Prediction of Reinforcement Effect by Screw on Triangular Embedment Perpendicular to the Grain with Variation of Screw Locations

Similar documents
SCREWS WITH CONTINUOUS THREADS IN TIMBER CONNECTIONS

PRO LIGNO Vol. 11 N pp

PERFORMANCE OF COMPOSITE SHEAR WALL PANEL OF LVL AND GRC BOARD

Moment-Resisting Connections In Laminated Veneer Lumber (LVL) Frames

Development of Wooden Portal Frame Structures with Improved Columns

Development of a joint system using a compressed wooden fastener I: evaluation of pull-out and rotation performance for a column sill joint

Title. CitationJournal of Wood Science, 58(4): Issue Date Doc URL. Rights. Type. File Information.

RESIDUAL SEISMIC PERFORMANCE OF WOODEN BUILDINGS BY LOW COST SENSOR RECORDING MAXIMUM CONNECTION DEFORMATION

NON-LINEAR CONNECTION MODELS IN TIMBER ENGINEERING

The predictive model for strength of inclined screws as shear connection in timber-concrete composite floor

Glued laminated timber beams repair.

Investigations on the Effectiveness of Self-tapping Screws in Reinforcing Bolted Timber Connections

Moment resistance of bolted timber connections with perpendicular to grain reinforcements

SELF-TAPPING SCREWS AS REINFORCEMENTS IN BEAM SUPPORTS. I Bejtka H J Blaß. Lehrstuhl für Ingenieurholzbau und Baukonstruktionen Universität Karlsruhe

Evaluation of the Partial Compressive Strength according to the Wood Grain Direction* 1

Engineering Research into Traditional Timber Joints

Joint analysis in wood trusses

Heat-Mechanics Interaction Behavior of Laminated Rubber Bearings under Large and Cyclic Lateral Deformation

Comparison of behaviour of laterally loaded round and squared timber bolted joints

EVALUATION OF THE STRUCTURAL BEHAVIOUR OF BEAM-BEAM CONNECTION SYSTEMS USING COMPRESSED WOOD DOWELS AND PLATES

Connection and performance of two-way CLT plates

Dowel type joints Influence of moisture changes and dowel surface smoothness. Erik Serrano and Johan Sjödin, Växjö University, Sweden

Lawrence A. Soltis, M. and Robert J. Ross, M. 1

A novel procedure for evaluating the rotational stiffness of traditional timber joints in Taiwan

Anti-check bolts as means of repair for damaged split ring connections

Load-carrying capacity of timber frame diaphragms with unidirectional support

Pull-compression tests on glued-in metric thread rods parallel to grain in different timber species and laminated veneer lumber

Effects of tightening speed on torque coefficient in lag screw timber joints with steel side plates

Glulam Connection Details

Experimental and numerical study of nailed laminated timber elements for in plane and transverse loading

Verbindungselemente Engel GmbH Weltestraße Weingarten DEUTSCHLAND. Manufacturing plant 74437, , ,

a) If a bolt is over-tightened, which will fail first the bolt, or the plastic?

LOAD CARRYING CAPACITY OF METAL DOWEL TYPE CONNECTIONS OF TIMBER STRUCTURES

Dowel connections in laminated strand lumber

Development of wooden-based nails for wooden pallet

Korean standards of visual grading and establishing allowable properties of softwood structural lumber

Effect of Vertical Load under Cyclic Lateral Load Test for Evaluating Sugi CLT Wall Panel

Finite Element Study of Using Concrete Tie Beams to Reduce Differential Settlement Between Footings

Ductility of large-scale dowelled CLT connections under monotonic and cyclic loading

EFFECTS OF GEOMETRY ON MECHANICAL BEHAVIOR OF DOVETAIL CONNECTION

Bolt Spacing and End Distance of Bolted Connection of Laminated Veneer Lumber (LVL) Sengon

NUMERICAL ANALYSIS OF SCREW ANCHOR FOR CONCRETE

AN IMPROVED SHEAR TEST FIXTURE USING THE IOSIPESCU SPECIMEN

Load carrying capacity of dowelled connections

EVALUATING ROLLING SHEAR STRENGTH PROPERTIES OF CROSS LAMINATED TIMBER BY TORSIONAL SHEAR TESTS AND BENDING TESTS

SIMULATION AND EXPERIMENTAL WORK OF SINGLE LAP BOLTED JOINT TESTED IN BENDING

European Technical Assessment. ETA-16/0902 of 17 March English translation prepared by DIBt - Original version in German language.

Effect of Bolt Layout on the Mechanical Behavior of Four Bolted Shear Joint

Ingenious hardwood. Ingenious hardwood. Order our BauBuche sample box free of charge. 1

Keywords: Bracing bracket connection, local deformation, selective pallet racks, shear stiffness, spine bracings.

Eurocode EN Eurocode 3: 3 Design of steel structures. Part 1-1: General rules and rules for buildings

Lateral Load-Bearing Capacity of Nailed Joints Based on the Yield Theory

Moment Resisting Connections for Load Bearing Walls

LS-DYNA USED TO ANALYZE THE MANUFACTURING OF THIN WALLED CANS AUTHOR: CORRESPONDENCE: ABSTRACT

Three-dimensional finite element analysis of the Japanese traditional post-and-beam connection

THE EFFECT OF THREAD GEOMETRY ON SCREW WITHDRAWAL STRENGTH

2002 ADDENDUM to the 1997 NDS and PRIOR EDITIONS

INFLUENCE OF PILES ON LOAD- SETTLEMENT BEHAVIOUR OF RAFT FOUNDATION

1. Enumerate the most commonly used engineering materials and state some important properties and their engineering applications.

VERSA-LAM. An Introduction to VERSA-LAM Products

An Investigation of Optimal Pitch Selection to Reduce Self-Loosening of Threaded Fastener under Transverse Loading

Hanger bolts and solar fasteners in sandwich panels

Load Cells Shear beam load cells SIWAREX WL230 SB-S SA

Finite Element Modeling of Early Stage Self-loosening of Bolted Joints Haoliang Xu 1, a, Lihua Yang 1, b,, Lie Yu 1,2, c

Calibration of Hollow Operating Shaft Natural Frequency by Non-Contact Impulse Method

Robust Die Design with Spiral-shape Cavity

Structural Strength of Lapped Cold-Formed Steel Z-Shaped Purlin Connections with Vertical Slotted Holes

Bolts and Set Screws Are they interchangeable?

STRUCTURAL TIMBER DESIGN

Instruction Manual for installing

CHAPTER 5 FAULT DIAGNOSIS OF ROTATING SHAFT WITH SHAFT MISALIGNMENT

Improved Arcan Shear Test For Wood

American Institute of Timber Construction 7012 South Revere Parkway Suite 140 Centennial, CO Phone: 303/ Fax: 303/

An Alternative Formulation for Determining Stiffness of Members with Bolted Connections

Dynamic Analysis of Infills on R.C Framed Structures

Behaviour of tensile strength and displacement concerning Big Screw Joint with Cross Laminated Panel

European Technical Assessment ETA-13/0029 of 11/07/2017

Simplified analysis of timber rivet connections

Formulae for calculations A) Nomenclature

Statement for nail plate LL13 Combi

Effect of Tie Beam Dimensions on Vertical and Horizontal Displacement of Isolated Footing

Quick Connect Moment Connection

Evaluation of service life of jointed rails

Sliding shear capacities of the Asymmetric Friction Connection

Use of grooved clamping plate to increase strength of bolted moment connection on cold formed steel structures

STUDY AND ANALYSIS OF ANGULAR TORQUING OF ENGINE CYLINDER-HEAD BOLTS USING TORQUE-TO-YIELD BOLTS: A CASE STUDY

CHAPTER 3 SHORT CIRCUIT WITHSTAND CAPABILITY OF POWER TRANSFORMERS

A STUDY ON PATTERN DAMAGE OF FINGER JOINTS IN BAMBOO LAMINATED BEAMS

TEST SERIES TO EVALUATE THE STRUCTURAL BEHAVIOUR OF ISOBOARD OVER RAFTER SYSTEM

Design Manual for M.C.M.E.L ALUMINUM STAIRCASE System

CHARACTERISTICS OF LUMBER-TO-LUMBER FRAMING CONNECTIONS IN LIGHT-FRAME WOOD STRUCTURES

ANALYSIS OF LATERAL STIFFNESS FOR INFILLED FRAME WITH OPENING

Tensile strength of ASSY plus VG screws wood-wood (softwood)

nineteen Wood Construction 1 and design APPLIED ARCHITECTURAL STRUCTURES: DR. ANNE NICHOLS FALL 2016 lecture STRUCTURAL ANALYSIS AND SYSTEMS ARCH 631

Prying of a Large Span Base Plate Undergoing a Moment Load Applied by a Round Pier

The Behaviour Of Round Timber Sections Notched Over The Support On The Tension Face. Justin Dewey

Verification Processes for. (CLT) in the Frame of EN. Graz University of Technology. Speaker: holz bau forschungs gmbh, Graz

TIMBER-CONCRETE COMPOSITE STRUCTURES WITH PREFABRICATED FRC SLAB

Mechanical behavior of fiberglass reinforced timber joints

THE ENGINEERED WOOD ASSOCIATION

Transcription:

Open Journal of Civil Engineering,,, 67-73 http://dx.doi.org/.436/ojce..3 Published Online September (http://www.scirp.org/journal/ojce) of Reinforcement Effect by Screw on Triangular Embedment Perpendicular to the Grain with Variation of Screw ocations Satoru urakami, Akihisa Kitamori, Kiho Jung, Wen-Shao Chang, Kohei Komatsu Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Kyoto, Japan Email: murakamisatoru@rish.kyoto-u.ac.jp Received August, ; revised September, ; accepted September 4, ABSTRACT In this study, the reinforcement by screws for the wood perpendicular to the grain subjected to a rotational moment has been studied. For the estimation of rotational stiffness and yield moment, the reinforcement effect by the screws which varies depending on their position under the bearing plate was evaluated by taking the internal displacement distribution of the wood into account. The Finite Element Analysis (FEA) was used to investigate the internal displacement distribution of the wood. Then an appropriate function was found out to meet well with various internal displacement distributions under the bearing plate. The equations, which can estimate rotational stiffness and yield moment of the bearing performance of the wood reinforced by screws, were derived from the shear resistance mechanism between the screw and wood by considering their relative displacement distribution. Then rotational tests were carried out with the wood reinforced by the screws, setting screw thread at the various positions. Agreements between prediction and experimental results were very well. It was found that the screw reinforcement was effective, provided screw length should be longer for the wood height. Keywords: Screw; Reinforce; FEA; Rotational Performance; Timber Structure. Introduction The compression performance of wood perpendicular to the grain is remarkably inferior to that of wood parallel to the grain. In the case of the portal frame of through-bolt type as shown in Figure (on the left), the end grain of the beam and the steel plate will be embedded in the side surface of column triangularly. In order to improve the joint performance of timber structures, the enhancement of the bearing performance might be one of the possible choices. It is an effective method to insert the screws into the wood perpendicular to the grain as shown Figure. Therefore the studies on the screw reinforcement of bearing performance by inserting screws in the direction perpendicular to the wood grain has been carried out [-3]. In reference [3], we have introduced a calculation method of stiffness and strength for screw reinforcement by considering the position of the thread of the screws. It was found that the effect of screw reinforcement varied depending on the position of screws thread. This was thought due to the inner displacement distribution on partial compression. Since it was reported in the previous study [4] that there were outstanding differences on inner stress distribution of the wood depending on the cases subjected to uniform compression or triangular compression by the rotational moment, it was assumed that the tendency of inner displacement will not be the same for both cases. Although previous studies [-3] focused on only uniform embedment case, as triangular embedment caused by moment resisting joint in portal frame structure has been getting interests among Japanese timber engineers recently, we intended to treat with triangular case. In this study, assuming continuous column and column cut up to the same level as the upper surface of beam, the performance of the wood perpendicular to the grain deformed triangularly when they are received rotational moment was studied. Hereinafter we call them as continuous beam and cantilever beam respectively. It is because the stress distribution on the bearing area may be different depending on with and without the extend part of the wood. Then, the mechanical model with the screw reinforcement of rotational performance of the wood is proposed by considering the internal displacement distribution of the wood obtained by FEA. Copyright SciRes.

68 S. URAKAI ET A.. echanical odel In the case where the wood reinforced by the screws is subjected to rotational moment as shown in Figure, the resistance moment due to embedment resistance of wood ( W ) and that due to individual screw ( S ) are assumed to be independent. Hence, the total moment resistance can be expressed by Equation (). n () W In Equation (), is the total moment resistance and n is the number of inserted screws. Because is the function of the rotational angle (), therefore, the total rotational stiffness (R) is obtained from rotational stiffness of the wood (R W ) and that of the screws (R S ) as shown in the Equation (). R R nr () W s can be expressed as multiplying the distance of the screw form the rotational centre (x i ) and the resistance force (P S ). Px R (3) S S S S i S Then, can be expressed as below by using the displacement on the wood surface (δ i ) and x i. x (4) Then, R S can be shown by using the P S obtained from Column Steal plate Bolts Non reinforcement Beam i i Screws for reinforcement Screw reinforcement Figure. The models of portal frame of through-bolt type. Wood δ W s Distributions Figure. Distributions of compression displacement of wood. previous study [3]. And, the displacement distribution of wood (δ W ) can be written as Equation (6). x RS ba a cosh z x W uks xi z b cosh sinh z x, z z sinh z x sinh Here, a and b are the positions on the vertical axis (z-axis) at the beginning and end of the thread. And ηis the function to decide the form of the displacement distribution and is obtained as follows. x x x (7) In the case of the uniform embedment, the value of α in Equation (7) is denoted as mentioned in previous study [3]. While in the case of triangular embedment, the value of α must be different from uniform case. Therefore, FEA was carried out in order to obtain the value of α for triangular embedment in the next chapter. The yield rotational angle can be defined as the deformation angle of the wood when whichever the screws or the wood reaches to the yield displacement earlier. x S_ y sinh (8) y min, w_ y xi b sinhsinh z where: W _ y is the yield displacement of the wood. The yield strength ( y ) can be obtained by using the total initial stiffness (R) as follows. R (9) 3. aterials and ethods 3.. Finite Element Analysis y 3... Continuous Wood Beam In order to decide the function of η, two-dimensional elastic analyses for the wood subjected to triangular embedment at the centre were conducted using commercially available FEA software SC s arc (Ver. ). Detecting influence of the distributions of δ W, the width of the bearing plates, was varied from 3 to 5 y (5) (6) Copyright SciRes.

S. URAKAI ET A. 69 mm as a parameter. The configuration of the wood analysed is shown in Figure 3. The centre of the wood was put between two rigid bodies and the wood forced to be deformed triangularly by letting two rigid bodies rotated with. rad, whose rotational centers were at the centers of the wood surface contacting with each rigid body. This moment makes triangle deformation to the wood. Since the internal displacement on the z direction at the any positions hardly changed even if the friction coefficient changed, the friction coefficient was set to zero which was easier for computation only to acquire the reinforcement effect of the screws. Five different widths ranging from.3 to times of the height (z ) were modeled. The end distance was set at 4 mm, referring to report by adsen [5]. Sitka Spruce (Picea sitchensis) was used for the specimen as the experimental verification. The material constants inputted into FEA are indicated in Table, referring to [6]. 3... Cantilever Wood Beam The configuration of the wood analysed by FEA is shown in Figure 4 in accordance with [5]. The edge distance in each condition is 4 mm. Five different widths ranging from.3 to times of z were modeled. The other test conditions are the same as those of the pervious clause. 3.. Rotation Tests 3... Continuous Wood Beam The steel frame used for the rotational test of the wood is z x : 3, 5, 8, 5 Plate Width 4 Z : *Unit : mm Figure 3. Configuration of the wood analysed by FEA (Continuous beam). z x : 3, 5, 8, 5 Plate Width 4 Z : *Unit : mm Figure 4. Configuration of the wood analysed by FEA (Cantilever beam). Table. Elastic constants. Young s modulus Shear modulus Poisson s ratio shown in Figure 5. Every corner point was pin jointed. By applying the force to the top of the frame horizontally a rotational moment is induced in the wood. The steel plates directly contacted to the wood were not fixed to the centre jig mechanically. Because two. mm thick polytetrafluoroethylene sheets were placed between the two steel plates and steel frame to avoid the influence of friction, the steel plates contacted with the wood specimen can be slid freely. Two screws were inserted on the both sides of the wood 9 mm apart from the centre of specimen as shown in Figure 5. Since two parts on the wood to be embedded, 4 screws in total were inserted each specimen. In order to change the positions of the thread on z-axis in the wood, four types of the screws with four different lengths respectively were used (Figure 6), having the equal thread length of mm. Also, the condition of inserting the full-threaded screws with the length of 5 mm (F5) was used for the test. After inserting the screw up to the designated position, the protruded parts of the screws over the wood surface were cut off with a grinder. Glulam of spruce (density in dry condition: 49.3 ± 46. kg/m 3, moisture Content:.% ±.8%) with the dimensions of () (R) 5 (T) [mm] was used. The screws with outer and inner diameters of its thread, 6. and 4.4 mm respectively, were inserted, 9 mm apart from the rotational centre. Transducers (Tokyosokki s CDP-) were put on the asymmetrical opposite sides, 95 mm apart from the centre of specimen to measure the rotation due to the embedment. For comparison, the wood without the screws was also z Plate Width 4 x : 3, 5, 8, 5 Z : *Unit : mm Figure 4. Configuration of the wood analysed by FEA (Cantilever beam). 5 5 5 5 5 5 P (=P 5) E x E z (N/mm ) G (N/mm ) v xz v zx 689 76 755.3.5 Figure 5. Rotational test set-up (Continuous beam). Copyright SciRes.

7 S. URAKAI ET A. z z3 z5 z7 4 6 F5 5 oment (knm) 5 W_y max.9 max.-.4.4-.9.5 5.4 max ine raised up. R W max W _ y Stiffness line...3 3.4 4.5 5 Rotational angle (rad) Figure 7. Calculation method of R W and W_y. Figure 6. Positions of the thread on z-axis. tested. Six replications were prepared for each condition. The rotational moment was applied at the constant speed of / rad/min. The moment was calculated by multiplying the load measured by the load cell and the vertical distance between the centre of the specimen and the load cell. The rotational stiffness and yield moment in the condition without the screws (R W and W_y ) were calculated by using the automatic extraction program PICKPOINT [7] as shown in Figure 7. 3... Cantilever Wood Beam Figure 8 shows the test set up for cantilever type specimen. The test parameter was also the position of the thread in the vertical axis (z) as shown in Figure 6. The other test conditions are the same as those of the pervious clause. 4. Results and Discussion 4.. Finite Element Analysis 4... Continuous Wood Beam The FEA results are shown in Figure 9, as continuous lines. The vertical axis shows the z-directional position of the wood and the horizontal values indicates displacement in each location apart from the centre to that of the edge on the bearing area. The forms of the distribution become being arched as much as distant from the specimen centre on x-axis. The unknown parameter α in Equation (7) was determined as 5. by employing least squares method so as to fir with FEA results. This value was rounded off to the natural number of 5. The displacement distributions calculated by Equation (8) using α = 5 were shown as open circles in Figure 9. 4... Cantilever Wood Beam The FEA results are shown in Figure. The displacement distributions with the same distance from the centre of with and without the extra wood part were added at 5 5 z-direction (mm; Top:, Bottom: - ) 5 5 5 5 P (=P 5) Figure 8. Rotation test (Cantilever beam). - -4-6 -8 - % FEA 4% 6% 8% % xi Predicted Distribution Figure 9. Displacement distribution on each cross-section (Continuous beam). z-direction (mm; Top:, Bottom: - ) - -4-6 -8 - % FEA xi 4% 6% 8% % Predicted Distribution Figure. Displacement distribution on each cross-section (Cantilever beam). Copyright SciRes.

S. URAKAI ET A. 7 the same place with reversing the condition of the side without the extra length. The unknown parameter α in Equation (7) was determined as 4.87 by employing least squares method so as to fir with FEA results. Also, this value was rounded off to the natural number of 5.The displacement distributions calculated from Equation (7) in which the value of α was substituted the number of 5 were shown as open circles in Figure. Then, it is concluded that the number of 5 is appropriate for the value of α regardless of the extra wood part. 4.. Rotation Tests 4... Continuous Wood Beam Figure shows the relationships between the rotation moment and rotational angle (- relationship). And Figures and 3 show the comparisons between experimental results and predicted results in rotational stiffness and yield moment respectively. For the prediction of rotational stiffness and yield moment, the date of the screw shown in Table and the rotational stiffness and yield moment without screw reinforcement were substituted into Equations (8) and (9). These characteristic values of screw were obtained by using the same test and calculation methods in [3]. Comparison between the results for with and without the screw reinforcement, the improvement in strength is oment (kn m) oment (kn m) oment (kn m).5 z-.5 z-3..4..4 Rotatio nal angle (rad.) oment (kn m).5 z-5.5 z-7..4..4 Rotatio nal angle (rad.) Predicted stiffness Ave. without screw Predicted Py Figure. - relationships (Continuous beam). Table. Characteristics value of screw. uk s (N/mm ) up s (N/mm) P max (mm) Ave..63 6.38.8 S.D. 4.34 7.4 4.88 Rotational Stiffness (knm/rad) 4 3 3 5 7 Figure. Comparison in rotational stiffness. Yield oment (knm).5 3 5 7 Figure 3. Comparison in rotational moment. obvious. As concerns - relationships with screw reinforcement, their characteristics become near to ideal elasto-plastic behavior. In the case where the screw length was short for the wood height, the reinforcement effect is very lower. While, the reinforce effect increase with choosing longer screw. onger screw increases the rotational stiffness. While the yield moments of z-7 are smaller than those of z-5. And it can be conclude that the experimental results were well predicted by the equations derived in this study. 4... Cantilever Wood Beam The curves of - relationships on the conditions with the full-threaded screw were shown in Figure 4. These two graphs indicate the condition of continuous and cantilever beams respectively. Because the pull-out performance of the full-threaded screw shows sudden decrease of the resisting force, the moment gradually decreased after reaching the maximum point. Since there is no extra wood part on the one side in the case of the cantilever and the embedded volume in the case of cantilever beam is smaller than that in the case of the continuous beam, the moment of the continuous beam is a little bit higher than that of cantilever beam if they are the same rotational angle. But, as introduced earlier, it is considered that the effect of the screw were the same between them. Figures 5 and 6 show the features of continuous beam and cantilever beam reinforced by the full-thread screws rotated by.5 rad. respectively. In these tests, no brittle failures were observed. However, in order to Copyright SciRes.

7 S. URAKAI ET A. oment (kn m).5.5 Continuous..4 Predicted stiffness oment (kn m).5.5 Cantilever..4 Ave. without screw Predicted Py Figure 4. - Relationships on the conditions of F5. oment (kn m) oment (kn m).5 z-.5 z-3..4..4 oment (knm) oment (knm).5 z-5.5 z-7..4..4 Ave. without screw Predicted stiffness Predicted Py Figure 7. Relationships between moment and rotational angle (Cantilever beam). Figure 5. Continuous beam rotated by.5 rad. Figure 6. Cantilever beam rotated by.5 rad. prevent brittle failure due to excessive number of screws, it is required to use appropriate numbers of screws. Figure 7 shows - relationships of cantilever beam. And, Figures 8 and 9 show the comparisons between experimental results and predicted results in rotational stiffness and yield moment respectively. In the case where the screw length for the wood height was short, the reinforce effect is very lower same as the case of the continuous beam. However, it can be concluded that the longer screws for the wood height are, the higher performance of screw reinforcement can be obtained. While, in the case where the length of the inserted screw is too long, the declines of the yield moments were observed as well as the case of Continuous beam. It is thought that the reason of decline is because of the short length of the wood under the screw. This point should be noticed. Rotational Stiffness (knm/rad) 4 3 3 5 7 Figure 8. Comparison in rotational stiffness. Yield oment (knm/rad).5 3 5 7 Figure 9. Comparison in rotational moment. 5. Conclusion Regardless the length of the extra wood part where in not subjected to the rotational moment directly, the value of 5 is appropriate for α which decide the shape of the displacement distributions of the inner wood from the FEA results. From the rotation tests on both continuous and cantilever beam specimens, the reinforce effect is high in the case where the screw length is long. Proposed equations appear to be satisfactory to predict the rotational stiffness and yield moment of the wood reinforced by screws. Copyright SciRes.

S. URAKAI ET A. 73 6. Acknowledgements Thanks are due to Kokubu Corp. for donations of screws. In this research work we used the supercomputer of ACCS, Kyoto University. REFERENCES [] I. Bejtka and H. J. Blass, Self-Tapping Screws as Reinforcements in Beam Supports, CIB-W8, Florence, 6. [] I. Bejtka, Verstärkung von Bauteilen aus Holz mit Vollgewindeschrauben, Band der Reihe Karlsruher Berichte zum Ingenieurholzbau. Herausgeber, Karlsruhe University, Karlsruhe Germany, 5 (In German). [3] S. urakami, A. Kitamori, K. Jung, I. B. Hassel and K. Komatsu, of Reinforcement Effect by Screws on Compression Performance of Wood Perpendicular to the Grain, Open Journal of Civil Engineering (Accepted). [4] A. Kitamori, K. Jung, Y. Kataoka and K. Komatsu, Effect of Additional ength on Partial Compression Perpendicular to the Grain of Wood: Difference among the Supporting Conditions, Journal of Structural and Construction Engineering, Vol. 74, No. 64, 9, pp. 477-485 (In Japanese). [5] B. adsen, R. F. Hooley and C. P. Hall, A Design ethod for Bearing Stresses in Wood, Canadian Journal of Civil Engineering, Vol. 9, No., 98, pp. 338-349. doi:.39/l8-35 [6] Forest Research Institute of Forestry Agency, Handbook of Wood Industry, aruzen, Tokyo, 98 (In Japanese). [7]. Karube,. Harada and T. Hayashi, A Proposal of Bi-inear odeling Tool for Assess Its ethod and Problems in Common Tool for oad-deformation Curves of Wooden Structures, Digests of Annual eeting of Architectural Institute of Japan, C-, III,, pp. 5-6 (In Japanese). Copyright SciRes.