Time of flight and direction of arrival of HF radio signals received over a path along the midlatitude trough: Theoretical considerations

Similar documents
RADIO SCIENCE, VOL. 42, RS4005, doi: /2006rs003611, 2007

RADIO SCIENCE, VOL. 38, NO. 3, 1054, doi: /2002rs002781, 2003

Measurements of the Doppler and multipath spread of HF signals received over a path oriented along the midlatitude trough

Nighttime sporadic E measurements on an oblique path along the midlatitude trough

HF propagation modeling within the polar ionosphere

Observed Variations in HF Propagation Over A Path Aligned Along the Mid-Latitude Trough

FFI RAPPORT DIRECTION FINDING EXPERIMENT IN NORTH SCANDINAVIA. JACOBSEN Bjørn FFI/RAPPORT-2003/02356

1. Terrestrial propagation

Near real-time input to an HF propagation model for nowcasting of HF communications with aircraft on polar routes

RECOMMENDATION ITU-R P Prediction of sky-wave field strength at frequencies between about 150 and khz

Global Maps with Contoured Ionosphere Properties Some F-Layer Anomalies Revealed By Marcel H. De Canck, ON5AU. E Layer Critical Frequencies Maps

HF RADIO PROPAGATION AT HIGH LATITUDES: OBSERVATIONS AND PREDICTIONS FOR QUIET AND DISTURBED CONDITIONS

Rec. ITU-R P RECOMMENDATION ITU-R P *

Significant of Earth s Magnetic Field and Ionospheric Horizontal Gradient to GPS Signals

A technique for calculating ionospheric Doppler shifts from standard ionograms suitable for scientific, HF communication, and OTH radar applications

CRITICAL FREQUENCY By Marcel H. De Canck, ON5AU

2 Propagation mechanisms responsible for propagation at frequencies above the basic MUF

Measurement and modeling of HF channel directional spread characteristics for northerly paths

On the factors controlling occurrence of F-region coherent echoes

Mapping ionospheric backscatter measured by the SuperDARN HF radars Part 1: A new empirical virtual height model

The Effect of Geomagnetic Storm in the Ionosphere using N-h Profiles.

Chapter 7 HF Propagation. Ionosphere Solar Effects Scatter and NVIS

High Frequency Propagation (and a little about NVIS)

Propagation During Solar Cycle 24. Frank Donovan W3LPL

Determination of the correlation distance for spaced antennas on multipath HF links and implications for design of SIMO and MIMO systems.

Study of the Ionosphere Irregularities Caused by Space Weather Activity on the Base of GNSS Measurements

MUF: Spokane to Cleveland October, 2100 UTC

Ionospheric Impacts on UHF Space Surveillance. James C. Jones Darvy Ceron-Gomez Dr. Gregory P. Richards Northrop Grumman

Transequatorial VHF-UHF Propagation

Ionospheric Raytracing in a Time-dependent Mesoscale Ionospheric Model

Satellite Navigation Science and Technology for Africa. 23 March - 9 April, The African Ionosphere

RECOMMENDATION ITU-R P HF PROPAGATION PREDICTION METHOD* (Question ITU-R 223/3)

Fast and accurate calculation of multipath spread from VOACAP predictions

[EN-107] Impact of the low latitude ionosphere disturbances on GNSS studied with a three-dimensional ionosphere model

Ionogram inversion F1-layer treatment effect in raytracing

Reading 28 PROPAGATION THE IONOSPHERE

Plasma effects on transionospheric propagation of radio waves II

Chapter 2 Analysis of Polar Ionospheric Scintillation Characteristics Based on GPS Data

A study of the ionospheric effect on GBAS (Ground-Based Augmentation System) using the nation-wide GPS network data in Japan

RADIOWAVE PROPAGATION

NAVIGATION SYSTEMS PANEL (NSP) NSP Working Group meetings. Impact of ionospheric effects on SBAS L1 operations. Montreal, Canada, October, 2006

TRANSEQUATORIAL RADIO PROPAGATION

Attenuation of GPS scintillation in Brazil due to magnetic storms

Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation (IDED-DA) Model

Comparison of the first long-duration IS experiment measurements over Millstone Hill and EISCAT Svalbard radar with IRI2001

Earthquake Analysis over the Equatorial

Transmit Antenna for Ionospheric Sounding Applications Rob Redmon 1 and Terence Bullett 2

Latitudinal variations of TEC over Europe obtained from GPS observations

Multi-instrument observations of atmospheric gravity waves/traveling ionospheric disturbances associated with enhanced auroral activity

RECOMMENDATION ITU-R P HF propagation prediction method *

Assimilative Modeling of Ionospheric Dynamics for Now-casting of HF Propagation Channels in the Presence of TIDs 1

GPS Ray Tracing to Show the Effect of Ionospheric Horizontal Gradeint to L 1 and L 2 at Ionospheric Pierce Point

Measurements of doppler shifts during recent auroral backscatter events.

RELATIONS BETWEEN THE EQUATORIAL VERTICAL DRIFTS, ELECTROJET, GPS-TEC AND SCINTILLATION DURING THE SOLAR MINIMUM

A Terrestrial Multiple-Receiver Radio Link Experiment at 10.7 GHz - Comparisons of Results with Parabolic Equation Calculations

Technician License Course Chapter 4

A method for automatic scaling of F1 critical frequencies from ionograms

EFFECTS OF SCINTILLATIONS IN GNSS OPERATION

Aspects of HF radio propagation

The low latitude ionospheric effects of the April 2000 magnetic storm near the longitude 120 E

4/29/2012. General Class Element 3 Course Presentation. Radio Wave Propagation. Radio Wave Propagation. Radio Wave Propagation.

RECOMMENDATION ITU-R P Method for the prediction of the performance of HF circuits *, **

Three-dimensional and numerical ray tracing on a phenomenological ionospheric model

Ionospheric Hot Spot at High Latitudes

HF spectral occupancy over the eastern Mediterranean

A first study into the propagation of 5 MHz (60 m) signals using the South African ionosonde network

SuperDARN (Super Dual Auroral Radar Network)

imaging of the ionosphere and its applications to radio propagation Fundamentals of tomographic Ionospheric Tomography I: Ionospheric Tomography I:

Sw earth Dw Direct wave GRw Ground reflected wave Sw Surface wave

Radio Science. Real-time ionospheric N(h) profile updating over Europe using IRI-2000 model

Modeling of Ionospheric Refraction of UHF Radar Signals at High Latitudes

Chapter 6 Propagation

Morphology of the spectral resonance structure of the electromagnetic background noise in the range of Hz at L = 5.2

EFFECTS OF GEOMAGNETIC ACTIVITY ON DAILY DEVIATION PATTERNS OF THE IONOSPHERIC CRITICAL FREQUENCY FOF2

Space Weather and the Ionosphere

ROTI Maps: a new IGS s ionospheric product characterizing the ionospheric irregularities occurrence

The synthesis of travelling ionospheric disturbance (TID) signatures in HF radar observations using ray tracing

Abstract. Introduction

Report of Regional Warning Centre INDIA, Annual Report

Study of small scale plasma irregularities. Đorđe Stevanović

Observation of Scintillation Events from GPS and NavIC (IRNSS) Measurements at Bangalore Region

Near real-time input to a propagation model for nowcasting of HF communications with aircraft on polar routes

Impact of the low latitude ionosphere disturbances on GNSS studied with a three-dimensional ionosphere model

The impact of geomagnetic substorms on GPS receiver performance

Modelling the Ionosphere

Ionospheric Disturbance Indices for RTK and Network RTK Positioning

Daytime modelling of VLF radio waves over land and sea, comparison with data from DEMETER Satellite

Ground based measurements of ionospheric turbulence manifestations induced by the VLF transmitter ABSTRACT

Ionospheric Propagation

Detection and Characterization of Traveling Ionospheric Disturbances (TIDs) with GPS and HF sensors

RECOMMENDATION ITU-R P

Signal strength variations at 2 GHz for three sea paths in the British Channel Islands: Observations and statistical analysis

Ionospheric Radio Occultation Measurements Onboard CHAMP

Radio tomography based on satellite beacon experiment and FORMOSAT- 3/COSMIC radio occultation

Azimuthal dependence of VLF propagation

Dartmouth College SuperDARN Radars

Signature of the 29 March 2006 eclipse on the ionosphere over an equatorial station

EFFECTS OF IONOSPHERIC SMALL-SCALE STRUCTURES ON GNSS

A Neural Network tool for the interpolation of fof2 data in the presence of sporadic E layer

MEETING OF THE METEOROLOGY PANEL (METP) METEOROLOGICAL INFORMATION AND SERVICE DEVELOPMENT WORKING GROUP (WG-MISD)

Transcription:

RADIO SCIENCE, VOL. 39,, doi:10.1029/2004rs003052, 2004 Time of flight and direction of arrival of HF radio signals received over a path along the midlatitude trough: Theoretical considerations D. R. Siddle, N. Y. Zaalov, A. J. Stocker, and E. M. Warrington Department of Engineering, University of Leicester, Leicester, UK Received 29 February 2004; revised 10 June 2004; accepted 16 June 2004; published 17 August 2004. [1] Observations from an HF radio experiment on a subauroral path between Sweden and the UK near sunspot maximum in 2001 are compared with the position of the midlatitude trough according to a statistical model. Periods of off-great circle propagation, occurring predominantly in winter and equinoctial nights at frequencies 7 11 MHz, show characteristics consistent with scattering from field-aligned irregularities in the northern trough wall and/or auroral oval. Very little reflection and/or scattering was apparent from directions to the south of the great circle path. These results are in marked contrast with those from a similar experiment conducted near sunspot minimum in 1994 in Canada, during which both southerly and northerly deviations were observed in the 5 15 MHz range. The contrasting results were simulated using ray tracing through a model ionosphere incorporating a model of the trough and, optionally, precipitation. The observed off-great circle propagation features on the European path could only be reproduced when precipitation within the northern trough wall/auroral zone was included, whereas features of the northerly and southerly deviations observed in the Canadian experiment could be simulated by the presence of the trough walls and without the need for precipitation. INDEX TERMS: 6934 Radio Science: Ionospheric propagation (2487); 6964 Radio Science: Radio wave propagation; 2439 Ionosphere: Ionospheric irregularities; KEYWORDS: midlatitude trough, ionospheric HF propagation Citation: Siddle, D. R., N. Y. Zaalov, A. J. Stocker, and E. M. Warrington (2004), Time of flight and direction of arrival of HF radio signals received over a path along the midlatitude trough: Theoretical considerations, Radio Sci., 39,, doi:10.1029/2004rs003052. 1. Introduction [2] A number of measurements of the direction of arrival of HF signals received over paths oriented along the midlatitude trough have been reported by Rogers et al. [1997] and Siddle et al. [2004]. The first paper describes measurements made between Halifax and Leitrim in Canada near solar minimum in 1994, while the latter describes an experiment undertaken between Uppsala, Sweden and Leicester, UK in 2001 close to sunspot maximum. In both cases, large deviations from the great circle path were observed, both to the south and to the north in the Canadian measurements and mostly to the north for the European path. Copyright 2004 by the American Geophysical Union. 0048-6604/04/2004RS003052$11.00 [3] This paper investigates the different mechanisms that can cause deviations from great circle propagation for each of these experiments. In the European experiment, time of flight data enable a simple estimation of the location of the point of reflection for one-hop signals. This reflection point correlates well with the position of the trough s northern wall as estimated by a statistical model [Halcrow and Nisbet, 1977]. Further analysis shows that the plane of reflection assumed in this simple reflection model is oriented along the bearing of geomagnetic declination. These findings and the Doppler spread characteristics of the signals point to scattering by irregularities as the mechanism for azimuthal deviation in this case. Time of flight measurements were not available for the Canadian path, so such considerations were not possible for this path. [4] Ray-tracing studies were also performed using a model ionosphere based on ionospheric sounding data. The model also contained an electron density depletion 1of10

Figure 1. The latitude of the calculated point of virtual reflection (dots) and of the model trough walls (bold lines) between noon on 26 December 2001 (day 360) and the end of 31 December 2001 (day 365). From top to bottom: frequency 7.0, 10.4, and 11.1 MHz. The horizontal line at 56.5 N represents the latitude of the midpoint of the GCP. associated with the trough based on the Halcrow and Nisbet [1977] model and optionally, the effect of precipitation. Random density irregularities at appropriate scales were also added to the model. The off-great circle propagation features on the Uppsala to Leicester path could only be simulated when irregularities in the north wall of the trough or the auroral zone caused by precipitation were introduced into the model ionosphere. In contrast, many of the features apparent in the Canadian measurements were reproduced through reflection by trough-scale electron density gradients only, without the need for precipitation in the model. 2. Reflection Point Estimation for the Uppsala-Leicester Path [5] As reported in the work of Siddle et al. [2004], during winter and equinoctial nights signals in the range 7.0 to 11.1 MHz were often not able to propagate along the great circle path (GCP) and arrived instead from directions well to the north. Large Doppler spreads and shifts were evident at these times. Below this range, at 4.6 MHz, propagation along the GCP was supported throughout most nights, whereas at 14.4 and 18.4 MHz, nighttime propagation rarely occurred. Two possible mechanisms for the deviation to the north for the 7.0 11.1 MHz signals have been considered, namely reflection from the tilted electron density gradients forming the north wall of the trough, and scattering from irregularities embedded in the north wall or within the auroral oval. To investigate which of the mechanisms was responsible for the deviations from the GCP, the measurements of time-of-flight (TOF), azimuth and elevation for signals identified as single-hop reflections were used to estimate the location of the ionospheric reflection point. The calculations assume a single specular reflec- 2 of 10

tion, linear propagation and take into account the curvature of Earth. Examples of the time-dependence of the reflection points estimated by these means are shown in Figure 1. As well as estimating the reflection point, the calculation also gave the orientation of the tilt of the ionosphere at the point of reflection. Whilst the implicit assumption of specular reflection is clearly an oversimplification, this procedure does yield interesting results. A more sophisticated simulation, which takes into account the refraction of the ray through the gradients in electron density, is reported later in this paper. 3. Comparison With the Halcrow and Nisbet Trough Model [6] An empirical model of the trough, based on satellite measurements is given by Halcrow and Nisbet [1977]. This model, which is parameterized by Kp, may be used to predict the latitude of the top and bottom of the north and south walls of the trough as a function of local time. The walls are modeled as regions where the perturbation in electron density increases linearly from the constant (reduced) level within the trough to zero outside. Kp, local time and the solar zenith angle are used to estimate the location of the sunrise and sunset walls of the trough. Siddle et al. [2004, Figure 1] show an example of the position of the trough at 0000 UT in March 2001. [7] Shown as bold lines in Figure 1 are the latitudes of the top (i.e., unperturbed) and bottom (i.e., fully perturbed) edges of the north and south trough wall, as derived from the Halcrow and Nisbet model. The local time employed in the calculations was that for the midpoint of the GCP (approx. 7.3 E, 56.5 N) and since the reflection points (shown as dots) inferred from the observations lay between longitudes of 1 W and 18 E, there may be a local time discrepancy of up to half an hour between the model and data. Note that in Figure 1, the southern wall disappears during the daytime whereas the northern wall continues from one day to the next. This arises since because the model specifies the eastern and western terminations of the trough in terms of solar zenith angle which is satisfied in the south, but not in the north which may be in the polar night. In reality, the cessation of the southern wall probably signifies the recession of the trough to higher latitudes or an absence of the trough. [8] Good agreement between observations and model is evident in Figure 1. The best example of agreement is on day 363 364, where the signal follows the model north wall for about ten hours, as it decreases in latitude during the night and then rises just before dawn. However, there are clearly factors outside the model, such as the trough s responsiveness to Kp changes and the electron density in the auroral oval, which control the position of the reflection point. Some contrast is seen between the higher frequencies and 7.0 MHz in that the latter shows a more continuous change between northerly and GCP propagation (e.g., in the early hours of day 361), a later change from GCP to northerly propagation (e.g., at the end of day 363 where both GCP and off-gcp propagation exist simultaneously) and is less likely to be reflected from more distant points (e.g., no feature near midnight on day 362 363 and shorter tails on the features on the last two nights). There is also good agreement between sunrise (as evidenced by the poleward recession of the trough) and the onset of GCP propagation. 4. Analysis of the Orientation of the Reflecting Medium [9] Two mechanisms by which deflections from GCP can occur are considered here. The first is through reflection from the smooth electron density gradient in the trough walls, while the second is by scattering from field-aligned irregularities (FAIs). FAIs are regions of enhanced electron density which are found mainly in the north wall of the trough and within the auroral oval (which are often coincident). They are strongly localized on the scale of tens of kilometers and aligned along the geomagnetic field lines [Jones et al., 1997]. Observations [see Siddle et al., 2004, Figure 4] show that FAIs can last several hours, are quite strong and subject reflected/scattered signals to Doppler spreading due to their dynamic origin. The scattering is also fairly independent of signal frequency. These characteristics suggest that the scattering surface is less smooth than the trough wall, but not sufficiently varying on the decameter-scale to cause Bragg scattering. Thus FAIs can be represented in the ray-tracing model (see next section). [10] The geometry of reflection from FAIs is depicted in Figure 2. As the ray travels upward, it enters a (reduced) F2 layer, and is refracted toward the horizontal. Since electrons are confined to move along the geomagnetic field lines, rather than across them, the reflection coefficient from irregularities increases rapidly if the incident ray is perpendicular to the field. Also shown in this figure is the virtual plane, P, of reflection, assuming no refraction. The tilt, t 0 of P can be derived from the elevation angle of the received rays, and will differ from the geomagnetic dip angle, t, due to refraction. The bearing b 0 of P can be derived from the positions of the transmitter, receiver and virtual reflection point using Snell s law. Apart from some refraction, b 0 3of10

Figure 2. A ray (solid line) travels upward from the transmitter and is refracted toward the horizontal by residual electron density in the trough F layer. It reflects from electron density structures localized along a field line, B with dip t and bearing b, and proceeds to the receiver. A simple model represents the ionosphere as a specular plane P and disregards refraction (dotted line). P has bearing, b 0 (the direction of fastest descent) and tilt t 0. will be the same as the magnetic declination, b. The refraction is, however, more likely to alter the ray s elevation than its azimuth. [11] At a position (62 N, 5 E) typical of the point of virtual reflection for the northerly signals, the declination of Earth s field is about 25 west of north and its dip is about 74. In Figure 3, the value of b 0 has been calculated for each off-gcp signal at 10.4 MHz in 2001 and the occurrence frequency plotted. The most notable feature here is the narrow peak around 23 west of north, showing that the geomagnetic field is relevant to the azimuth of arrival. This may be due to scattering from FAIs or to reflection from the trough wall, which, when averaged over Kp, will run along lines of constant geomagnetic latitude. [12] The tilt of the specular plane away from the horizontal (t 0 in Figure 2) can also be calculated from the direction of arrival. For the peak described in Figure 3, tilts between 25 and 65 are seen, with a peak in frequency of observations around 55, disagreeing with the calculated dip of 74. If, as the Doppler spread suggests, the signals were scattered from FAIs rather than from the trough walls, then the difference is presumed to be due to vertical deviation caused by refraction and to the lower accuracy of the elevation data. No systematic variation in the peak 4of10 in elevation angle is seen amongst the different frequencies. 5. Ray-Tracing Studies [13] A ray-tracing study has been undertaken to investigate the contrasting propagation effects observed for Figure 3. Plot of bearing of fastest decrease in height of assumed planar ionosphere for all off-gcp signals at 10.4 MHz in 2001 (1 degree bins).

the Uppsala (18 E, 60 N) to Leicester (1 W, 52 N) experiment [Siddle et al., 2004], which was conducted close to sunspot maximum, and the Halifax (64 W, 45 N) to Leitrim (76 W, 45 N) experiment [Rogers et al., 1997], which was conducted close to sunspot minimum. The ray tracing was based on the code by Jones and Stephenson [1975]. 5.1. Ionospheric Model [14] A realistic ionospheric model was required and therefore a combined model of the background ionospheric electron densities, the trough and auroral oval was developed. Initially, a bottom-side electron density profile consisting of a single Chapman layer was adjusted to match the ionospheric parameters (fof2, estimated Hmax, etc) measured at ionosonde stations located at latitudes south of, north of, and close to the trough. The longitudinal variation of the background ionosphere was derived from the time variation of these profiles in the relevant period. [15] The Halcrow and Nisbet [1977] model was used as a basis for the position of the trough walls. Initial studies using an unmodified trough model were unable to reproduce the observations. This was attributed to the unrealistic nature of the smooth walls produced by the model, and therefore smaller-scale structures were added to the modeled electron density profile as follows: [16] 1. The latitude of the walls was perturbed by two smoothed random functions of longitude; one of typical scale 10, the other of typical scale 2. The functions were of zero mean and typical latitudinal size 2. [17] 2. The depletion in the walls, as a percentage of that in the center of the trough, was also perturbed. To the linear variation of the model, was added the product of lateral and longitudinal smoothed zero-mean random functions. The typical scales of variation were 0.2 and 2 respectively, and the typical amplitude varied between zero at the top and bottom of the walls and 25% at the wall center. [18] The latter of these perturbations produced a landscape of patches along each wall, which were elongated in the direction longitudinal to the trough. This created small areas of higher density gradient than existed in the original model which enhance the ability of the wall to reflect rays. No perturbations were added to the floor of the trough. The maximum depletion of the trough was set according to the phase of the solar cycle. Typically, a reduction in electron density of 20 30% was used for times of maximum sunspot number, and a reduction of 60% for low sunspot number. These values represent averages derived from ionograms from ionosonde stations under the trough (Chilton, UK) and close to the southern edge (Pruhonice, Czech Republic), and they differ markedly from the constant reduction of 75% assumed in the Halcrow and Nisbet model. 5of10 [19] The auroral oval is an enhancement of electron density caused by particle precipitation in the E region and above. It was modeled as having its equatorward edge coincident with the trough s poleward edge, although it should be noted that the oval is sometimes to the north of the trough wall. The basic model of the oval was, like the trough, trapezoidal in cross section, having a flat top and linearly sloping sides when plotted as electron density against latitude. As a function of distance along (near-vertical) field lines, the density enhancement was modeled as starting 80 100 km from the ground, having one or more peaks of about 10 13 electrons/m 3 around 110 km, and then decaying slowly toward 200 km [Bates and Hunsucker, 1974]. This enhancement was then also perturbed by the product of lateral and longitudinal smoothed zero-mean random fluctuations of typical size 25%. The typical scales of variation were 0.2 and 4 respectively, again resulting in elongated patches representing the FAIs inferred from the measurements. Although precipitation is known to vary over the solar cycle, this variation was not included in the model since there are few direct observations of this parameter, and it is extremely difficult to predict the intensity and spectrum of this complex phenomenon. 5.2. Ray-Tracing Results for the Uppsala-Leicester Path [20] Figure 4 illustrates the importance of taking into account precipitation in modeling the off-gcp propagation effects. These plots show azimuthal deviation (top) and TOF (bottom) for the 7.0 MHz signal. For the panels on the left, the model includes the trough but no precipitation, while those on the right were produced using the same parameters but including precipitation. No off-gcp signals are evident when there is no precipitation, while the panels on the right show a deviation of 40 60 to the north and a TOF which decreases to 6 ms in the evening and then increases again around sunrise, indicating an approach and retreat of the reflection points. These plots show all possible ray paths irrespective of signal strength, and consequently the off-gcp trace overlaps in time with the GCP signal. However, the relative ray densities of the on- and off-gcp propagation in the model output indicate that the off-gcp signal would be much weaker than the on-gcp signal. For comparison with observations, the two panels in Figure 5 show an example of the 7.0 MHz observations for the night of 9th December 2001, which exhibit features in good agreement with the model. 5.3. Ray-Tracing Results for the Halifax-Leitrim Path [21] A goniometric direction finder was employed for these measurements in a system capable of providing a

Figure 4. (top) Simulated azimuth deviation (degrees clockwise from GCP azimuth) and (bottom) time-of-flight (ms) for the 7.0 MHz signal with (left) trough only and (right) with trough and scattering from irregularities within the auroral oval. single bearing estimate which, in general, is in the direction of the strongest signal component. Measurements were taken at 5.1 MHz, 10.9 MHz and 15.9 MHz. As summarized in Table 1, this path was shorter than the Uppsala-Leicester path, and the data were taken at a different phase of the solar cycle, but the geomagnetic latitude and the orientation of the GCP relative to local magnetic north were quite similar. [22] Figure 6 shows example observations at 5.1 MHz for the Halifax-Leitrim path. For this path, azimuthal deviations to the south occur more frequently than to the north, in contrast with the Uppsala-Leicester observations where southerly deviations were rarely observed. Variation is seen throughout 1994 in the time of commencement of deviation from GCP (between 2100 and 6of10 0800 UT), and in whether the off-gcp signals deviate smoothly from the GCP or change abruptly. The variability of the onset of deviation and its direction and rate of change are exemplified in Figure 6. At 10.9 MHz and 15.9 MHz, southerly deviations are also more common than northerly, and occur mostly between 0000 and 1200 UT. However, at these frequencies, off-gcp features are not so clearly defined. [23] Figure 7 shows the modeled azimuthal deviation of a 5.1 MHz signal for Kp values of 2, 4 and 6. A southerly deviation is seen around 2100 UT for all these values of Kp, and an increasingly strong northerly deviation is seen around 0200 UT for higher values of Kp. This Kp dependence is due to the north wall being further to the south with increased Kp values in the

Figure 5. Typical measured nighttime traces for(left) time-of-flight (ms) and (right) azimuth deviation (degrees clockwise from GCP azimuth) for 7.0 MHz. Halcrow and Nisbet model. The time of the southerly deviation appears to coincide with the cessation of one of the GCP propagation modes. [24] To further investigate the reasons for the difference in behavior on the Canadian and European paths, the Canadian model path length was increased from 911 km to 1500 km, similar to that for the Uppsala- Leicester path. Increasing the path length decreases the deviation and makes the propagation last longer into the night (see Figure 7). The principal features apparent in each plot, namely the early southerly deviation and the later northerly one, remain the same. These results were obtained without the effects of precipitation in the auroral oval being included in the model, showing that the experimentally observed features can be reproduced to some extent using only the mechanism of reflection from the trough walls. In reality, precipitation will occur and this will add to the complexity of the simulation results. 6. Conclusions [25] For the Uppsala-Leicester measurements made close to sunspot maximum, estimates were made of the reflection points and the orientation of the apparent reflecting plane for all of the measurements at frequencies between 7.0 and 11.1 MHz. The latitude of the estimated reflection points was compared to a statistical model [Halcrow and Nisbet, 1977] of the latitude of the trough walls. In many cases, a good agreement was apparent between the estimated reflection point and the location of the north wall. The orientation of the apparent reflection plane was predominantly in the direction of Earth s field, but the calculated tilt differed from the geomagnetic dip angle. It is likely that the strong reflections from the north wall were caused by a combination of refraction through the ionosphere within the trough, and scattering in a plane perpendicular to the geomagnetic field. The high Doppler spread of the off- GCP signals is further evidence for scattering via irregularities. This is consistent with ray-tracing studies, which indicated that the electron density gradients within the trough walls at this phase of the solar cycle are insufficient to allow reflection at 7.0 MHz or above. [26] Comparisons were made between the nature of the off-great circle propagation for the European path at a time close to solar maximum and for the Canadian path at a time close to solar minimum. Although the geomag- Table 1. Comparison of Path Characteristics Between Uppsala-Leicester and Halifax-Leitrim Uppsala-Leicester Halifax-Leitrim Length, km 1400 900 Geomagnetic azimuth of GCP, deg east of 80 92 magnetic N Geomagnetic latitude of midpoint, deg 57 56 Geographic latitude of midpoint, deg 56 45 Geographic longitude of midpoint, deg east 7 70 Mean sunspot number 111 30 7of10

Figure 6. Examples of azimuthal deviation (degrees clockwise from GCP) along the Halifax- Leitrim path) at 5.1 MHz for (top left) 8 March 1994, (top right) 26 May 1994, (bottom left) 18 April 1994, and (bottom right) 27 March 1994. All times are UT. 8of10

Figure 7. Simulation of azimuthal deviation (degrees clockwise from GCP) of a 5.1 MHz signal for (top left) K p = 2, (top right) K p = 4, and (bottom left) K p = 6 for actual path length (911 km) and (bottom right) extended path length (1500 km). All times are UT. netic latitudes of the paths are similar, far more southerly deviations were observed in the Canadian measurements. Ray tracing produced southerly and northerly deviations similar to those observed, showing that for the Canadian path at the time of the measurements, i.e., close to solar minimum, there is a sufficiently large electron density gradient in the trough walls to reflect the rays. Lengthening the path used in the model led, as expected, to lower azimuthal deviations and a lengthening of the duration of off-gcp signals into the early morning, but did not remove the southerly deviations. [27] The differences in character of the off-gcp signals between the two sets of data seems therefore to be mainly due to the different levels of depletion of the trough 9of10 at different phases of the solar cycle. Some of the difference in propagation may also be due to changes in the density and vertical and meridional profiles of the background ionosphere caused by the solar cycle. Although daytime electron density varies dramatically over the solar cycle, differences in the nighttime ionosphere are much less pronounced. These effects are implicit in the model via the electron density background profiles, from which the background ionosphere is constructed. The other differences, noted in Table 1, are the one-degree difference in magnetic latitude and the 12 variation in GCP orientation between the two experiments. Although the trough is only a few degrees wide, its position varies by a few degrees latitude and its orientation by tens of degrees according

to geomagnetic conditions, so these are unlikely to fully account for the observed differences. The difference in orientation, though small, may be more important if it alters the angle of incidence of a ray on the southern wall near the critical frequency. [28] By comparing the propagation characteristics of the midlatitude trough at these two different times and places, a measure of the variability and sensitivity to path geometry, frequency, time of day, season and position in the solar cycle has been gained. Eventually, the authors hope to be able to predict the effect of the trough and auroral oval on any path given its location, bearing, length and the phase of the solar cycle. Such characterization of the effects of the trough will allow future planners and operators of HF systems to take account and mitigate its impact on communications systems. [29] Acknowledgments. The authors would like to thank the Swedish Meteorological Institute for hosting the transmitter at their Marsta site. This investigation was supported by a grant from the EPSRC. References Bates, H. F., and R. D. Hunsucker (1974), Quiet and disturbed electron-density profiles in the auroral zone ionosphere, Radio Sci., 9, 455. Halcrow, B. W., and J. S. Nisbet (1977), A model of the F2 peak electron densities in the main trough region of the ionosphere, Radio Sci., 12, 815 820. Jones, D. G., I. K. Walker, and L. Kersley (1997), Structure of the poleward wall of the trough and the inclination of the geomagnetic field above the EISCAT radar, Annal. Geophys., 15, 740 746. Jones, R. M., and J. J. Stephenson (1975), A versatile threedimensional ray-tracing computer program for radio waves in the ionosphere, Rep. OT 75 76, Off. for Telecommun., U.S. Dept. of Comm., Washington, D. C. Rogers, N. C., E. M. Warrington, and T. B. Jones (1997), Large HF bearing errors for propagation-paths tangential to the auroral oval, IEE Proc. Microwaves Antennas Propagat., 144(2), 91 96. Siddle, D. R., A. J. Stocker, and E. M. Warrington (2004), Time of flight and direction of arrival of HF radio signals received over a path along the midlatitude trough: Observations, Radio Sci., 39, RS4008, doi:10.1029/ 2004RS003049. D. R. Siddle, A. J. Stocker, E. M. Warrington, and N. Y. Zaalov, Department of Engineering, University of Leicester, Leicester LE1 7RH, UK. (emw@leicester.ac.uk) 10 of 10