B Operating Instructions /

Similar documents
B Operating Instructions V1.00/EN/

JUMO BlackLine CR-GT/-EC/-GS Conductive 2-Electrode Conductivity Sensor

Inductive conductivity transmitter JUMO CTI-Junior

Inductive Conductivity/Concentration and Temperature Transmitter with switch contacts

ecotrans Lf 01/02 Transmitter / Switching Device for Conductivity Type B Operating Instructions 02.07/

BlackLine Lf-GT / -EC electrolytic 2-electrode conductivity cells

Electronic Thermostat TE-1 Version according to EN

JUMO dtrans T02 Programmable 4-wire Transmitter (Smart Transmitter)

JUMO dtrans T01 HART / T01T HART / T01 Junior / T01 Ex / T01 HART Ex Programmable 2-wire transmitter

JUMO dtrans T03 J, B, T Analog 2-wire transmitter with digital adjustment. JUMO dtrans T03 BU, TU Analog 3-wire transmitter with digital adjustment

Magnetic Inductive Flow Sensor induq

JUMO dtrans T01 HART / T01T HART / T01 Junior / T01 Ex / T01 HART Ex Programmable 2-wire transmitter

JUMO dtrans T03 J, B, T Analog 2-wire transmitter with digital adjustment. JUMO dtrans T03 BU, TU Analog 3-wire transmitter with digital adjustment

LF Conductivity Measuring Probe

OPTISENS PH 8100 Technical Datasheet

Endress Hauser. SmarTec M CLD 133 Conductivity Measurement

dtrans Lf 01 µp transmitter / controller for electrolytic conductivity

OPTISENS PH 8390 Technical Datasheet

OPTISENS ORP 8590 Technical Datasheet

Measuring and Controlling Unit Multronic OC

JUMO dtrans T04 Four-wire Transmitter, settable via DIP switch/pc setup program

Resistance Thermometers Model Series TR7X0, Sheathed Design

Condumax W CLS19. Technical Information. Conductivity sensors Two-electrode sensors with cell constants k = 0.01 cm 1 or k = 0.

FMG90 Series Electromagnetic Flow Meter

Conductivity Transmitter

ph or ORP Transmitter

dtrans Az 01 µp Indicator/Controller for analytical measurement

Measuring and Controlling Unit Multronic

OPTISENS PH ph sensor. Technical Datasheet

Technical Information Condumax CLS21D/CLS21

Operating Instructions K-POWERgrip EWL Always on the safe site.

Technical Information Orbipore CPS91D and CPS91

Digital conductivity transmitter

JUMO dtrans T02 Programmable 4-wire Transmitter (Smart Transmitter)

OPERATING MANUAL. ba15358e03 09/2014 F 500 DIN, F 500 BNC F 800 DIN, F 800 BNC FLUORIDE SENSITIVE ELECTRODE

Analog outputs (option) Outputs 1 + 2: 0(4) - 20 ma or 0-10 V

SMARTPAT COND 1200 Technical Datasheet

Instruction Manual MSC710 MSC710-U MSC710-I

TYPE 3740XL EXTRA LARGE WET RUNNING CARTRIDGE SPLIT SEAL

Operating Instructions for Microwave Level Switch. Model: LNM

Condumax W CLS19. Technical Information. Conductivity sensors Two-electrode sensors with cell constants k = 0.01 cm 1 or k = 0.

TYPE 3740/3740D WET/DRY RUNNING CARTRIDGE SPLIT SEAL

JUMO di 32 / di 08. Brief description. Block structure

Conductivity sensor for hygienic applications

dtrans Rw 01 µp transmitter / controller for high-purity water

Water Level Meter: Op Instructions

Inductive Conductivity Meter ILM

ARROW SAW PRECISE CUT 8000 RPM WITH DUST COLLECTING ATTACHMENT INSTRUCTION BOOK MODEL NO

Transducer transmitter BILT 4 II 2(1) G. Technical Manual

Magnetic Inductive Flow Sensor

XT Technical Documentation. The magnetostrictive level sensor. Edition: Version: 1 Article no.:

Operating Manual Riveting Tool R1. For installing blind rivet nuts

JUMO Wtrans probe. RTD temperature probe with wireless transmission of the measured values. B Operating Manual /

SERVICE ADVISORY SA-11

JUMO CTI-500. Inductive Conductivity/Concentration and Temperature Transmitter with switch contacts. Type Brief description.

Technical Information Smartec CLD18

Motor spindle Operating Instructions. Ref

Accessories for sensors

Quick Start Guide LIQ-QSG-226, Rev F June Rosemount 226. Toroidal Conductivity Sensors

Lines, plugs and sockets for ph, redox, conductivity and temperature sensors

Mounting instructions. Antenna covers. for VEGAPULS 68. Document ID: 33543

Technical Information Smartec CLD18

Fifth-wheel coupling JSK 38/50

SMARTPAT PH 1590 Technical Datasheet

1. The electrodes are comprised of four main parts: the PEEK piece, glass rod, bolt and stainless steel rod.

JUMO ecotrans Lf 03 Microprocessor Transmitter / Switching Device for conductivity or resistivity and temperature

Ceramax CPS341D. Technical Information

J IPC IGBT power converter

Mineral-insulated resistance thermometers to EN

Sliding Door Enclosure. Telephone Cleaning. Please retain this manual after installation for future reference and maintenance.

Memosens CPS96D. Technical Information

Condumax CLS21 and CLS21D

Gas-actuated combi-thermometer with Pt100 electrical output signal Model 76, stainless steel version

Technical Information Condumax CLS15D/CLS15

OPTISENS PH 8500 Handbook

Humidity Temperature Sensor TFG80 Duct version with Polyga measuring element

Wind Transmitter - with analogue output xxx

Inductive Conductivity/Concentration and Temperature Transmitter with switch contacts. Temperature sensor. Graphics LC display.

Drinking water monitoring

SensyTemp TSBA (BA R) Resistance thermometer for building automation, machine construction and environmental engineering

Signal converter for electromagnetic flowmeters

Resistance thermometers for process technology

Industrial Conductivity (Electric Conductivity) Detector

Type PLC Fitting. Valve for Continuous control. Diaphragm valve. Output

Product Manual MNX10050 / REV B MODELS:

FMG70B Series Magnetic Inductive Flow Sensor

Temperature Sensor with M12 hygienic

Digital inductive conductivity transmitter

Product Manual MNX10050 / REV C MODELS:

Melt pressure Transmitter GREENLINE Type DTAI with Temperature element

INSTALLATION INSTRUCTIONS

Condumax W CLS15 and CLS15D

Repair manual. Fifth-wheel coupling JSK 38/50

Operating manual FDO 925. Optical D.O. sensor

W100/W600/W900 Controller ph Electrode Troubleshooting Guide

Instruction manual. ZCO 2410 Conical mandrel tester

Maintenance Information

Miniature resistance thermometer Model TR33, thread-mounted

OEM miniature resistance thermometer Models TR31-3 and TR31-K, thread-mounted

Process Automation. Sensors and Systems: Level Sensors Level Switches Overfill Prevention Pressure Sensors Temperature Sensors

Transcription:

Conductivity/ultra-pure water measuring cells with a twin-electrode system Types 202922, 202923, 202924 and 202925 Glass conductivity cells, type 201080 Diaphragm tubes, type 201083 Compensation thermometer, type 201085 N cable socket, type 201090 B20.2900.01 Operating Instructions 2009-12-10/00550313

Warning A sudden sensor malfunction could potentially result in dangerous and imprecise dosing! Suitable preventive measures must be in place to prevent this from happening. Note Please read these operating instructions before putting the instrument into operation. Keep the manual in a place which is accessible to all users at all times. All the necessary settings are described in these operating instructions. If any difficulties should nevertheless arise during startup, please do not tamper with the instrument in any way. By doing so, you could endanger your rights under the instrument warranty! Please contact your supplier. Note Conductive conductivity cells are not authorized for use in highly adherent, oily or glutinous media - we recommend using our inductive conductivity measuring instruments here! Note A flat-rate charge of EUR 35 will be made if we receive instruments without a description of their fault. This fee will be added to the possible cost of repair.

Contents 1 Conductivity/ultra-pure water measuring cells with a twinelectrode system, types 202922, 202923, 202924 and 202925 2 1.1 Application 2 1.2 Principle of measurement 2 1.3 Measuring cells for laboratory and industrial use 2 1.4 Measuring ranges 2 1.5 Electrical connection 3 1.6 Installation 4 1.7 Maintenance / cleaning 5 1.8 Troubleshooting 5 1.9 Screwing the conductivity cell into the fitting 6 2 Glass conductivity cells, type 201080 8 2.1 Application 8 2.2 Technical data 9 2.3 Mounting 9 2.4 Maintenance 9 3 Diaphragm tubes, type 201083 10 3.1 Application 10 3.2 Technical data 10 3.3 Mounting 11 3.4 Maintenance 12 4 Compensation thermometers, type 201085 13 4.1 Application 13 4.2 Technical data 13 4.3 Mounting 14 5 N cable socket, type 201090 16 5.1 Application 16 5.2 Mounting 17

1 Conductivity/ultra-pure water measuring cells with a twin-electrode system, types 202922, 202923, 202924 and 202925 1.1 Application Conductive conductivity cells are used in conjunction with suitable transmitters in industrial analysis measurement technology to determine the electrolytic conductivity of liquid media (or the resistance, in the case of ultra-pure water). T 1.2 Principle of measurement Two conductive electrodes of a defined area are immersed in the sample medium, a specific distance apart. An AC voltage of a specific measurement frequency (subject to the measuring range), is supplied to the electrodes by a separate transmitter. The conductive components (ions, salts) contained in the sample medium cause an alternating current to appear between the electrodes, which the transmitter uses to determine and display the conductivity, and convert it to a standard signal. 1.3 Measuring cells for laboratory and industrial use Conductivity cells consists of a plastic or stainless steel flowthrough, immersion or screw-in body and the embedded electrodes. Depending on the type, application and measuring range, the two electrodes are made from materials such as stainless steel, titanium, platinum or special-purpose graphite. The conductivity cells come from the manufacturer with a fixed cell constant, K [1/cm]. Typical cell constants include: K=0.01 / 0.1 / 1.0 / 3.0 or 10.0. Intermediate values are possible for customized versions. The downstream transmitter must be set to the cell constant of the measuring cell. Additional temperature sensors can be installed in the measuring cells, subject to the particular application. 1.4 Measuring ranges The measuring range of conductive conductivity cells is physically restricted to max. 200 ms/cm. 2

The measuring ranges are roughly divided up according to cell constants, in the table below. Note The actual measuring range limits will vary, depending on the electrode material, the design and the downstream transmitter! Cell constant K [1/cm] Max. measuring range 0.01 up to 5 µs/cm or 20 MΩcm 0.01 up to 10 µs/cm 0.1 up to 3000 µs/cm 1.0 up to 15 ms/cm 3.0 up to 30 ms/cm 10.0 up to 200 ms/cm 1.5 Electrical connection The measuring cells come with a fixed cable or with a detachable plug connector, depending on the version. Caution The connecting cable must not be routed via the terminal blocks, but must run directly to the transmitter. Use shielded cables only, and if possible, those that are recommended / supplied by the manufacturer. Follow the instructions in the transmitter operating manual for electrical connection! Connection for Instrument connector Fixed cable M12 connector Outer electrode white 1 Inner electrode 2 brown 2 Temperature compensation 1 3 yellow green 3 4 3

3-wire circuit - - 5 Shield - - 1.6 Installation Caution Please heed the technical data for your measuring cell (see data sheets 20.2922, 20.2923, 20.2924 and 20.2925). The measuring cell must be suitable for the temperature, pressure and medium conditions specified for the system (including chemical resistance). Do not make any mechanical modifications to the measuring cell (electrodes shortened, drilled, bent or scratched). This can result in the loss of proper functionality, as well as the rights under the instrument warranty. Do not use a metal seal. 4

Note Basically any installation position is possible. However, you must ensure that sufficient sample medium flows through and around the measuring cell (that is, the conductive measuring cell electrodes must always be completely surrounded by the medium). Structural measures must be taken to prevent flow separation or gas bubbles. 1.7 Maintenance / cleaning The conductive conductivity cell electrodes are in direct contact with the sample medium. Regular cleaning must therefore be performed, relative to the susceptibility of the medium to contamination! All suitable, common household cleaning chemicals can be used for cleaning. Abrasive cleaners have limited suitability! The measurement electrodes must not be damaged mechanically! Dilute hydrochloric acid, or cleaning in ultrasonic baths, can be helpful to prevent various accumulations, for example. 1.8 Troubleshooting Troubleshooting must always consider all the components of the conductivity measurement chain! The transmitter and the connecting cable must be checked, as well as the measuring cell. Error Possible cause Remedy Measurement value is too high or too low Measuring cell is dirty Section 1.7 "Maintenance / cleaning", page 5 5

No conductivity measurement (e.g. display shows "0") Broken lead, incorrect terminal assignment. Measuring cell exposed to air (not fully immersed). Error Possible cause Remedy No temperature measurement (measuring cells with integrated temperature sensor) Display value unstable, fluctuating Broken lead, incorrect electrical connection. Malfunction caused by incorrectly / insufficiently shielded connecting cable. Malfunction caused by gas bubbles. Carefully check the electrical connection again! Check the measuring cell installation location: is liquid medium present? Carefully check the electrical connection again! Check the cable connection and routing. Check the installation location and position of the measuring cell and modify where necessary. Note The measuring cell can also be checked for shortcircuits or internal contact problems. You need a continuity tester (such as the diode tester of a multimeter) to do this. 1.9 Screwing the conductivity cell into the fitting Loosen the cable gland (1). Run the connecting cable (3) of the conductivity cell (4) through the fitting (2). 6

Screw the conductivity cell (4) into the fitting (2). Tightening torque approx. 2.5 Nm. Tighten the cable gland (1). Tightening torque approx. 2 Nm. Caution When removing the conductivity cell from the fitting: First loosen the cable gland (1)! (1) (2) (4) (3) 7

2 Glass conductivity cells, type 201080 2.1 Application With type 201080/17-... glass conductivity cells, the conductivity of liquids can be determined in conjunction with a conductivity transmitter. The parts of the measuring cell that come into contact with the sample medium are composed of glass and platinum. This ensures extensive resistance to aggressive media. The active component (the platinum electrode) can be platinized for use at higher conductivities. The connections must be kept perfectly clean and dry, to avoid creep currents. During assembly work with coaxial cables, make sure that the black, semi-conducting layer between the braided shield and the inner insulation is removed. All instruments and components are carefully checked before leaving the factory. Should you nevertheless have cause for complaint, please send the device back to us, free of harmful contamination. Checking returned goods is extremely complicated. It is therefore essential for you to provide more detailed information about the fault. 8

2.2 Technical data Active component Platinum Measuring range, unplatinized up to 1 ms/cm Measuring range, platinized up to 100 ms/cm Cell constant k = 1 ±10% permis. medium temperature -10 to +160 C Stem length 120 mm Stem diameter 12 mm permis. pressure 0 to 16 bar at 25 C Connection - Type 201080/17-40-21-120/000, N plug cap unplatinized - Type 201080/17-40-21-120/000, N plug cap platinized - Type 201080/17-41-22-120/000, N screw plug cap, Pg 13.5 unplatinized - Type 201080/17-40-22-120/000, N screw plug cap, Pg 13.5 platinized 2.3 Mounting Glass conductivity cells are protected by a protective cap during delivery. This protective cap must be removed before it can be used. Please follow the selection table for conductivity cells. 2.4 Maintenance Dirty platinum electrodes can be cleaned by rinsing them in lye. Carefully remove stubborn deposits with a soft brush. To minimize polarization error at high conductivities, platinized conductivity cells (recognizable from their blackened platinum surfaces) can be re-platinized. Galvanic re-platinization takes place at 20 ma, and takes four minutes in a platinization solution. Sales no. 20/00301092. 9

3 Diaphragm tubes, type 201083 Note Diaphragm tubes come with three replacement diaphragms. 3.1 Application Diaphragm tubes are used in conjunction with reference electrodes in a KCl storage vessel, as a reference system, whenever an increased electrolyte flow rate into the sample medium is required, e.g. in emulsions, varnishes and paints. An electrolyte bridge can be formed in conjunction with a KCl storage vessel, which is connected to the diaphragm tube by a hose. Electrolyte bridges are used if the sample medium poisons the reference system, e.g. media containing sulphides and photographic chemicals. 3.2 Technical data Material - Type 201080/15-87-04-22-120 - Type 201080/15-88-04-22-120 permis. medium temperature - Type 201080/15-87-04-22-120 - Type 201080/15-88-04-22-120 permis. pressure (with KCl storage vessel) Diaphragm Stem length Stem diameter Connection PP PVDF -10 to +95 C -10 to +135 C 0 to 10 bar at 25 C PTFE, ø 5 mm 120 mm 12 mm Crimp connection for PU plastic hose 8 x 6 mm ø (pressure-resistant) 10

3.3 Mounting 3.3.1 Screw in the diaphragm tube The diaphragm tube can be screwed into a Pg 13.5 receiving thread. Max. tightening torque 10 Nm. Plastic screw-connection R 1/8" Set screw Pg13,5 O-ring, 10 x 3.5 115 183 Diaphragm tube PTFE diaphragm 11

3.4 Maintenance The flow rate can be reduced by compressing the PTFE diaphragm. The set screw is tightened to achieve this. If a greater flow rate is subsequently required, the compressed diaphragm must be replaced with a new one. Three replacement diaphragms are included with a new diaphragm tube. Before cleaning the diaphragm, you must check the material compatibility of the cleaning method. Set screw PTFE diaphragm 12

4 Compensation thermometers, type 201085 4.1 Application Compensation thermometers are used in conjunction with a relevant transmitter for temperature measurement and for automatic temperature compensation during electrochemical measurements (ph, conductivity, etc.). 4.2 Technical data Material Glass permis. medium temperature -20 to +135 C permis. pressure 0 to 10 bar at 25 C Stem length 120 mm Stem diameter 12 mm Active component Pt100 Basic values as defined by DIN 43760, Class B Time constant -T 90 0.8 sec -T 90 4s Connection - Type 201080/16-89-1003-21- N plug cap 120 - Type 201080/16-89-1003-22- N screw plug cap, Pg 13.5 120 13

4.3 Mounting 4.3.1 Type 201080/16-89-1003-21-120 - plug-in The compensation thermometer can be plugged into a 12 mm ø +0.5 mm /-0 mm receiving hole. A PVDF M12 nut, AF19, is used as a seal. 4.3.2 Type 201080/16-89-1003-22-120 - screw-in The compensation thermometer can be screwed into a Pg 13.5 receiving thread. Max. tightening torque 10 Nm. ø 16.5 TR12.9x3 P1.5 120 ±2 7 S7 plug cap Glass tube ø12 15 ø4.5 ±0.2 Shunt resistor PG 1.4515 1 x Pt100 DIN/IEC Cl.B Type 201080/16-89-1003-21-120 14

Built-in plug, M12 x 1 4-pin, series 713 AF17 Ring, PSU Pg13,5 O-ring, 10 x 3.5 FPM 155 120 ±2 Glass tube ø 12 ±0.2 15 ø4.5 ±0.2 Type 201080/16-89-1003-22-120 Shunt resistor PG 1.4515 1 x Pt100 DIN/IEC Cl.B 15

5 N cable socket, type 201090 5.1 Application The N cable socket is intended for subsequent assembly and is not included in the standard scope of delivery! The sales no. for the N cable socket is 20/00057350. 16

(1) Clamping piece (4) Cap (2) Spacer sleeve (5) Cable guide (3) Set screw 5.2 Mounting 1. Push the cap (4), cable guide (5) and spacer sleeve (2) onto the cable. 2. Strip the cable as shown in the diagram. Warning: Remove the black, semiconducting layer! Do not damage the cable core when stripping the cable! 3. Slide the clamping piece (1) over the braiding (shield) of the coaxial cable and apply pressure. Soft-solder the cable core with L-Sn 60 Pb Cu2 as defined by DIN 1707. Warning: Do not use solder paste! 4. Slide the spacer sleeve (2) over the clamping piece (1), push the cable guide (5) up to the end of the spacer sleeve (2), pull the cap (4) over it and screw it firmly into the cap (4) with the set screw (3). 5. Check the complete coaxial cable for continuity and shortcircuits. 17

JUMO GmbH & Co. KG JUMO Instrument Co. Ltd. JUMO Process Control, Inc. Street address: Moritz-Juchheim-Straße 1 JUMO House Temple Bank, Riverway 8 Technology Boulevard Canastota, NY 13032, USA 36039 Fulda, Germany Harlow - Essex CM20 2DY, UK Phone: 315-697-JUMO Delivery address: Phone: +44 1279 63 55 33 1-800-554-JUMO Mackenrodtstraße 14 Fax: +44 1279 63 52 62 Fax: 315-697-5867 36039 Fulda, Germany E-mail: sales@jumo.co.uk E-mail: info@jumo.us Postal address: 36035 Fulda, Germany Internet: www.jumo.co.uk Internet: www.jumo.us Phone: +49 661 6003-0 Fax: +49 661 6003-607 E-mail: mail@jumo.net Internet: www.jumo.net