas, Microwave and Optical Technology Letters,vol.33,no. 4, pp. 229 233, 22. [8] Q.ZhangandW.Wu, Dual-bandmicrostrip-fedcavity-backed slot array of circular polarization, in Proceedings of the IEEE Antennas and Propagation Society International Symposium (APSURSI 13), pp. 172 1721, July 213. [9] Z. Chen and Z. Shen, A compact cavity-backed endfire slot antenna, IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 281 284, 214. [1] J. Hirokawa, H. Arai, and N. Goto, Cavity-backed wide slot antenna, IEE Proceedings H: Microwaves, Antennas and Propagation,vol.136,no.1,pp.29 33,1989. [11] Q. Li and Z. Shen, Inverted microstrip-fed cavity-backed slot antennas, IEEE Antennas and Wireless Propagation Letters,vol. 1, pp. 98 11, 22. [12] Q. Li and Z. Shen, An inverted microstrip-fed cavity-backed slot antenna for circular polarization, IEEE Antennas and Wireless Propagation Letters, vol. 1, pp. 19 192, 22. [13]C.Jin,Z.Shen,R.Li,andA.Alphones, Compactcircularly polarized antenna based on quarter-mode substrate integrated waveguide sub-array, IEEE Transactions on Antennas and Propagation,vol.62,no.2,pp.963 967,214. [14]X.Quan,R.Li,Y.Fan,andD.E.Anagnostou, Analysisand design of a 45 slant-polarized omnidirectional antenna, IEEE Transactions on Antennas and Propagation,vol.62,no.1,pp.86 93, 214. [15] R.F.Reinking,S.Y.Matrosov,R.A.Kropfli,andB.W.Bartram, Evaluation of a 45 slant quasi-linear radar polarization state for distinguishing drizzle droplets, pristine ice crystals, and less regular ice particles, Atmospheric and Oceanic Technology,vol.19,no.3,pp.296 321,22. [16] M. Kaboli, S. A. Mirtaheri, and M. S. Abrishamian, Highisolation X-Polar antenna, IEEE Antennas and Wireless Propagation Letters,vol.9,pp.41 44,21. [17] M. Amin, R. Cahill, and V. Fusco, Single feed low profile omnidirectional antenna with slant 45 linear polarization, IEEE Transactions on Antennas and Propagation,vol.55,no.11, pp. 387 39, 27.

Rotating Machinery Engineering The Scientific World Journal Distributed Sensor Networks Sensors Control Science and Engineering Advances in Civil Engineering Submit your manuscripts at Electrical and Computer Engineering Robotics VLSI Design Advances in OptoElectronics Navigation and Observation Chemical Engineering Active and Passive Electronic Components Antennas and Propagation Aerospace Engineering Modelling & Simulation in Engineering Shock and Vibration Advances in Acoustics and Vibration