Analysis of Non-Isolated Bidirectional Active Clamped DC-DC Converter for PV and Battery Integrated Systems

Similar documents
Analysis of Novel DC-DC Boost Converter topology using Transfer Function Approach

Key words: Bidirectional DC-DC converter, DC-DC power conversion,zero-voltage-switching.

High Frequency Isolated Series Parallel Resonant Converter

ANALYSIS OF BIDIRECTIONAL DC-DC CONVERTER FOR LOW POWER APPLICATIONS

Hybrid Full-Bridge Half-Bridge Converter with Stability Network and Dual Outputs in Series

A Novel Bidirectional DC-DC Converter with Battery Protection

Interleaved Boost Converter Fed DC Machine with Zero Voltage Switching and PWM Technique

ZVS IMPLEMENTATION IN INTERLEAVED BOOST RECTIFIER

Analysis and Design of a Bidirectional Isolated buck-boost DC-DC Converter with duel coupled inductors

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications

Page 1026

A Novel Technique to Reduce the Switching Losses in a Synchronous Buck Converter

Implementation of an Interleaved High-Step-Up Dc-Dc Converter with A Common Active Clamp

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 03, 2016 ISSN (online):

Reduction of Ripple in the Bidirectional DC-DC Converter with the Coupled Inductor

High-Power Dual-Interleaved ZVS Boost Converter with Interphase Transformer for Electric Vehicles

Bidirectional DC-DC Converter Using Resonant PWM Technique

Analysis and Design of Soft Switched DC-DC Converters for Battery Charging Application

A New Soft Switching ZCS and ZVS High Frequency Boost Converter with an HI-Bridge Auxiliary Resonant Circuit to Drive a BLDC Motor

MICROCONTROLLER BASED ISOLATED BOOST DC-DC CONVERTER

BIDIRECTIONAL dc dc converters are widely used in

Non-isolated DC-DC Converter with Soft-Switching Technique for Non-linear System K.Balakrishnanet al.,

SVPWM Technique for Cuk Converter

ZCS-PWM Converter for Reducing Switching Losses

Review and Analysis of a Coupled Inductor Based Bidirectional DC-DC Converter

High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit

International Journal of Current Research and Modern Education (IJCRME) ISSN (Online): & Impact Factor: Special Issue, NCFTCCPS -

Voltage Controlled Non Isolated Bidirectional DC-DC Converter with High Voltage Gain

BIDIRECTIONAL DC TO DC CONVERTER BASED DRIVE

A new zero-voltage-transition converter for switched reluctance motor drives. Title. Ching, TW; Chau, KT; Chan, CC

Quasi Z-Source DC-DC Converter With Switched Capacitor

A BI-DIRECTIONAL DC-DC CONVERTER TOPOLOGY FOR LOW POWER APPLICATION 1

Implementation of Single Stage Three Level Power Factor Correction AC-DC Converter with Phase Shift Modulation

Design Consideration for High Power Zero Voltage Zero Current Switching Full Bridge Converter with Transformer Isolation and Current Doubler Rectifier

A NOVEL SOFT-SWITCHING BUCK CONVERTER WITH COUPLED INDUCTOR

Simulation and Analysis of Zero Voltage Switching PWM Full Bridge Converter

Analysis of Soft-switching Converters for Switched Reluctance Motor Drives for Electric Vehicles

Anfis Based Soft Switched Dc-Dc Buck Converter with Coupled Inductor

Full Bridge DC-DC Step-Up Converter With ZVZCS PWM Control Scheme

A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications

ZERO VOLTAGE TRANSITION SYNCHRONOUS RECTIFIER BUCK CONVERTER

Implementation of high-power Bidirectional dc-dc Converter for Aerospace Applications

An Application of Soft Switching for Efficiency Improvement in ZVT-PWM Converters

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

ZVT Buck Converter with Synchronous Rectifier

K.Vijaya Bhaskar. Dept of EEE, SVPCET. AP , India. S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP , India.

Comparison and Simulation of Full Bridge and LCL-T Buck DC-DC Converter Systems

A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER

A Dual Half-bridge Resonant DC-DC Converter for Bi-directional Power Conversion

International Journal of Engineering Research-Online A Peer Reviewed International Journal

Soft Switching with Cascaded Transformers to Drive the PMDC Motor

Modified Resonant Transition Switching for Buck Converter

A Bidirectional Series-Resonant Converter For Energy Storage System in DC Microgrids

Performance Enhancement of a Novel Interleaved Boost Converter by using a Soft-Switching Technique

Analysis, Design and Implementation of Snubberless Bidirectional Current Fed Full Bridge Voltage Doubler

Soft-Switching DC-DC Converters Based on A Phase Shift Controlled Active Boost Rectifier Using Fuzzy Controller

PWM Soft Switched DC DC Converter with Coupled Inductor R.Kavin, B.Jayamanikandan, R.Rameshkumar, S.Sudarsan

A New Active Soft Switching Technique for Pulse Width Modulated Full Bridge DC-DC Converters

MODELING AND SIMULATION OF LLC RESONANT CONVERTER FOR PHOTOVOLTAIC SYSTEMS

LLC Resonant Converter with Capacitor Diode Clamped Current Limiting Fundamental Harmonic Approximation

Dual mode controller based boost converter employing soft switching techniques

Soft Switched Resonant Converters with Unsymmetrical Control

DC DC CONVERTER FOR WIDE OUTPUT VOLTAGE RANGE BATTERY CHARGING APPLICATIONS USING LLC RESONANT

Hybrid Transformer Based High Boost Ratio DC-DC Converter for Photovoltaic Applications

Narasimharaju. Balaraju *1, B.Venkateswarlu *2

Closed Loop Control of the Three Switch Serial Input Interleaved Forward Converter Fed Dc Drive

BIDIRECTIONAL CURRENT-FED FLYBACK-PUSH-PULL DC-DC CONVERTER

FULL-BRIDGE THREE-PORT CONVERTERS WITH WIDE INPUT VOLTAGE RANGE FOR RENEWABLE POWER SYSTEMS

A Novel Bidirectional DC-DC Converter with high Step-up and Step-down Voltage Gains

Matlab /Simlink based closed Loop Control of Bi-Directional DC - DC Converter

An Efficient High-Step-Up Interleaved DC DC Converter with a Common Active Clamp

An Advanced Power Conditioning Unit for Power Management in Grid Connected PV Systems

A New ZVS Bidirectional DC-DC Converter With Phase-Shift Plus PWM Control Scheme

Hardware Testing, Designing and Simulation of Dual Input Buck-Buck DC-DC Converter Using H-Bridge Cells

An Improved Single Input Multiple Output Converter

Simulation of a novel ZVT technique based boost PFC converter with EMI filter

Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application

Reduction of Ripple in Bidirectional Dc-Dc Converter for Fuel Cell

Photovoltaic Controller with CCW Voltage Multiplier Applied To Transformerless High Step-Up DC DC Converter

A High Efficient DC-DC Converter with Soft Switching for Stress Reduction

Soft Switching Bidirectional DC-DC Converter for Hybrid Electric Vehicle Applications

SIMULATION OF A BI-DIRECTIONAL DC-DC CONVERTER FOR PV APPLICATIONS

ANALYSIS OF ZVT DC-DC BUCK-BOOST CONVERTER

DESIGN AND IMPLEMENTATION OF RESONANT CIRCUIT BASED ON HALF-BRIDGE BOOST RECTIFIER WITH OUTPUT VOLTAGE BALANCE CONTROL

DC-DC Resonant converters with APWM control

Five-Level Full-Bridge Zero Voltage and Zero Current Switching DC-DC Converter Topology

Design and analysis of ZVZCS converter with active clamping

Design of Series Connected Forward Fly Back Step up Dc-Dc Converter

Ghatkesar, Ranga Reddy, India.

Asymmetrical Half Bridge Double Input DC/DC Converter Adopting More Than One Renewable Energy Sources

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: 2-4 July, 2015

Modified Diode Assisted Extended Boost Quasi Z-Source Inverter for PV Applications

A Modified Single-Phase Quasi z source converter

Comparison of PI and PID Controlled Bidirectional DC-DC Converter Systems

Design and Implementation of Closed Loop LCL-T Resonant DC-to- DC Converter Using Low Cost Embedded Controller

A Bidirectional Resonant DC-DC Converter for Electrical Vehicle Charging/Discharging Systems

SOFT SWITCHING ANALYSIS IN DC-DC BOOST CONVERTERS

A NOVEL APPROACH FOR INTEGRATED PUSHPULL CONVERTER USING ZVT-PWM TECHNIQUE IN DC UPS

Simulation of Soft Switched Pwm Zvs Full Bridge Converter

A New Full Bridge DC/DC Converter Topology with ZVZCS Features

Transcription:

Indian Journal of Science and Technology, Vol 9(22), DOI: 10.17485/ijst/2016/v9i22/93191, June 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Analysis of Non-Isolated Bidirectional Active Clamped DC-DC Converter for PV and Battery Integrated Systems S. Usha, C. Subramani, B. Dinesh Naidu and M. S. R. Vishnu Venkatesh Department of EEE, SRM University, Kattakulathur, Chennai, Tamil Nadu, India; ushakarthick@gmail.com, dineshbotcha91@gmail.com, vishnu2maddula@gmail.com Abstract Background/Objective: A novel soft switching technique is implemented in a Bidirectional DC-DC converter by using an Active clamped Auxiliary switch and in turn it achieves continuous current of inductor and operates at constant frequency is used to turn ON and turn OFF the switches. Methods/Statistical Analysis: The Power electronics converter systems have DC bus voltages they are connected to batteries or supercapacitors. Bidirectional converters which are connected to battery, supercapacitor allows them to charge or discharge. A new soft switching Bi-directional direct current to direct current converter is presented in this paper. This converter is operated in zero voltage and zero current switching, continuous inductor current and constant frequency that frequency is used to turn ON and turn OFF the switches. The switching stresses are reduced in this proposed method by auxiliary switches compared to traditional methods. The simulation results are obtained by using MATLAB software in this paper. Findings: The proposed converter is implemented by using an Auxiliary switch with soft switching technique. The output is ripple free DC voltage of 63.5V. Improvements: The Bidirectional Converter will operate at continuous inductor current also with less ripples in output voltage. Keywords: Auxiliary Circuit, Continuous Inductor Current, DC-DC Converter, Power Electronics, Pulse Width Modulation, Soft-Switching 1. Introduction In Space and automotive, the power electronics systems are widely used. These power electronic systems are integrated to DC bus through Bidirectional converters. Batteries and super capacitors which are used in power electronic system are allowed to charge or discharge. This converter may be isolated 1 or non-isolated 2 and it depends up on application. In 1 achieving bidirectional power flow provides a simple, efficient and galvanically isolated topology that is especially attractive for use in battery charging. In 2 non isolated system uses an auxiliary circuit to obtain soft-switching of converter this leads to improve efficiency of converter. In this proposed converter we are representing a non-isolated Bi-directional converter which is inheritance of Buck/Boost converter. In Figure 1 S 1 switch is going to operate as a boosting switch and S 2 acts as boosting diode in which power transfer takes place from the lower voltage side V lo to the higher voltage side V hi, and S 1 acts as a bucking diode and S 2 operates as a boosting diode where power transfer takes place from V hi to V lo. Generally it s very easy to use soft-switching technique in Isolated Bidirectional direct current to direct current converter Converter when compared to Non-Isolated Bidirectional converter. As they are inheritance of half bridge and full bridge converters which uses inductive energy that is stored in transformer to discharge the capacitor which is present across the switches of converter. It s a little bit tough task to carry out for non-isolated converters due to the absence of transformer. There are several soft-switching techniques that are used previously and they can be differentiated as follows: *Author for correspondence

Analysis of Non-Isolated Bidirectional Active Clamped DC-DC Converter for PV and Battery Integrated Systems Figures Table 1. Design specifications of the proposed converter Parameters Values PV Input Voltage 70 V Battery Input Voltage 36 V Inductor Lr1=Lr2=12.5 µh, Lin = 500 µh Capacitor Cr = 470 µf Co =1000 µf Switching Frequency 10 khz Figure 1. Conventional soft-switched Non-isolated DC- DC converter. The Converters proposed in 3 and 4 are referred on circuitry in Figure 1 which are operated with the flow of current in both directions through inductor during every cycle. Two switches will on at different time periods, some times in each half-cycle, the stored energy of inductor is used to turn on other device with Zero Voltage Switching (ZVS), due to the impact of turning off switch. Demerits of this method are current in inductor contains ripple with a very high value which results in turn-off losses which in turn causes decrease in efficiency of converter. Another method of approach is quasi-resonant, multi-resonant circuitries. By these techniques, the results of the converter are going to have high power stresses and this causes Bidirectional converter to operate at different switching frequencies which in turn causes complicate design in hardware. It becomes complicated while designing the filter components and magnetics when the converter operated at different switching frequencies. In case of the converter proposed in 5 can be operated at constant frequency of switching but stress of the device remains same. A Bi-directional converter of fixed switching frequency resonant type is proposed in 6, but this requires half bridge converters more than one in series which is costly. The other method is to use auxiliary circuitry to guide the switching devices to operate in soft-switching mode as in ZVT converters which are proposed in 7-11. Even though this is an improvement, compared to existing techniques, but it lags at complexity and cost. This complexity is due to use of four switches in which two auxiliary switches are used for two main switches. Conventional control switches replaced by two stage buck boost converter for improving the system quality 12 and efficiency. Multi Port Converters implemented to produce a bidirectional (a) Figure 2. Earlier proposed bidirectional converters (a) converter proposed in 9 (b) converter proposed in 10. power flow with high efficiency and reduced losses 13. An architecture of On Chip switched capacitor 14 produced reduced ripple voltage with high switching frequency. In quasi Z-source impedance networks implemented to produce an output voltage and current with reduced ripple 15. Advanced vehicles 16, i.e. parameters and characteristics of vehicles estimated by DC-DC converter. Because of the myths of the existing methods such as maximum current stress, variable switching frequencies, those methods are not preferred. In the proposed converter, operation will be discussed and Simulation results are obtained by using matlab Simulink. Now, in the next section we are going to discuss about Modeling of the proposed converter, operation of converter and simulation results. 2. Proposed Bi-Directional Active Clamped Converter 2.1 Proposed Converter A new ZVS based soft switching technique is proposed for Bi-directional direct current to direct current converter. In this converter we will use a single auxiliary Active circuit. The proposed one (Figure 3) and the conventional one (Figure 1) is almost similar only difference is one (b) 2 Vol 9 (22) June 2016 www.indjst.org Indian Journal of Science and Technology

S. Usha, C. Subramani, B. Dinesh Naidu and M. S. R. Vishnu Venkatesh Figure 3. Proposed soft-switched Non-isolated DC-DC converter. auxiliary switch, one capacitor and two inductors. These elements make the circuit simple, which is well accepted Active clamp technique and these are used to operate in Boost/Buck mode with main switches S 1 and S 2. This converter is made to operate with continuous flow of inductor current, constant frequency is used to turn ON and turn OFF the switches. Modes of operation of converter goes through two modes, one is Boosting mode, and another is Bucking mode. The Figure 4, Figure 5 represents equivalent circuit diagrams for both operations. The waveforms for both modes of operation are shown in Figure 6. From Figure 3 (a) (b) (c) (d) (e) (f) (g) (h) Figure 4. Equivalent circuit diagrams from Mode 0 to Mode 7 of boost operation. (a) (b) (c) (d) Figure 5. (e) (f) (g) (h) Equivalent circuit diagrams from Mode 0 to Mode 7 of buck operation. Vol 9 (22) June 2016 www.indjst.org Indian Journal of Science and Technology 3

Analysis of Non-Isolated Bidirectional Active Clamped DC-DC Converter for PV and Battery Integrated Systems Table 2. Output results of the proposed converter Parameters Magnitude Output voltage 63.5V Output power 270W Figure 6. Converter waveforms for Boost and Buck operation. it is seen that the current entering through inductor (I Lr1 ) is positive if it enters through positive terminal. The capacitor current is positive at positive terminal of capacitor Cr. 2.2 Modes of Operation of Bidirectional Converter in Boost Region Mode 0(t<t 0 ): Earlier than t=t 0 when switch 1 is on,when current flowing through the inductor L in, current in the inductor starts increasing,the converter is going to operate as a Boost converter Mode 1(t 0 <t<t 1 ): During time t=t 0 switch1 is going to turn off, voltage at Switch1 is slendered by capacitor (C s1 ) connected across it. Current starts flowing in Cr when current (L r1 ) charges (C s1 ). Also in this mode current is delivered to (L r2 ) and the capacitance at switch2, C s2, starts discharging Mode 2(t 1 <t<t 2 ): This is continuation of mode 1 but the current at t=t 1 through (C s2 ) is not completely discharged and the current flows through antiparallel diode across switch 2. Mode 3(t 2 <t<t 3 ): At t=t 2 the it acts as boost converter and current through the active clamping circuit stops flowing. As negative voltage is appeared across L in, the current through this inductor reduces. Mode 4(t 3 <t<t 4 ): At t=t 3 before the switch1 is on, Auxiliary switch (S a ) is on with Zero-Current Switching (ZCS). The current through C r starts discharging through (L r1 and Lr 2 ) since I tends to reduce. Lin Mode 5(t 4 <t<t 5 ): During this, Current in inductor (L r1 ) begins to flow through the output capacitor of switch 1 when the Auxiliary switch (Sa) is made to be opened.voltage drop across the switch1 is Zero because the capacitor C s1 discharges through switch 1. Mode 6(t 5 <t<t 6 ): During t=t 5 the capacitor (C s1 ) is drained and the anti-parallel diode will ON and turn on the switch at this particular time. Mode 7(t 6 <t<t 7 ): switch 1 is ON at t=t 6, later the current (I Lr1 ) reverses its path of flow so current path takes place from inductor L r2 to switch 1. 2.3 Modes of Operation of Bidirectional Converter in Buck Region Mode 0(t<t 0 ): Before t=t 0 when the switch S 2 is on, the converter is going to operate as a Buck converter and the current through L in, I Lin starts raising. Mode 1(t 0 <t<t 1 ): At time t=t 0 S 2 is going to turn off and voltage across Switch S 2 is limited by capacitor (C s2 ) connected across it. The current starts flowing through Cr when current through L r1 charges up C s1. Also in this mode input current is delivered to L r1 and the capacitance across S 1, C s1, starts discharging. Mode 2(t 1 <t<t 2 ): This mode is continuation of mode 1 but the current through C s2 is completely discharged at t=t 1 and C s1 may or may not be completely discharged and current stops flowing through C r. Mode 3(t 2 <t<t 3 ): At time t=t 2 the converter operates as boost converter and the current through the active clamping circuit stops flowing. As negative voltage is appeared across L in, the current through this inductor reduces and converter operates in freewheeling mode. Mode 4(t 3 <t<t 4 ): At time t=t 3 before the S 1 is to be turned on, Auxiliary switch (S a ) is turned on with Zero- Current Switching (ZCS). The current through C r starts discharging through L r1 and L r2 since I Lin tends to reduce. Mode 5(t 4 <t<t 5 ): Auxiliary switch (S a ) is turned off at time t=t 4 the current passing through inductor (L r2 ) is used to discharge capacitor (C s2 ). Mode 6(t 5 <t<t 6 ): At time t=t 5 the capacitor C s2 is completely discharged and the anti- parallel diode is going 4 Vol 9 (22) June 2016 www.indjst.org Indian Journal of Science and Technology

S. Usha, C. Subramani, B. Dinesh Naidu and M. S. R. Vishnu Venkatesh to conduct which is across switch S 2.we can turn on the switch at this instant. Mode 7(t 6 <t<t 7 ): After switch 2 is turned on at t=t 6 the direction of the current is reversed and the current is transfer from its inductor L r1 to switch 2. Now, we are going to discuss about the Matlab simulation results in the next section. 3. Results and Discussions The simulation of the proposed converter is done through Matlab Simulink environment. This circuitry was designed to work at lower side voltage of V lo =36 V and high voltage of V hi =70 V as shown in Figure 7., Highest rating of power is 270 W, and the frequency is used turn ON and turn OFF the switches are of 10 khz.in this Bidirectional DC-DC converter we use PV as High voltage and Battery as Low Voltage sources. The Bidirectional converter can perform both buck and boost mode of operations. Figure 8 depicts you a Matlab circuit of Bidirectional circuitry. This consists two switches (MOSFETS), Inductors (L in, L r1, L r2 ) and capacitor (C r ). Pulse generation circuit is also shown in the Figure 8. The switching frequency is 10 khz. In Figure 9 Input voltage and current waveforms from PV panel are shown i.e V in =64.5 V, I in = 5.2 A, In Figure 10 output voltage and current delivered to load are shown i.e, V out = 63.5 V, I out =4.2 A. and you can observe that there is drop in voltage and current. The output is ripple free in both voltage and current. In Figure 11 Buck voltage is shown which is used to charge the battery and the voltage to battery is 35.3 V and the output is pure DC with less ripple content. This Buck Operation is done by Bidirectional Figure 8. Simulation circuit of Bi-directional converter. Figure 9. Input Voltage and current waveforms V in = 64.5 V, I in = 5.2A. Figure 10. Output Voltage and current waveforms V out = 63.5 V, I out = 4.2A. Figure 7. Simulation Circuit of proposed system. converter. In Figure 12 Boost voltage is shown which is given by battery source and it is delivered to load and the voltage is constant after certain time period. In Figure 13 the battery SOC (State of Charge) which is 50% means the battery is in charging condition which is linear in nature and voltage of 35.75 V, current of 4.7A is shown. Vol 9 (22) June 2016 www.indjst.org Indian Journal of Science and Technology 5

Analysis of Non-Isolated Bidirectional Active Clamped DC-DC Converter for PV and Battery Integrated Systems switch stress are less due to the usage of Auxiliary circuit. The simulation results are shown by using Matlab Simulink. The typical voltage, current waveforms are unveiled. 5. References Figure 11. Buck Voltage supplied to battery V Buck = 35.3 V. Figure 12. Boost Voltage supplied to load V Boost = 63.54 V. Figure 13. Simulation result of battery voltage = 35.75V, current = 4.7A,SOC = 50%. 4. Conclusion A new DC-DC Bidirectional converter is implemented and the features of this circuitry are flow of current through inductor is continuous, constant frequency of switching, 1. Jain M, Daniele M, and Jain PK. A bidirectional DC-DC converter topology for low power application. IEEE Trans Power Electron. Jul 2000; 15(4):595 606. doi: 10.1109/63.849029 2. Zhiguo K, Chunbo Z, Shiyan Y, Shukang C. Study of bidirectional DC-DC converter for power management in electric bus with supercapacitors. In Proceedings of IEEE VPPC Conference Rec. 2006. p. 1 6. doi: 10.1109/ VPPC.2006.364376 3. Henze CP, Martin HC, Parsley DW. Zero voltage switching in high frequency power converters using pulse width modulation. In Proceedings of IEEE APEC Conference Rec. 1988. p. 33 40. doi: 10.1109/APEC.1988.10548 4. Sable DM, Lee FC. A zero-voltage-switching bidirectional battery charger/discharger for NASA EOS satellite. In Proceedings of IEEE APEC Conference Rec. 1992. p. 614 21. doi:10.1109/apec.1992.228354 5. Martinez ZR, Ray B. Bidirectional DC/DC power conversion using constant frequency multi-resonant topology. In Proceedings of IEEE APEC Conference. Rec. 1994. p. 991 7. doi:10.1109/apec.1994.316291 6. Kim C-E, Han S-K, Yi K-H, Lee W-J, Moon G-W. A new high efficiency ZVZCS bi- directional DC/DC converter for 42 V Power System of HEVs. In Proceedings of IEEE PESC Conference Rec. 2006. p. 792 7. doi:10.1109/ PESC.2005.1581717 7. Chau KT, Ching TW, Chan CC. Bidirectional softswitching converter-fed DC motor drives. In Proceedings of IEEE PESC Conference Rec. 1998. doi:10.1109/ PESC.1998.701932 8. Shiji H, Harada K, Ishihara Y, Todaka T, Alzamora G. A zero voltage-switching bidirectional converter for PV systems. In Proceedings of IEEE INTELEC Conference Rec. 2003. p. 14 9. doi: 10.1109/INTLEC.2003.1252085 9. Sanchis-Kilders E, Ferreres A, Maset E, Ejea JB, Esteve V, Jordan J, Garrigos A, Calvente J. Soft switching bidirectional converter for battery discharging-charging. In Proceedings of IEEE APEC Conference Rec. 2006. p. 603-9. doi: 10.1109/APEC.2006.1620600 10. Kim I-D, Paeng S-H, Ahn J-W, Nho E-C, Ko J-S. New bidirectional ZVS PWM c Sepic/Zeta DC-DC converter. In Proceedings of IEEE ISIE Conference Rec. 2007. p. 555 60. doi: org/10.6113/jpe.2014.14.4.649 11. Schuch L, Rech C, Hey HL, Grundlinggrundling HA, Pinheiro H, Pinheiro JR. Analysis and design of a new 6 Vol 9 (22) June 2016 www.indjst.org Indian Journal of Science and Technology

S. Usha, C. Subramani, B. Dinesh Naidu and M. S. R. Vishnu Venkatesh high-efficiency bidirectional integrated ZVT PWM converter for DC-bus and battery-bank interface. IEEE Trans Ind Appl. Sep 2006; 42(5):1321 32. doi: 10.1109/ TIA.2006.880847 12. Saravanan T, Srinivasan V, Sandiya VP. A two stage DC-DC converter with isolation for renewable energy applications. Indian Journal of Science and Technology. Jun 2013; 6(S6). Doi no: 10.17485/ijst/2013/v6i6/33970 13. Kavya Santhoshi B, Mohana Sundaram K, Sivasubramanian M, Akila S. A novel multiport bidirectional dual active bridge DC-DC converter for renewable power generation systems. Indian Journal of Science and Technology. Jan 2016; 9(1). Doi no: 10.17485/ijst/2016/v9i1/85701 14. Jagannadha Naidu K, Harish MK. On chip DC-DC converter with high switching frequency and low ripple voltage. Indian Journal of Science and Technology. Feb 2016; 9(5). Doi no: 10.17485/ijst/2016/v9i5/87171 15. Shobanadevi N, Krishnamurty V, Stalin N. PISB control of single phase quasi impedance source DC-DC converter. Indian Journal of Science and Technology. July 2015; 8(13). Doi no:10.17485/ijst/2015/v8i13/55446 16. Kirill S, Timofey G, Vladimir Y. Method for calculating the power circuit characteristics of the Isolated DC-DC converters for electric and hybrid vehicles. Indian Journal of Science and Technology. Oct 2015; 8(27). Doi no: 10.17485/ ijst/2015/v8i27/81709 Vol 9 (22) June 2016 www.indjst.org Indian Journal of Science and Technology 7