Ultra-short distributed Bragg reflector fiber laser for sensing applications

Similar documents
Simultaneous strain and temperature fiber grating laser sensor based on radio-frequency measurement

Sensitivity enhancement of Faraday effect based heterodyning fiber laser magnetic field sensor by lowering linear birefringence

Linear cavity erbium-doped fiber laser with over 100 nm tuning range

Single-longitudinal mode laser structure based on a very narrow filtering technique

Single-Frequency, 2-cm, Yb-Doped Silica-Fiber Laser

Tunable single frequency fiber laser based on FP-LD injection locking

Low-Frequency Vibration Measurement by a Dual-Frequency DBR Fiber Laser

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

A tunable and switchable single-longitudinalmode dual-wavelength fiber laser with a simple linear cavity

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Optical fiber-fault surveillance for passive optical networks in S-band operation window

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

Supplementary Figures

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

Stabilisation of Linear-cavity Fibre Laser Using a Saturable Absorber

Multiwatts narrow linewidth fiber Raman amplifiers

Thermal treatment method for tuning the lasing wavelength of a DFB fiber laser using coil heaters

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser

HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS

To generate a broadband light source by using mutually injection-locked Fabry-Perot laser diodes

I. INTRODUCTION II. FABRICATION AND OPERATION OF SLM FIBER LASER

Single mode EDF fiber laser using an ultra-narrow bandwidth tunable optical filter

Wavelength switching using multicavity semiconductor laser diodes

Intensity-modulated and temperature-insensitive fiber Bragg grating vibration sensor

Channel wavelength selectable singleõdualwavelength erbium-doped fiber ring laser

Development of a High Sensitivity DFB Fibre Laser Hydrophone Work in Progress at National University of Singapore

Performance of optical automatic gain control EDFA with dual-oscillating control lasers

Bistability in Bipolar Cascade VCSELs

Low Noise High Power Ultra-Stable Diode Pumped Er-Yb Phosphate Glass Laser

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION

Optical RI sensor based on an in-fiber Bragg grating. Fabry-Perot cavity embedded with a micro-channel

PUBLISHED VERSION.

A broadband fiber ring laser technique with stable and tunable signal-frequency operation

(SPIE), (2007) SPIE.,

RECENTLY, studies have begun that are designed to meet

CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers

Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection

Multiwavelength Single-Longitudinal-Mode Ytterbium-Doped Fiber Laser. Citation IEEE Photon. Technol. Lett., 2013, v. 25, p.

A continuous-wave Raman silicon laser

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs)

Gain-clamping techniques in two-stage double-pass L-band EDFA

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a)

High-power semiconductor lasers for applications requiring GHz linewidth source

Highly Reliable 40-mW 25-GHz 20-ch Thermally Tunable DFB Laser Module, Integrated with Wavelength Monitor

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback

Demonstration of multi-cavity optoelectronic oscillators based on multicore fibers

Tunable single-frequency fiber laser based on the spectral narrowing effect in a nonlinear semiconductor optical amplifier

Vertical External Cavity Surface Emitting Laser

A 100 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 1120 nm

High-frequency tuning of high-powered DFB MOPA system with diffraction limited power up to 1.5W

SIMULTANEOUS INTERROGATION OF MULTIPLE FIBER BRAGG GRATING SENSORS FOR DYNAMIC STRAIN MEASUREMENTS

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

Laser Diode. Photonic Network By Dr. M H Zaidi

High order cascaded Raman random fiber laser with high spectral purity

Novel fiber Bragg grating fabrication system for long gratings with independent apodization and with local phase and wavelength control

VCSEL-powered and polarization-maintaining fiber-optic grating vector rotation sensor

Ring cavity tunable fiber laser with external transversely chirped Bragg grating

The Theta Laser A Low Noise Chirped Pulse Laser. Dimitrios Mandridis

Mitigation of Self-Pulsing in High Power Pulsed Fiber Lasers

Nd:YSO resonator array Transmission spectrum (a. u.) Supplementary Figure 1. An array of nano-beam resonators fabricated in Nd:YSO.

Chapter 1 Introduction

R. J. Jones Optical Sciences OPTI 511L Fall 2017

Pump noise as the source of self-modulation and self-pulsing in Erbium fiber laser

Recent Developments in Fiber Optic Spectral White-Light Interferometry

Trends in Optical Transceivers:

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

Synchronization in Chaotic Vertical-Cavity Surface-Emitting Semiconductor Lasers

CSO/CTB PERFORMANCE IMPROVEMENT BY USING FABRY-PEROT ETALON AT THE RECEIVING SITE

DIRECT MODULATION WITH SIDE-MODE INJECTION IN OPTICAL CATV TRANSPORT SYSTEMS

Tunable Multiwavelength Erbium-Doped Fiber Laser Employing PM-FBG and Mach Zehnder Interferometer with Optical Fiber Delay Line

DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M.

PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS

A WDM passive optical network enabling multicasting with color-free ONUs

Coherent addition of fiber lasers by use of a fiber coupler

Optically switched erbium fibre laser using a tunable fibre-bragg grating

10 Gb/s transmission over 5 km at 850 nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD

Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm

Spectral Characteristics of Mechanically Induced of Ultralong Period Fiber Gratings (UPFG) as a Pressure Sensor.

Evaluation of RF power degradation in microwave photonic systems employing uniform period fibre Bragg gratings

Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

Optical monitoring technique based on scanning the gain profiles of erbium-doped fiber amplifiers for WDM networks

High-Coherence Wavelength Swept Light Source

FABRICATION AND SENSING CHARACTERISTICS OF THE CHEMICAL COMPOSITION GRATING SENSOR AT HIGH TEMPERATURES

Downstream Transmission in a WDM-PON System Using a Multiwavelength SOA-Based Fiber Ring Laser Source

Simultaneous Measurements for Tunable Laser Source Linewidth with Homodyne Detection

Coupling effects of signal and pump beams in three-level saturable-gain media

Intensity-Modulated Optical Fiber Sensors Based on Chirped-Fiber Bragg Gratings

Progress In Electromagnetics Research C, Vol. 15, 37 48, 2010 TEMPERATURE INSENSITIVE BROAD AND FLAT GAIN C-BAND EDFA BASED ON MACRO-BENDING

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

Optical Fiber Technology

OPTICAL generation of microwave and millimeter-wave

Visible to infrared high-speed WDM transmission over PCF

Spatial Investigation of Transverse Mode Turn-On Dynamics in VCSELs

Transcription:

Ultra-short distributed Bragg reflector fiber laser for sensing applications Yang Zhang 2, Bai-Ou Guan 1,2,*, and Hwa-Yaw Tam 3 1 Institute of Photonics Technology, Jinan University, Guangzhou 510632, China 2 PolyU-DUT Joint Research Center for Photonics, Dalian University of Technology, Dalian 116024, China 3 Photonics Research Centre and Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, China guanboo@yahoo.com Abstract: We present an ultra-short distributed Bragg reflector fiber laser written in Er/Yb co-doped fiber. The entire laser is only 8.4 mm in length. The lasing threshold is less than 1 mw. The optical signal-to-noise ratio of the laser output is better than 70 db. The laser emits two orthogonal polarization modes and generates a beat signal with signal-to-noise ratio of ~70 db and 3-dB linewidth of ~3 khz. The laser has longitude mode spacing comparable to the grating bandwidth. This obviates the possibility of mode hopping when the laser is subjected to any external perturbations. 2009 Optical Society of America OCIS codes: (060.2370) Fiber optics sensors; (060.3510) Lasers, fiber; (060.3735) Fiber Bragg gratings; (140.3570) Lasers, single-mode References and links 1. D. J. Hill, B. Hodder, J. D. Freitas, S. D. Thomas, and L. Hickey, DFB fibre-laser sensor developments, in Proc. 17th Int. Conf. Optical Fiber Sensors, Bruges, Belgium, 904 907 (2005). 2. G. H. Ames, and J. M. Maguire, Erbium fiber laser accelerometer, IEEE Sens. J. 7(4), 557 561 (2007). 3. G. A. Cranch, G. M. H. Flockhart, and C. K. Kirendall, Distributed feedback fiber laser strain sensors, IEEE Sens. J. 8(7), 1161 1172 (2008). 4. H. K. Kim, S. K. Kim, H. G. Park, and B. Y. Kim, Polarimetric fiber laser sensors, Opt. Lett. 18(4), 317 319 (1993). 5. M. L. Lee, J. S. Park, W. J. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, A polarimetric current sensor using an orthogonally polarized dual-frequency fibre laser, Meas. Sci. Technol. 9(6), 952 959 (1998). 6. K. Bohnert, A. Frank, E. Rochat, K. Haroud, and H. Brändle, Polarimetric fiber laser sensor for hydrostatic pressure, Appl. Opt. 43(1), 41 48 (2004). 7. B. O. Guan, H. Y. Tam, S. T. Lau, and H. L. W. Chan, Ultrasonic hydrophone based on distributed Bragg reflector fiber laser, IEEE Photon. Technol. Lett. 17(1), 169 171 (2005). 8. Y. Zhang, and B. O. Guan, High sensitivity distributed Bragg reflector fiber laser displacement sensor, IEEE Photon. Technol. Lett. 21(5), 280 282 (2009). 9. A. Rosales-Garia, T. F. Morse, J. Hernandez-Cordero, and M. S. Unlu, Single polarization-mode-beating frequency fiber laser, IEEE Photon. Technol. Lett. 21(8), 537 539 (2009). 10. B. O. Guan, Y. Zhang, H. J. Wang, D. Chen, and H. Y. Tam, High-temperature-resistant distributed Bragg reflector fiber laser written in Er/Yb co-doped fiber, Opt. Express 16(5), 2958 2964 (2008). 11. C. Spiegelberg, J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003), J. Lightwave Technol. 22(1), 57 62 (2004). 12. Y. O. Barmenkov, D. Zalvidea, S. T. Peiro, J. L. Cruz, and M. V. Andres, Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings, Opt. Express 14(14), 6394 6399 (2006). 1. Introduction Fiber laser sensors have been attracting interest over the past few years because of their high signal-to-noise ratio and narrow linewidth that permit high resolution sensing. According to the working principle, fiber laser sensors can be classified into two types: wavelength encoding sensor and polarimetric sensor. The former converts measurands into operation wavelength shift of the fiber laser [1 3], which is similar to that of fiber grating sensor. The latter converts measurands into change in beat frequency between the two orthogonal polarization modes from the laser [4 9]. To achieve high resolution, the fiber laser needs to (C) 2009 OSA 8 June 2009 / Vol. 17, No. 12 / OPTICS EXPRESS 10050

operate in single longitude mode. Various single longitude mode laser configurations for sensing applications have been demonstrated, including those use intracavity saturable absorber [5] or fiber grating etalon [9] as mode filter, distributed feedback (DFB) structures [1 3], and distributed Bragg reflector (DBR) structures [7,8]. Configurations using intracavity absorber or fiber grating etalon are too complicated in structure, making them difficult to multiplex and unsuitable for applications requiring small size sensors. DFB fiber laser consists of a single fiber Bragg grating written in active fiber with a phase shift incorporated into the grating structure. DBR fiber laser consists of two wavelength-matched fiber Bragg gratings at both ends of a short section of active fiber. These two structures have been widely investigated as active fiber sensors. Advantages of DFB fiber laser are that it offers robust single mode operation and high resilience to environmental perturbations. However, DFB fiber laser is typical ~5 cm in length, which is too long for applications requiring point sensors. DBR fiber laser can be made shorter. To date, 2-3 cm long DBR fiber lasers have been achieved [7,10]. The length is still too long for applications requiring high spatial resolution sensors. Furthermore, the long cavity length results in longitude mode spacing much smaller than the grating reflection bandwidth, so the laser is susceptible to mode hopping if it is subjected to external perturbations such as temperature or strain gradients. This significantly limits the practical applications of DBR fiber laser. In this paper, we demonstrate an ultra-short DBR fiber laser with total cavity length, including two fiber Bragg gratings, of only 8.4 mm. To the best of our knowledge, this is the shortest fiber laser ever reported. The laser has longitude mode spacing comparable to the grating bandwidth, so the cavity supports only one longitude mode within the grating bandwidth. This obviates the possibility of mode hopping when the laser is subjected to any external perturbations. The laser emits two orthogonal polarization modes and generates a beat signal with signal-to-noise ratio of ~70 db and 3-dB linewidth of ~3 khz. The laser is ideal for point sensing applications. 2. DBR fiber laser inscription The active fiber used in the experiments was Er/Yb co-doped fiber. The fiber has a B-Ge-Si annulus with a diameter of 16 µm around the 4-µm diameter Er-Yb phosphosilicate core. Typical absorption of the fiber at 980 nm is 2-3 db/cm. The DBR laser was fabricated by directly photowriting two wavelength-matched Bragg gratings into the active fiber. Compared to the scheme that splices two fiber Bragg gratings to a short length of active fiber [11], directly photowriting Bragg gratings in the active fiber can provide much lower threshold because it avoids intercavity splice loss. The experimental setup is shown in Fig. 1. The UV source is 193 nm excimer laser. We have written DBR lasers in the same fiber at 248 nm but hydrogen-loading is necessary and the hydrogen-induced loss requires longer fiber length of ~3 cm to provide sufficient optical gain for lasing to occur. Since the 193 nm laser induces index change by two-photon excitation process, it dose not require hydrogen loading to photosensitize the fiber. This not only simplifies the laser fabrication but also avoids the laser efficiency degradation resulting from hydrogen-induced loss at pump wavelength and excitedstate lifetime reduction of Er 3+ ions. The beam scanning technique was used, in which the phase mask and the fiber were fixed, while the laser beam was scanned along the fiber. The two gratings were written with the same beam scanning speed so that they have the same ac and dc index change, and therefore the same center wavelength. We first wrote the high reflectivity (HR) grating. The grating transmission spectrum was monitored with a broadband source (BBS) and an optical spectrum analyzer (OSA). Figure 2 shows the growth of the grating during UV inscription. The energy and repetition rate of the 193 nm excimer laser were set to 2.5 mj and 100 Hz, respectively. A 4.6-mm long HR grating with reflectivity around 40 db was easily fabricated with our inscription system. We then wrote the low reflectivity (LR) grating using the same beam scanning speed and the same laser settings. During the inscription of the LR grating, the BBS was turned off and a (C) 2009 OSA 8 June 2009 / Vol. 17, No. 12 / OPTICS EXPRESS 10051

980 nm pump laser was turned on, so that the laser output could be monitored. Figure 3 shows the output power of the laser as a function of the length of the LR grating. When the grating length reaches to ~2.0 mm, the gain can compensate the cavity loss, and the laser starts to oscillate. From the grating growth shown in Fig. 2, the threshold reflectivity for lasing oscillation is estimated to be ~17 db. We stopped the grating inscription after the laser output power slightly exceeded the maximal value. The length of the LR grating was 2.8 mm. The reflectivity of the LR grating is estimated to be ~25 db. Fig. 1. Experimental setup for DBR fiber laser inscription. Fig. 2. Transmission spectra of the grating at different lengths. 3. Results and discussion Fig. 3. Peak power of the laser versus length of the LR grating. Figure 4 shows the photograph of the DBR fiber laser. The green section is the Er/Yb codoped fiber, which emits green upconversion fluorescence. Two gratings with length of 4.6 mm and 2.8 mm are written inside the doped fiber. The grating spacing is 1 mm. The entire laser is therefore only 8.4 mm in length. (C) 2009 OSA 8 June 2009 / Vol. 17, No. 12 / OPTICS EXPRESS 10052

Figure 5 shows a typical output spectrum of the ultra-short fiber laser measured with an OSA. The laser output centered around 1539.6 nm with signal-to-noise ratio of better than 70dB. The laser emits two orthogonal polarization modes. When the laser output is monitored with a high speed photodetector, a beat signal will be generated by the two polarization modes from the laser. Figure 6 shows a typical beat signal spectrum measured with a radio frequency (RF) spectrum analyzer. The beat signal centered around 1.707 GHz with signal-to-noise ratio of ~70 db. The inset in Fig. 6 shows the enlarged view of the beat spectrum. The 3-dB bandwidth of the beat signal is ~3 khz. Figure 7 shows the laser output power as a function of pump power. The laser output power was measured with an optical power meter. As can be seen in Fig. 7, the lasing threshold is less than 1 mw. The slope efficiency is ~0.86%. For sensing applications, laser output power is not a key factor. Tens of µw output power is sufficient to achieve high performance measurement due to the high signal-to-noise ratio. The low threshold will greatly benefit sensor multiplexing since a few mw of remaining power at the final sensor is sufficient to pump the laser. This means that a 980 nm laser with moderate output power can pump an array of fiber lasers. Fig. 4. The photograph of the DBR fiber laser. Fig. 5. Output spectrum of the DBR fiber laser. Fig. 6. Beat signal spectrum of the fiber laser. Fig. 7. Laser output power versus pump power. (C) 2009 OSA 8 June 2009 / Vol. 17, No. 12 / OPTICS EXPRESS 10053

Fig. 8. Transmission spectra of two Fabry-Perot cavities with the grating end-to-end spacing of (a) L 0 = 1mm, and (b) L 0 = 9 mm. Mode hopping is a key problem that limits practical applications of DBR fiber lasers. Typical DBR fiber lasers are a few cm long, leading to longitude mode spacing much smaller than the grating bandwidth. As a result, there are multiple modes that satisfy conditions for lasing oscillation. The dominant mode oscillates and other modes are suppressed, so the lasers can operate in single longitude mode. However, the lasers are susceptible to mode hopping if they are subjected to external perturbations. The grating bandwidth is typically 0.2 0.5 nm, depending on reflectivity and length of the grating. The numbers of mode supported by the cavity is mainly determined by the mode spacing. The mode spacing is given by 2 λ λ = (1) 2n eff L eff where λ is the lasing wavelength, n eff is the effective index of fiber core, L eff is effective length of the laser cavity which is given by [12] L = L + l + l (2) eff 0 eff 1 eff 2 where L 0 is end-to-end spacing between the two gratings, l eff1,2 are the effective lengths of the two gratings which are given by l eff R = lg (3) 2atanh( R) where l g and R are the length and reflectivity of the grating, respectively. For the above ultrashort DBR fiber laser, the mode spacing is calculated to be λ = ~0.4 nm, which is comparable to the grating bandwidth shown in Fig. 2. This means that the cavity supports only one longitude mode. This is confirmed by Fig. 8, which shows the measured transmission spectrum of the ultrashort fiber laser (L 0 = 1.0 mm). For comparison, the transmission spectrum of another DBR fiber laser with L 0 = 9.0 mm is also shown in Fig. 8. The spectra were measured using the OSA with resolution setting to 0.02 nm. The grating bandwidth for the ultra-shout cavity is larger than that of the 9.0 mm cavity because the grating length in the ultra-short cavity is much shorter than that in the 9.0 mm cavity. It is clear from Fig. 8 that, the ultra-short cavity supports only one mode, whereas the 9.0 mm cavity supports at least 6 modes. The Fabry- Perot fringe pattern and Bragg wavelength of the grating exhibit almost the same sensitivity to temperature or strain, therefore a DBR fiber laser with cavity length supporting multiple (C) 2009 OSA 8 June 2009 / Vol. 17, No. 12 / OPTICS EXPRESS 10054

modes may be free of mode hopping under strong uniform perturbations. However, small uneven perturbation or localized perturbation to the subsection of laser cavity can result in mode hopping due to the grating spectrum distortion. This has been previously demonstrated in [10], where a DBR fiber laser with two grating lengths of 11 mm and 9 mm, and grating spacing of L 0 = 5.0 mm, was free of mode hopping at a large temperature variation from room temperature to 500 C, however, it mode-hopped to the adjacent lower wavelength mode due to the localized UV heating during the grating inscription. For the ultra-short DBR fiber laser, there is only one mode within the grating reflection bandwidth. This ensures a robust single mode operation and obviates the possibility of mode hopping when the laser is subjected to any external perturbations. 4. Conclusion An ultra-short DBR fiber laser was fabricated by directly inscribing two wavelength-matched gratings in an Er/Yb co-doped fiber. The total length of the fiber laser, including two Bragg gratings, is only 8.4 mm. The lasing threshold is less than 1 mw. The optical signal-to-noise ratio of the laser output is better than 70 db. The laser emits two orthogonal polarization modes and generates a beat signal with signal-to-noise ratio of ~70 db and 3-dB linewidth of ~3 khz. The laser has longitude mode spacing of ~0.4 nm, which is comparable to the grating bandwidth. This obviates the possibility of mode hopping when the laser is subjected to any external perturbations. The laser is desirable for applications requiring high resolution and small size sensors. Acknowledgements This work was supported by the Key Project of National Natural Science Foundation of China (60736039), the Program for New Century Excellent Talents in University (NCET-06-0271), and the Research Fund for the Doctoral Program of Higher Education (20070141041). (C) 2009 OSA 8 June 2009 / Vol. 17, No. 12 / OPTICS EXPRESS 10055