SWITCHED-CURRENTS an analogue technique for digital technology

Similar documents
Low-Voltage Low-Power Switched-Current Circuits and Systems

METHODOLOGY FOR THE DIGITAL CALIBRATION OF ANALOG CIRCUITS AND SYSTEMS

Data Converters. Springer FRANCO MALOBERTI. Pavia University, Italy

DESIGN OF MULTI-BIT DELTA-SIGMA A/D CONVERTERS

444 Index. F Fermi potential, 146 FGMOS transistor, 20 23, 57, 83, 84, 98, 205, 208, 213, 215, 216, 241, 242, 251, 280, 311, 318, 332, 354, 407

Index. Small-Signal Models, 14 saturation current, 3, 5 Transistor Cutoff Frequency, 18 transconductance, 16, 22 transit time, 10

CMOS Operational-Amplifier

DESIGN AND PERFORMANCE VERIFICATION OF CURRENT CONVEYOR BASED PIPELINE A/D CONVERTER USING 180 NM TECHNOLOGY

Yet, many signal processing systems require both digital and analog circuits. To enable

Tradeoffs and Optimization in Analog CMOS Design

Low-Voltage Wide Linear Range Tunable Operational Transconductance Amplifier

NPTEL. VLSI Data Conversion Circuits - Video course. Electronics & Communication Engineering.

2. Single Stage OpAmps

A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER

d. Can you find intrinsic gain more easily by examining the equation for current? Explain.

CMOS Operational-Amplifier

CMOS Circuit for Low Photocurrent Measurements

Design of Continuous Time Multibit Sigma Delta ADC for Next Generation Wireless Applications

Switched-Current Circuits

A high-speed CMOS current op amp for very low supply voltage operation

CHAPTER. delta-sigma modulators 1.0

Tuesday, March 22nd, 9:15 11:00

DESIGN OF A NOVEL CURRENT MIRROR BASED DIFFERENTIAL AMPLIFIER DESIGN WITH LATCH NETWORK. Thota Keerthi* 1, Ch. Anil Kumar 2

Atypical op amp consists of a differential input stage,

Modulator with Op- Amp Gain Compensation for Nanometer CMOS Technologies

A New Design Technique of CMOS Current Feed Back Operational Amplifier (CFOA)

Design of Analog CMOS Integrated Circuits

Summary 185. Chapter 4

Basic distortion definitions

An Analog Checker With Input-Relative Tolerance for Duplicate Signals

A Successive Approximation ADC based on a new Segmented DAC

A SI Incremental A/D Converter for IC Sensor Interfaces

Rail-To-Rail Output Op-Amp Design with Negative Miller Capacitance Compensation

A Continuous-Time Incremental Analog to Digital Converter

A Multichannel Pipeline Analog-to-Digital Converter for an Integrated 3-D Ultrasound Imaging System

Microelectronic Circuits

Analog CMOS Interface Circuits for UMSI Chip of Environmental Monitoring Microsystem

Advanced Analog Integrated Circuits. Precision Techniques

Chapter 13: Introduction to Switched- Capacitor Circuits

Appendix B. Design Implementation Description For The Digital Frequency Demodulator

6. OpAmp Application Examples

Two- Path Band- Pass Σ- Δ Modulator with 40- MHz IF 72- db DR at 1- MHz Bandwidth Consuming 16 mw

A new class AB folded-cascode operational amplifier

Low-Power Realization of FIR Filters Using Current-Mode Analog Design Techniques

Second-Order Sigma-Delta Modulator in Standard CMOS Technology

DVCC Based Current Mode and Voltage Mode PID Controller

HDL-A MODELLING OF SWITCHED-CURRENT DELTA SIGMA A/D CONVERTERS

An accurate track-and-latch comparator

Front-End and Readout Electronics for Silicon Trackers at the ILC

CHAPTER 3. Instrumentation Amplifier (IA) Background. 3.1 Introduction. 3.2 Instrumentation Amplifier Architecture and Configurations

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

Advanced Operational Amplifiers

The Application of neumos Transistors to Enhanced Built-in Self-Test (BIST) and Product Quality

Outline. Noise and Distortion. Noise basics Component and system noise Distortion INF4420. Jørgen Andreas Michaelsen Spring / 45 2 / 45

Technology-Independent CMOS Op Amp in Minimum Channel Length

Integrated Circuit Design for High-Speed Frequency Synthesis

AN increasing number of video and communication applications

ADVANCES in CMOS technology have led to aggressive

INF4420 Switched capacitor circuits Outline

DESIGN OF TWO-STAGE CLASS AB CASCODE OP-AMP WITH IMPROVED GAIN

Design of Rail-to-Rail Op-Amp in 90nm Technology

ISSCC 2004 / SESSION 25 / HIGH-RESOLUTION NYQUIST ADCs / 25.4

EE301 Electronics I , Fall

Sigma-Delta ADC Tutorial and Latest Development in 90 nm CMOS for SoC

José Gerardo Vieira da Rocha Nuno Filipe da Silva Ramos. Small Size Σ Analog to Digital Converter for X-rays imaging Aplications

ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS

Design of a Sample and Hold Circuit using Rail to Rail Low Voltage Compact Operational Amplifier and bootstrap Switching

FOR applications such as implantable cardiac pacemakers,

A Switched-Capacitor Band-Pass Biquad Filter Using a Simple Quasi-unity Gain Amplifier

System on a Chip. Prof. Dr. Michael Kraft

Gábor C. Temes. School of Electrical Engineering and Computer Science Oregon State University. 1/25

An 8- bit current mode ripple folding A/D converter

A 24 V Chopper Offset-Stabilized Operational Amplifier with Symmetrical RC Notch Filters having sub-10 µv offset and over-120db CMRR

ECE626 Project Switched Capacitor Filter Design

Analysis and Design of Autonomous Microwave Circuits

INF4420. Switched capacitor circuits. Spring Jørgen Andreas Michaelsen

Analysis of CMOS Second Generation Current Conveyors

An Analog Phase-Locked Loop

Designing CMOS folded-cascode operational amplifier with flicker noise minimisation

A Novel Design of Low Voltage,Wilson Current Mirror based Wideband Operational Transconductance Amplifier

Inter-Ing INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC INTERNATIONAL CONFERENCE, TG. MUREŞ ROMÂNIA, November 2007.

CHAPTER 3 DESIGN OF PIPELINED ADC USING SCS-CDS AND OP-AMP SHARING TECHNIQUE

Revision History. Contents

High Voltage and Temperature Auto Zero Op-Amp Cell Features Applications Process Technology Introduction Parameter Unit Rating

Performance Evaluation of Different Types of CMOS Operational Transconductance Amplifier

DAV Institute of Engineering & Technology Department of ECE. Course Outcomes

Lossy and Lossless Current-mode Integrators using CMOS Current Mirrors

Approximate Circuit Model for a Magnetic Pickup Piezoelectric Pickups Piezoelectric Pickup Analysis Guitar Volume and Tone Control

Design Approaches for Low-Power Reconfigurable Analog-to-Digital Converters

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Design of Pipeline Analog to Digital Converter

MEDIUM SPEED ANALOG-DIGITAL CONVERTERS

THE TREND toward implementing systems with low

Part I - Amplitude Modulation

Berkeley. Mixers: An Overview. Prof. Ali M. Niknejad. U.C. Berkeley Copyright c 2014 by Ali M. Niknejad

Microelectronic Circuits II. Ch 10 : Operational-Amplifier Circuits

Chapter 12 Opertational Amplifier Circuits

VIRTUAL TEST BENCH FOR DESIGN AND SIMULATION OF DATA CONVERTERS

A Compact 2.4V Power-efficient Rail-to-rail Operational Amplifier. Strong inversion operation stops a proposed compact 3V power-efficient

Advanced AD/DA converters. ΔΣ DACs. Overview. Motivations. System overview. Why ΔΣ DACs

Transcription:

SWITCHED-CURRENTS an analogue technique for digital technology Edited by С Toumazou, ]. B. Hughes & N. C. Battersby Supported by the IEEE Circuits and Systems Society Technical Committee on Analog Signal Processing IEE Peter Peregrinus Ltd. on behalf of the Institution of Electrical Engineers

Table of Contents 1 Introduction 1 C. Toumazou, J. B. Hughes and N. С Battersby 1.1 VLSI Technology 1 1.2 The Analogue Dilemma 1 1.3 Switched-Currents 3 1.4 An Analogue Technique For Digital Technology 3 1.5 Book Style 4 1.6 Conclusion 7 References 8 2 The Evolution of Analogue Sampled-Data Signal Processing 9 N. C. Battersby and C. Toumazou 2.1 Introduction 9 2.2 The Evolution of Analogue Sampled-Data Techniques 9 2.2.1 Early work 10 2.2.2 Bucket brigade devices 10 2.2.3 Charge coupled devices 11 2.2.4 Switched-capacitors 13 2.3 The Role of Analogue Sampled-Data Signal Processing 16 2.4 Processing Trends and their Impact on Analogue Circuits 18 2.5 Current-Mode Analogue Signal Processing 23 2.6 Summary 25 References 25 Basic Cells 3 Switched-Current Architectures and Algorithms 30 J. B. Hughes, N. С Bird and I. C. Macbeth 3.1 Introduction 30 3.2 Switched-Capacitor Background 30 3.2.1 Non-inverting integrator 31 3.2.2 Inverting integrator 32 3.2.3 Inverting amplifier 32 3.2.4 Generalised integrator 33 3.2.5 Subtracting integrator. 34 3.2.6 Switched-capacitorcharacteristics 35 3.3 Switched-Current Systems 35 3.4 Delay Modules 37 3.4.1 Current memory cell 37 3.4.2 Delay cell 38 3.4.3 Delay line 39 3.5 Integrator Modules 39 3.5.1 Non-inverting integrator 39 3.5.2 Non-inverting damped integrator 41 3.5.3 Sensitivity 43 3.5.4 Inverting damped integrator 44 3.5.5 Inverting damped amplifier 45 3.5.6 Generalised integrator 46 3.5.7 Bilinear z-transform integrator 48

xvi Switched-Currents: an analogue technique for digital technology 3.5.8 Comparison with the switched-capacitor integrator 49 3.5.9 Integrator-based biquadratic section 49 3.6 Differentiator Modules 54 3.6.1 Inverting differentiator 54 3.6.2 Generalised inverting differentiator 55 3.6.3 Non-inverting differentiator 57 3.6.4 Generalised non-inverting differentiator 59 3.6.5 Bilinear z-transform differentiator 61 3.6.6 Differentiator-based biquadratic section 62 3.7 Filter Synthesis Example 6th Order Lowpass Filter 64 3.8 Summary 68 References 69 4 Switched-Current Limitations and Non-Ideal Behaviour 71 J. B. Hughes and W. Redman-White 4.1 Introduction 71 4.2 Mismatch Errors 71 4.2.1 Unity gain current memory 71 4.2.2 Non-unity gain current memory 76 4.3 Output-Input Conductance Ratio Errors 77 4.3.1 Memory cell response with conductance ratio errors 78 4.3.2 Integrator response with conductanceratioerrors 81 4.3.3 Comparison with switched-capacitor integrator 84 4.3.4 Simulations 85 4.4 Settling Errors 86 4.4.1 Underdamped response 87 4.4.2 Critically damped response 88 4.4.3 Overdamped response 88 4.4.4 Memory cell response with settling errors 90 4.4.5 Integrator response with settling errors 93 4.4.6 Comparison with switched-capacitor integrator 98 4.4.7 Simulations 99 4.5 Charge Injection Errors 99 4.5.1 Switched-capacitor charge injection 100 4.5.2 Current memory charge injection 103 4.5.3 Analysis of charge injection errors 108 4.5.4 Memory cell response with charge injection errors Ill 4.5.5 Integrator frequencyresponsewith charge injection errors 113 4.6 Noise Errors 117 4.6.1 Noise analysis of switched-current memory cells 117 4.6.1.1 Simulations 121 4.6.1.2 Correlated double sampling 121 4.6.1.3 Dynamic range 123 4.6.2 Integrator noise analysis 125 4.6.2.1 Simulations 129 4.6.2.2 Dynamic range 130 4.7 Summary 131 References 134 5 Noise in Switched-Current Circuits 136 S. J. Daubert 5.1 Overview 136 5.2 Transistor Noise 137 5.3 Current Mirror Noise 139 5.4 Current Copier Noise 143 5.4.1 Relative importance of switch and transconductor noise in a current copier 144

Contents xvii 5.4.2 Transfer function approach 147 5.5 Conclusion 154 References 154 6 Switched-Current Circuit Design Techniques 156 J. B. Hughes, K. W. Moulding and D. M. Pattullo 6.1 Introduction 156 6.2 Feedback Techniques 156 6.2.1 Op-amp active memory cell 157 6.2.2 Grounded-gate active memory cell 160 6.2.3 Simple cascode memory cell 163 6.2.4 Folded-cascode memory cell 167 6.2.5 Regulated cascode 170 6.2.6 Regulated folded-cascode memory cell 172 6.2.7 Integrators 172 6.3.1 Basic fully-differential current memory cell 174 6.3.2 Folded-cascode fully-differential current memory and integrator 177 6.3.3 Single-ended to fully-differential equivalence 179 6.3.4 Charge injection 181 6.4 Summary 188 7 Class AB Switched-Current Techniques 191 N. C. Battersby and C. Toumazou 7.1 Introduction 191 7.2 Memory Cell 192 7.3 Filter Building Blocks 194 7.3.1 Delay cells 194 7.3.2 Integrator circuits 194 7.3.3 Differentiator circuits 196 7.4 Performance Limitations 197 7.5 Biquadratic Filter Example 200 7.6 Conclusions 202 Acknowledgements 202 References 202 Filters 8 Switched-Current Filters 204 N. C. Battersby and C. Toumazou 8.1 Introduction 204 8.2 Biquadratic Filter Sections 204 8.2.1 Integrator based sections 205 8.2.2 Example: integrated biquadratic filter 207 8.2.3 Differentiator based sections 212 8.3 Ladder Filters 214 8.3.1 Example: integrated elliptic filter 214 8.4 FIR Filters 222 8.5 Wave Active Filters 223 8.6 Transposition of Switched-Capacitor Filters 223 8.7 Switched-Transconductance Filters 223 8.7.1 Switched-transconductance concept 224 8.7.2 Composite elements 226 8.7.3 Filter applications 227 Acknowledgements 230 References 230

xviii Switched-Currents: an analogue technique for digital technology 9 A Switched-Capacitor to Switched-Current Conversion Method G. W. Roberts and A. S. Sedra 9.1 Introduction 9.2 The Switched-Current Technique 9.3 Comparing the SFGs of SI and SC Integrator Circuits 9.4 SI Filter Circuits with Finite Transmission Zeros 9.5 SI Filter Circuits using Bilinear Integrators 9.6 Conclusions Acknowledgement References 10 Switched-Current Video Signal Processing J. B. Hughes and K. W. Moulding 10.1 Introduction 10.2 Basic Signal Processing Cells 10.2.1 Delay line 10.2.2 Integrator and differentiator cells 10.2.3 FIR cells 10.3 Practical SI Signal Processing Cells 10.3.1 Active negative feedback 10.3.2 Fully differential circuits 10.4 Memory Cell Design 10.4.1 Transmission error 10.4.1.1 Conductance ratio error 10.4.1.2 Charge injection errors 10.4.2 Settling behaviour 10.4.2.1 Linear settling 10.4.2.2 Non-linear settling 10.4.3 Signal-to-noise ratio 10.5 Video 1С Test Circuit 10.5.1 Output waveforms 10.5.2 Amplitude responses 10.5.4 Harmonic distortion 10.5.5 Summary of performance 10.6 Discussion and Conclusions 10.7 References Appendix 10A Appendix 10B Appendix 10C 11 Switched-Current Wave Analogue Filters A. Rueda, A. Yufera and J. L. Huertas 11.1 Introduction and Motivations 11.2 Wave Filters 11.2.1 General principles 11.2.2 Wave filter synthesis procedure 11.2.3 Scaling techniques 11.3 Switched-Current Wave Filter Design 11.3.1 Basic building blocks 11.3.2 Limitations and non-idealities of the building blocks 11.4 Programmable Band-pass Filter Structures 11.4.1 Filter synthesis 11.4.2 Programmable filter implementation 11.5 Design Examples 11.6 Conclusions References 232 232 233 235 241 245 250 251 251 252 252 253 253 255 255 256 256 259 261 261 261 262 263 263 265 265 266 269 269 271 272 272 273 274 275 277 279 279 281 281 284 287 287 288 291 295 295 296 297 302 302

Contents xix Data Converters i 12 Algorithmic and Pipelined A/D Converters 304 D. Nairn 12.1 Introduction 304 12.2 Architectures For Switched-Current ADCs 305 12.2.1 Algorithmic ADCs 305 12.2.2 Pipelined ADCs 307 12.2.3 Summary 308 12.3 Building Blocks 308 12.3.1 Current-samplers 308 12.3.2 Current divide-by-two 312 12.3.3 Current comparators 313 12.3.4 Switches in switched-current circuits 314 12.3.5 Summary 316 12.4 Converter Implementation and Examples 316 12.4.1 Algorithmic ADCs 316 12.4.2 Pipelined ADCs 319 12.5 Limitations 319 12.5.1 Systematic errors 319 12.5.2 Random errors 320 12.6 Conclusions 320 References 321 13 High Resolution Algorithmic A/D Converters based on Dynamic Current Memories 323 P. Deval 13.1 Introduction 323 13.2 CMOS dynamic current memory 323 13.3 Conversion algorithm with reduced dynamic range of the memorised currents 325 13.4 Conversion error 327 13.5 Design of dynamic current memories for use in cyclic ADCs 328 13.5.1 Equivalent time constant of the memory 328 13.5.2 Charge injection error 330 13.5.3 Sampled noise 334 13.5.4 Leakage currents 335 13.5.5 Output conductance 336 13.5.6 Current comparison 340 13.5.7 Comparator offset compensation 341 13.5.8 Clipping the comparator's input voltage 342 13.5.9 Controlling the "on" conductance of the sampling switch 343 13.5.10 Input multiplexer 343 13.6 Technology scaling 344 13.7 Pipelined converter 344 13.8 Experimental results and measurements 345 13.9 Summary 347 Acknowledgements 347 References 348 14 Building Blocks for Switched-Current Sigma-Delta Converters 350 G. W. Roberts and P. J. Crawley 14.1 Introduction 350 14.2 Sigma-Delta A/D Conversion 351 14.3 The SI Circuit Technique 354 14.4 Additional Current-Mode Circuits 363

xx Switched-Currents: an analogue technique for digital technology 14.5 SI DISDM Design 365 14.5.1 The current mirror design approach 365 14.5.2 The component-invariant design approach 376 14.6 Conclusions 379 Acknowledgements 379 References 380 15 Continuous Calibration D/A Conversion 381 W. Groeneveld, H. Schouwenaars, C. Bastiaansen and H. Termeer 15.1 Accuracy of Audio D/A Converters 381 15.1.1 Introduction 381 15.1.2 Linearity considerations 381 15.1.3 Basic calibration principle 382 15.1.4 Imperfections 383 15.1.5 Numerical example 385 15.1.6 Improved calibration technique 386 15.1.7 Continuous current calibration 388 15.2 16-bit Audio D/A Converter Architecture 388 15.2.1 Block diagram 388 15.2.2 Calibration circuitry and current cell 389 15.2.3 Measurement results 390 15.3 Calibrated Noise Shaping D/A Converter 393 15.3.1 Introduction 393 15.3.2 General design considerations 394 15.3.3 Converter architecture considerations 396 15.3.4 D/A converter block diagram 397 15.3.5 Reference current adjustment 398 15.3.6 Digital continuous calibration 399 15.3.7 Bi-directional calibrating current cell 399 15.3.8 Measurement results 400 15.4 Conclusions 402 Acknowledgements 402 References 403 Other Applications 16 Dynamic Current Mirrors 404 G. Wegmann 16.1 Introduction 404 16.2 Current Copiers 405 16.2.1 Principle of current copier and dynamic current mirrors 405 16.2.2 Principal accuracy limitations 406 16.2.3 Cascoded structure 408 16.2.4 Current copier with reduced transconductance gmma 409 16.2.5 Dynamic current mirror structures 410 16.2.6 Multiple dynamic current mirrors (1:1) 412 16.2.7 Dividing current mirror: principle of the division by 2 (Iout=T ) 4W 16.3 Accuracy Limitations 417 16.3.1 Influence of drain voltage variations 417 16.3.1.1 Output conductance gds 417 16.3.1.2 Capacitive divider C gd - С 418 16.3.1.3 Direct charge flow path 419 16.3.2 Leakage currents 419 16.3.3 Charge injection by analogue switches 421

Contents xxi 16.3.3.1 Interfering parameters 421 16.3.3.2 Strategies 422 16.3.3.3 Reduction of the turn-on voltage of the sampling switch 423 16.3.3.4 Two-phase feedback 425 16.4 Noise Analysis 426 16.4.1 Noise sources 426 16.4.2 Analysis of direct noise sources 427 16.4.3 Description of sampling and autozeroing effects 428 16.4.4 Analysis of sampling and autozeroing transfer functions 431 16.4.5 Calculation of sample-and-hold component AV h (f) 433 16.4.6 Calculation of the direct component AV D (f) 433 16.4.7 Autozero transfer function 433 16.4.8 Voltage noise spectral power density Sy(f) 435 16.4.9 Analysis of aliasing effects using the equivalent noise bandwidth technique 436 16.4.9.1 White noise in first and second-order low-pass filters 436 16.4.9.2 White noise aliasing effect in a current copier. 437 16.4.9.3 1/f noise in first and second-order low-pass filter 438 16.4.9.4 1/f aliasing effect in a current copier 439 16.4.10 Noise spectral power density Sy{f) 440 16.4.10.1 White noise due to main transistor Tm 440 16.4.10.2 Noise spectral power density Sy^f) in the baseband 441 16.5 Dynamic Behaviour 442 16.5.1 Critical switching configurations 442 16.5.1.1 Influence of clock delay 442 16.5.1.2 Influence on the output current - AC and DC 444 16.5.2 Speed-accuracy trade-off 445 16.5.2.1 Settling time constant 445 16.5.2.2 Speed-accuracy trade-off 445 16.6 Measurements 446 16.6.1 AC measurements 447 16.6.1.1 Variations of input voltage V in (t) and output current IQ ut(t) 447 16.6.2 DC measurements 448 16.6.2.1 Multiplying mirror of ratio 1 448 16.6.2.2 Basic cell with a reduced transconductance g mra A 450 16.6.2.3 Influence of the clock frequency 451 16.6.3 Noise measurements 452 16.7 Conclusion 453 References 453 Appendix 16A 456 Appendix 16B 458 17 Switched-Current Cellular Neural Networks for Image Processing 459 A. Rodriguez-Vazquez, S. Espejo, J. Huertas and R. Dominguez-C astro 17.1 Introduction 459 17.2 The DT-CNN Model 461 17.2.1 Network architecture and dynamics 461 17.2.2 Network processing and operating modes 463 17.3 Basic Building Blocks for SI DTCNNs 466 17.3.1 Cell operators 466 17.3.2 Current-mode replication and scaling 467.'

xxii Switched-Currents: an analogue technique for digital technology 17.3.3 Cell non-linearity 468 17.3.4 Delay block 470 17.3.5 Current mode CNN conceptual cell schematics 471 17.4 CMOS Current-Mode CNN Design Issues 472 17.4.1 CMOS mirror circuits static non-idealities and sizing equations 472 17.4.2 CMOS current mode dynamic operators non-idealities 477 17.4.3 Programmability issues for current-mode blocks 477 17.4.4 Bias current selection area, power and reliability 479 17.5 Input-Output Strategies 480 17.6 Discussion and Perspectives. 482 References 483 Analysis, Simulation and Test 18 Test for Switched-Current Circuits 487 P. Wrighton, G. Taylor, I. Bell and C. Toumazou 18.1 Introduction 487 18.2 Basic concepts for the test of SI cells 488 18.2.1 Injection and simulation of faults in SI cells 489 18.2.2 Fault detection and detectability measures 490 18.3 Test vector analysis 493 18.3.1 Effect of test stimulus period 494 18.3.2 Different profile test stimuli 496 18.3.2.1 Overall coverage 496 18.3.2.2 Transistor level analysis 497 18.3.2.3 Individual faults groups and failure modes 499 18.4 Built In Self Test for SI cells 501 18.4.1 Functional inversion test circuit 502 18.4.1.1 Fault coverage 505 18.5 Conclusions and future work 506 Acknowledgements 507 References 507 19 Analysis of Switched-Current Filters 508 A. C. M. de Queiroz 19.1 Introduction 508 19.2 Frequency-Domain Nodal Analysis of Switched-Current Filters 509 19.3 Refinements to the Basic Algorithm 512 19.4 Voltage Sources in Nodal Analysis 513 19.5 Interpolation of z-transforms 514 19.6 Time-Domain Analysis 517 19.7 Sensitivity Analysis 518 19.8 Conclusions 525 References 526 20 Non-linear Behaviour of Switched-Current Memory Circuits 528 G. W. Roberts and P. J. Crawley 20.1 Introduction 528 20.2 Basic Memory Cell Operation 529 20.3 Small-Signal Behaviour of the Memory Cell 532 20.4 Large-Signal Behaviour of the Memory Cell 536 20.4.1 A total harmonic distortion bound 539 20.4.2 Comparing THD bound with simulation results 543 20.4.3 Experimental confirmation of the THD bound 545

Contents xxiii 20.5 Conclusions 545 Acknowledgement 546 References 546 Future Directions 21 GaAs MESFET Switched-Current Circuits 548 C. Toumazou and N. C. Battersby 21.1 Introduction 548 21.2 GaAs Versus Silicon Technology For Analogue Design 548 21.3 MESFET Modelling 550 21.4 GaAs MESFET Current-Mirror Techniques 553 21.4.1 Cross-coupled MESFET pair 553 21.4.2 Linear current-mirror 554 21.4.3 Cascoding 556 21.6 Towards GaAs MESFET Switched-Current Techniques 559 21.6.1 Basic memory cell 560 21.6.2 Linear non-inverting memory cell 561 21.6.3 Fully differential, linear transconductance GaAs switchedcurrentcell 563 21.6.4 Generalised integrator 564 21.6.5 Performance limitations 565 21.7 Circuit techniques for enhanced performance 567 21.7.1 Dummy switch compensation 567 21.7.2 Cascoded memory cells 568 21.8 Simulation results 569 21.8.1 Fully cascoded memory cell 570 21.8.2 Damped integrator 572 21.8.3 Biquadratic filter example 573 21.9 Discussion and Conclusion 574 Acknowledgements 575 References 575 ^22 Switched-Currents: State-of-the-Art and Future Directions 577 C. Toumazou, N. C. Battersby and J. B. Hughes 22.1 Introduction 577 22.2 Switched-currents: an analogue technique for digital technology 577 22.3 Future Research Directions 584 22.4 Towards total memory cell error cancellation schemes 584 22.4.1 Algorithmic memory cell 585 22.4.2 S 2 I memory cell 586 22.3.3 Noise performance 588 22.3.4 Towards low power. 588 22.3.5 Tuning schemes 588 22.3.6 Filter building blocks 589 22.3.7 Data converters 589 22.3.8 GaAs technology 589 22.3.9 CAD, simulation and test 589 22.4 Conclusions 590 References 590 Index.. 591