unit : mm Parameter Symbol Conditions Ratings Unit

Similar documents
. High power: supports total output of 25 W + 25 W (V CC = 14.4 V, THD = 30%, R L =4Ω)

Parameter Symbol Conditions Ratings Unit Recommended supply voltage V CC 3.0 V Operating voltage range V CC op 1.8 to 3.6 V

unit: mm 4086A Parameter Symbol Conditions Ratings Unit Recommended supply voltage V CC ±45 V Load resistance R L 8 Ω

unit: mm 4033 THD = 1.0%, Po (2) f = 30Hz to 20kHz

STK4026V. AF Power Amplifier (Split Power Supply) (25W min, THD = 0.08%)

STK4362. AF Power Amplifier (10W + 10W min, THD = 1.0%)

STK4192II. AF Power Amplifier (Split Power Supply) (50W + 50W min, THD = 0.4%)

STK4332. AF Power Amplifier (5W + 5W min, THD = 1.0%)

unit: mm 4040 V CC = ±28V, R L = 8Ω, f = 50Hz, Po = 30W

unit: mm 3160-SIP23HZ

unit : mm When using standard board mm

unit: mm 3017C-SIP9 Parameter Symbol Conditions Ratings Unit Recommended supply voltage V CC 4.5 V Operating voltage range V CC op 1.8 to 7.

unit: mm 4040 V CC = ±27V, R L = 8Ω, f = 50Hz, P O = 25W

LA W 2-Channel AF Power Amplifier

unit: mm 3024A-SIP10H

unit:mm 3018A-SIP10FD 16.7 max min C C * : mm3 Al heat sink used.

unit: mm 3196-DIP30SD

LA1145, 1145M. FM IF System (Quadrature Detector) for Car Radio. Package Dimensions. Features

unit : mm 3006B-DIP16

LA W, Two-channel Power Amplifier with Very Few External Parts. Overview. Package Dimensions. Features. Specifications

LA4805V. 3 V Stereo Headphone Power Amplifier

Parameter Symbol Conditions Ratings Unit V CC 1 V CC 1 V CC to 6.0 V Supply voltage V CC 2 4 to 10 V V S Up to V CC 2 V

unit: mm 4130 Parameter Symbol Conditions Ratings Unit Maximum supply voltage 1 V CC 1 max No input signal 50 V Maximum supply voltage 2 V CC

LA4631. SANYO Semiconductors DATA SHEET. Overview. Functions and Applications Two-channel power amplifier for audio applications

STK Phase Stepping Motor Driver (sine wave drive) Output Current 2.4A

LC7215, 7215F, 7215FM. MW/LW PLL Frequency Synthesizers. Package Dimensions. Overview. Features

unit: mm 3159-QFP64E unit: mm 3190-SQFP64

LC7574NE, 7574NW. 1/2 Duty VFD Driver for Frequency Display

LA4450. Specifications. Monolithic Linear IC 2-Channel, 26V, Power Amplifier for Bus and Track in Car Stereo. SIP x13.

Ratings Parameter Symbol Conditions

LA4631/D. Functions 2-channel power amplifier for audio applications. Specifications

LA Overview. Monolithic Linear IC 5W 2-Channel AF Power Amplifier With DC Volume Control

LA4537MC. Specifications. Monolithic Linear IC Power Amplifier for 1.5V Headphone Stereos. Absolute Maximum Ratings at Ta = 25 C

LA4708N. Monolithic Linear IC For Car Stereos 20W 2-channel BTL AF Power Amplifier. Ordering number : ENA1783

LA4629. Specifications. Monolithic Linear IC 2-channel AF Power Amplifier. Maximum Ratings at Ta = 25 C. Operating Conditions at Ta = 25 C

LA4631. Functions 2-channel power amplifier for audio applications. Specifications

Monolithic Linear IC Audio Output for TV application 5W 2ch Power Amplifier

unit : mm 3059-DIP22S

LA4902 参考資料. Specifications. Monolithic Linear IC Audio Output for TV application 10W BTL Monaural Power Amplifier IC. Maximum Ratings at Ta = 25 C

Monolithic Linear IC For Car Stereo 2-Channel Preamplifier

LA4663. Two-Channel 16-W BTL General-Purpose Audio Power Amplifier

unit: mm 3006B-DIP16 Parameter Symbol Conditions Ratings Unit Recommended operating voltage V CC 7.8 V Operating voltage range V CC op 7.0 to 8.

Overview LA42351 is 5W 1-channel AF power amplifier with DC volume control intended for televisions. Volume

LA Overview LA42052 is 5W 2-channel AF power amplifier intended for televisions.

Monolithic Linear IC Audio Output for TV application 5W 2ch Power Amplifier

Monolithic Linear IC Audio Output for TV application 5W 2ch Power Amplifier

LA W, Two-channel Power Amplifier with Very Few External Parts. Overview. Package Dimensions. Features. Specifications

LA4708N. Specifications. Monolithic Linear IC 20W 2-channel BTL AF Power Amplifier for Car Stereo. Maximum Ratings at Ta = 25 C SIP18H

SPS-448 Series. Receiver Pre-amp Module for Infrared Remote Control. SPS-448 Series. Features. SANYO Electric Co.,Ltd. Semiconductor Company

unit : mm When using standard board (material: glass epoxy)

Features. unit: mm 3159-QFP64E

Applications Mini radio cassette players/recorders, portable radios, transceivers and other portable audio devices

AN W 2 (18 V, 8 Ω) Power Amplifier with Mute Function and Volume Control. ICs for Audio Common Use. Overview. Features.

STK Two-Channel Class AB Audio Power Amplifier IC 40W + 40W

DatasheetArchive.com. Request For Quotation

UNISONIC TECHNOLOGIES CO.,LTD.

LV4912GP. Class-D Audio Power Amplifier BTL 2W 1ch

AN W 2 (18 V, 8 Ω) Power Amplifier with Mute Function and Volume Control. ICs for Audio Common Use. Overview. Features.

LV4992TT. Bi-CMOS IC For Portable Audio Equipment Stereo SE Power Amplifier

TA8227P TA8227P. Low Frequency Power Amplifier. Features TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

AN7561Z. BTL output power IC for car audio. ICs for Audio Common Use. Overview. Features. Applications

AN W 2 (18 V, 8 Ω) Power Amplifier with Variable Audio Output and Volume Control. ICs for Audio Common Use. Overview. Features.

TA8223K TA8223K. Low Frequency Power Amplifier. Features TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

Discontinued AN W 2 (18 V, 8 Ω) Power Amplifier with Mute Function and Volume Control

TA8210AHQ,TA8210ALQ Features

AN7511, AN7511S. 1-W BTL audio power amplifier. ICs for Audio Common Use. Overview. Features. Applications. Block Diagram AN7511

Overview The LA1225MC is a Low-voltage operation (1.8V or higher) FM IF detector IC for the electronic tuning system.

Maintenance/ Discontinued

Overview The LA5744MP is a separately-excited step-down switching regulator (variable type).

unit: mm 4201-SIP13 5.6

TA8205AHQ,TA8205ALQ Features

LA1145, 1145M. FM IF System (Quadrature Detector) for Car Radio. Package Dimensions. Features

LA6358N, 6358NS, 6358NM, 6358NT

Maintenance/ Discontinued

TOSHIBA Bi-CMOS Digital Integrated Circuit Silicon Monolithic. TB2904HQ (o)

Giant pulse 200ms Rise time 1ms

TA8254BHQ TA8254BHQ. Max Power 45 W BTL 2 ch Audio Power IC. Features TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

Maintenance/ Discontinued

Features. unit: mm 3067-DIP24S

LC322271J, M, T-70/80

UNISONIC TECHNOLOGIES CO., LTD

unit: mm 4148 Period = 100 ms, duty 1% V CC 2 = 5.0 V

LA4810M. Applications Audio equipment such as portable radios and compact radio cassette players/recorders

Class-AB Speaker Amplifiers 5W+5W Stereo Speaker Amplifiers BA5406,BA Rev.C 1/10

Built-in low voltage reset and thermal shutdown circuit Compact TSSOP-24 package

UNISONIC TECHNOLOGIES CO.,LTD. TEA2025

V CC max2 With signal 18 V Maximum output current I O peak Per channel 4.5 A Maximum power dissipation Pd max With infinite heat sink (note) 50 W

UNISONIC TECHNOLOGIES CO., LTD

TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic TA8258H

TOSHIBA Bi-CMOS Linear Integrated Circuit Silicon Monolithic TB2929HQ. High output power Weight: 7.7 g (typ.) P OUT MAX (1) = 45 W (typ.

LM831 Low Voltage Audio Power Amplifier

TA8201AK TA8201AK. BTL Audio Power Amplifier. Features TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

LA5774. Overview The LA5774 is a Separately-excited step-down switching regulator (variable type).

Maintenance/ Discontinued

LOW FREQUENCY POWER AMPLIFIER

LA6581DM. Fan Motor Driver BLT Driver Single-Phase Full-Wave

UNISONIC TECHNOLOGIES CO., LTD

UTC UNISONIC TECHNOLOGIES CO., LTD. 1 UTC TA8227AP LINEAR INTEGRATED CIRCUIT LOW FREQUENCY POWER AMPLIFIER DESCRIPTION FEATURES BLOCK DIAGRAM DIP-12H

The LA6571 is 5-channel driver for mini disk and compact disk applications (BTL-AMP: 5CH).

LB11685VH. Specifications Maximum Ratings at Ta = 25 C. Monolithic Digital IC 3-phase sensor less Motor driver

Transcription:

Ordering number: EN887B Monolithic Linear IC 2.3 W 2-Channel AF Power Amplifier for Radio Cassette Players Features. Built-in 2 channels enabling use in stereo and bridge amplifier (BTL) applications.. High-output: 2.3 W typ./channel, V CC =9V,R L =4Ω 4.7 W typ./bridge amplifier, V CC =9V,R L =8Ω. Low switching distortion at high frequencies.. Minimum number of external parts required: 9 pcs. min. (Stereo/bridge).. Small shock noise at the time of power supply ON/OFF due to built-in muting circuit. Good ripple rejection due to built-in ripple filter. Soft tone at the time of output saturation.. Good channel separation. Voltage gain fixed at 45 db (Bridge: 51 db). Variable voltage gain available with external resistor added. Package Dimensions unit : mm 3022A-DIP12F [] SANYO : DIP12F Specifications Note: In general applications, heat generated in the DIP 12-pin package can be radiated through the Cu-foiled area of the printed circuit board, but since power dissipation Pd may be increased depending on the supply voltage and load conditions, it is recommended to use a fin additionally. Maximum Ratings at Ta = 25 C Parameter Symbol Conditions Ratings Unit Maximum supply voltage V CC max With signal 11 V Quiescent 15 V Allowable power dissipation Pd max With printed circuit board (Refer to Pd Ta characteristics) 4 W Operating temperature Topr 20 to +75 C Storage temperature Tstg 55 to +150 C Operating Conditions at Ta = 25 C Parameter Symbol Conditions Ratings Unit Recommended supply voltage V CC 9.0 V Stereo 4.0 to 8.0 Ω Load resistance R L Bridge 8.0 Ω SANYO Electric Co.,Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN 53096HA(II)/O0207TA/2022KI,TS,ID No.887-1/11

Operating Characteristics at Ta = 25 C, V CC =9.0V,f=1kHz, Rg = 600 Ω, R L =4Ω, ( ): 8 Ω, See specified Test Circuit. Parameter Symbol Conditions min typ max Unit Quiescent current I CCO For stereo 40 55 ma Voltage gain VG Closed loop, V IN = 45 db Stereo 43 45 47 db Bridge 49 51 53 db Voltage gain difference VG Stereo ±1 db 1.7 2.3 W Stereo Output power P O THD = 10% (1.3) W Bridge (4.7) W Total harmonic distortion THD P O = 250 mw Stereo 0.3 1.5 % Bridge 0.5 % Input resistance ri 21 30 kω Rg = 0 Stereo 0.3 1.0 mv Output noise voltage V NO Rg=10kΩ Stereo 0.5 2.0 mv Ripple rejection ratio Rg = 0, Vr = 150 mv Stereo 40 46 db Channel separation CHsep Rg = 10 kω, V O = 0 dbm Stereo 40 55 db Allowable power dissipation, Pd max W Cu plate (fin 1) Fe plate (fin 1) Fe plate (fin 2) Recommended printed circuit board only Cu-foiled area reduced board IC only Pd max Ta Ambient temperature, Ta C Pin Assignment and Equivalent Circuit No.887-2/11

Sample Application Circuit 1: Stereo amplifier Sample Application Circuit 2: Bridge amplifier Example of printed circuit pattern (Cu-foiled area) for use in stereo, bridge amplifier applications 60 80 mm 2 C7 C3 100µF /16V OUT1 470µF /16V V CC C1 100µF/16V C2 100µF/16V BTL use IN1 100µF /16V IN2 7 6 C9 100µF/16V 12 1 GND C4 100µF/16V C5 0.15µF jumper 2ch stereo use C6 0.15µF OUT2 C10 1000µF /16V BTL OUT C8 470µF/16V No.887-3/11

Description of External Parts C1 (C2) Feedback capacitor The low-range cut-off frequency is determined by the following formula: f L =1/(2πC1vRf), f L : Low-range cut-off frequency Rf: Feedback resistor (50 Ω embedded + Rf externally connected) The frequency, however, affects the starting time in conjuction with decoupling capacitors. Therefore, it is necessary to determine it after a full review of the required low-frequency range and other similar conditions. C3 (C4) Bootstrap capacitor The output at low frequencies depends on this capacitor. If the capacity is decreased, the output at low frequencies goes lower. 47 µf min. is required. C5 (C6) Oscillation preventing capacitor Use polyester film capacitor which is good in temperature characteristic and frequency characteristic. Aluminum electrolytic capacitor or ceramic capacitor causes oscillation at low temperatures. C7 (C8) Output capacitor The low-range cut-off frequency is determined by the following formula. f L =1/(2πC7vR L ), f L : Low-range cut-off frequency R L :Load resistance When using bridge-connected, double the capacitance to obtain equivalent low-range frequency characteristics to those in a 2-channel application. C9 Decoupling capacitor Used for the ripple filter. Since the rejection effect is saturated at a certain capacity, it is meaningless to increase the capacity more than needed. This capacitor, being also used for the time constant of the muting circuit, affects the starting time. C10 Power source capacitor Application Circuits 1. Voltage gain adjustment. Stereo The voltage gain depends on built-in-resistors R1 (R2), R3 (R4) as follows: R3 (R4) VG = 20 log [db] R1 (R2) If the IC is used at a voltage gain less than this, the following equation with Rf added applies. R3 (R4) VG = 20 log [db] R1 (R2) + Rf where R1 (R2) = 50 Ω typ., R3 (R4) = 10 kω typ.. Bridge The following shows the bridge amplifier configuration, where ch1 operates as a non-inverting amplifier and ch2 as an inverting amplifier. No.887-4/11

The output of ch1 is divided with R5, R6 and led to pin 1 and then inputted to ch2. Since the attenuation degree (R5/R6) of ch1 output and the amplification degree (R4/R2 + R6)) of ch2 are fixed at an equal value, the ch2 output is in opposite phase with the ch1 output. Therefore, the total voltage gain gets apparently 6 db higher than the voltage gain of ch1 alone and is determined by the following equation. VG = 20 log R3 + 6 [db] R1 If the IC is used at a voltage gain less than this, the following equation with Rf added applies. VG = 20 log 2. Starting time R3 R1+Rf + 6 [db] Starting time depends on capacitance of C1 (C2) and C9 as shown in the diagram below. That is because of using a muting circuit utilizing the C9 (decoupling capacitor) time constant for pop noise prevention when power is turned on and charging circuits for C1 and C2 (NF capacitors). Quiescent Dependence on C9 Quiescent 3. Crosstalk Dependence on C1 (C2) Channel separation characteristic is important for single-package IC embodying two channels. With, good channel separation is obtainable even as is, but if the BTL OUT pin (pin 1) is not grounded, it will invite imbalance in crosstalk between the two channels. (Refer to the characteristics diagram.) No.887-5/11

Proper Cares in Operating a Set with Incorporated When a set with the incorporated is operated from AC power supply, a momentary drop in supply voltage is caused by the transformer regulation, etc. at the time of turning ON the motor with the circuit shown below. In this case, if ripple noise is generated from the speaker or headphone, take the following actions. 1. Connect a diode (rectifier diode of average rectified current I O = 100 to 200 ma) across pins 6 and 12 of the so that the voltage at pin 6 can follow the supply voltage regulation. In the steady state, this diode is cut off. 2. Increase the capacity of the power source capacitor so that the supply voltage regulation can be minimized. Radiation Design. Since the DIP 12-pin package is so designed as to be able to radiate heat through the Cu-foiled area of printed circuit board under normal operating conditions, make the Cu-foiled area near the fin of IC as large as possible when designing the printed circuit board.. By providing the Cu-foiled area covered by the broken line as shown in the above-mentioned example of printed circuit pattern, a rather satisfactory radiation is enabled. (Refer to the Pd Ta characteristics.). Since the power dissipation (Pd) goes higher depending on the conditions of supply voltage and load, it is recommended to use the fin together with the printed circuit board.. The following equations are rule-of-thumb guides for Pd (for stereo). For AC power supply, it is desirable to measure with the transformer of each individual set. In the bridge amplifier application, calculation should be made with 1/2 of the load used. (1) DC Power supply 2 V CC Pd max = π 2 R L (2) AC power supply +I CCO v V CC (For stereo) V Pd max = CC (Pd) 2 +I CCO v V CC (Pd) (For stereo) π 2 R L V CC2 : Quiescent supply voltage I CCO : Quiescent current V CC (Pd): Supply voltage at Pd max. output, V CC (Pd) = V CC 1: 1+ (1+r)V CC1 rvv CC1 2 v π v R L Supply voltage at max. output R L P O max r: Voltage regulation, V CC2 V CC1 V CC1. Example of fin mounting The fin is formed into such a shape as to be able to radiate heat from the plastic area of IC and the fin as shown below and is soldered to the printed circuit board. For the fin size, refer to the Pd Ta characteristics. The desirable material is copper or iron which is solderable. It is recommended to apply silicone grease, etc. to the plastic area of IC in order to minimize the thermal resistance. No.887-6/11

Printed circuit board Example of fin mounting Fin IC Usage Notes 1. If the IC is used in the vicinity of the maximum rating, even a slight variation in conditions may cause the maximum rating to be exceeded, thereby leading to a breakdown. Allow an ample margin of variation for supply voltage, etc. and use the IC in the range where the maximum rating is not exceeded. 2. Pin-to-pin short If the supply voltage is applied when the space between pins is shorted, a breakdown or deterioration may occur. When installing the IC on the board or applying the supply voltage, make sure that the space between pins is not shorted with solder, etc. 3. Load short If the IC is used with the load shorted for a long time, a breakdown or deterioration will occur. Be sure not to short the load. 4. When the IC is used in radios or radio cassette tape recorders, keep a good distance between IC and bar antenna. 5. When making the board, refer to the example of printed circuit pattern. No.887-7/11

P O V IN f response Response db Input voltage, V IN mv THD P O THD f THD f Output noise voltage, V NO mv V NO, THD, f H VG V NO (Rg = 0, no filter) V NO (Rg = 0.20 to 20kHz BPF) (With signal) (With noise) High cutoff frequency, f H khz CHsep f Voltage gain, VG db V rp,v NO Rg Channel Separation, CHsep db (Signal side) Output noise voltage, V NO mv Output ripple voltage, Vrp mv Signal source resistance, Rg Ω No.887-8/11

THD Rg Vrp C DC Output ripple voltage, Vrp mv ripple Signal source resistance, Rg Ω Vrp C NF Decoupling capacitor capacity, C DC µf Vrp fr Output ripple voltage, Vrp mv No difference due to bootstrap capacitors 47 µf, 100 µf, 200 µf. Output ripple voltage, Vrp mv Feedback capacitor capacity, C NF µf Ripplie frequency, fr Hz VG R NF THD V CC Voltage gain, VG db Measured value External feedback resistor resistance, R NF Ω t S C DC Supply voltage, V CC V Pd P O Starting time, t s s Output DC waveform Power ON Power dissipation, Pd (Stereo) W Using specified fin Decoupling capacitor capacity, C DC µf No.887-9/11

Pd P O I CC P O Power dissipation, Pd (Stereo) W Using specified fin Current drain, I CC ma P O V CC P O R L Quiescent current, I CCO ma (Stereo) Supply voltage, V CC V I CCO,V N V CC Output midpoint voltage, V N V Quiescent current, I CCO ma (Stereo) Load resistance, R L Ω I CCO Ta Supply voltage, V CC V V N Ta [Bridge] Ambient temperature, Ta C P O V IN Output midpoint voltage, V N V Ambient temperature, Ta C Input voltage, V IN mv No.887-10/11

f response THD P O Response db THD f Pd P O Power dissipation, Pd W Using specified fin I CC P O P O V CC Current drain, I CC ma Supply voltage, V CC V No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss. Anyone purchasing any products described or contained herein for an above-mentioned use shall: 1 Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use: 2 Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally. Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties. This catalog provides information as of May, 1996. Specifications and information herein are subject to change without notice. No.887-11/11