Audio Watermark Detection Improvement by Using Noise Modelling

Similar documents
IMPROVING AUDIO WATERMARK DETECTION USING NOISE MODELLING AND TURBO CODING

Introduction to Audio Watermarking Schemes

TWO ALGORITHMS IN DIGITAL AUDIO STEGANOGRAPHY USING QUANTIZED FREQUENCY DOMAIN EMBEDDING AND REVERSIBLE INTEGER TRANSFORMS

Scale estimation in two-band filter attacks on QIM watermarks

Audio Watermarking Based on Multiple Echoes Hiding for FM Radio

Method to Improve Watermark Reliability. Adam Brickman. EE381K - Multidimensional Signal Processing. May 08, 2003 ABSTRACT

SNR Estimation in Nakagami-m Fading With Diversity Combining and Its Application to Turbo Decoding

Study of Turbo Coded OFDM over Fading Channel

DWT based high capacity audio watermarking

An Improvement for Hiding Data in Audio Using Echo Modulation

23rd European Signal Processing Conference (EUSIPCO) ROBUST AND RELIABLE AUDIO WATERMARKING BASED ON DYNAMIC PHASE CODING AND ERROR CONTROL CODING

SIMULATIONS OF ERROR CORRECTION CODES FOR DATA COMMUNICATION OVER POWER LINES

Journal of mathematics and computer science 11 (2014),

Improved Spread Spectrum: A New Modulation Technique for Robust Watermarking

Available online at ScienceDirect. The 4th International Conference on Electrical Engineering and Informatics (ICEEI 2013)

High capacity robust audio watermarking scheme based on DWT transform

Performance of Combined Error Correction and Error Detection for very Short Block Length Codes

Department of Electronic Engineering FINAL YEAR PROJECT REPORT

Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing

Performance comparison of convolutional and block turbo codes

Nonuniform multi level crossing for signal reconstruction

Data Hiding in Digital Audio by Frequency Domain Dithering

A High-Rate Data Hiding Technique for Uncompressed Audio Signals

Transmit Power Allocation for BER Performance Improvement in Multicarrier Systems

On the performance of Turbo Codes over UWB channels at low SNR

FROM BLIND SOURCE SEPARATION TO BLIND SOURCE CANCELLATION IN THE UNDERDETERMINED CASE: A NEW APPROACH BASED ON TIME-FREQUENCY ANALYSIS

THE STATISTICAL ANALYSIS OF AUDIO WATERMARKING USING THE DISCRETE WAVELETS TRANSFORM AND SINGULAR VALUE DECOMPOSITION

Audio Watermarking Using Pseudorandom Sequences Based on Biometric Templates

BER and PER estimation based on Soft Output decoding

Blind Blur Estimation Using Low Rank Approximation of Cepstrum

Performance of Parallel Concatenated Convolutional Codes (PCCC) with BPSK in Nakagami Multipath M-Fading Channel

Experimental Validation for Hiding Data Using Audio Watermarking

TURBOCODING PERFORMANCES ON FADING CHANNELS

Turbo coding (CH 16)

QUANTIZATION NOISE ESTIMATION FOR LOG-PCM. Mohamed Konaté and Peter Kabal

SNR Estimation in Nakagami Fading with Diversity for Turbo Decoding

Spread Spectrum Watermarking Using HVS Model and Wavelets in JPEG 2000 Compression

Digital Audio Watermarking With Discrete Wavelet Transform Using Fibonacci Numbers

11th International Conference on, p

Reduction of Musical Residual Noise Using Harmonic- Adapted-Median Filter

Implementation of a Visible Watermarking in a Secure Still Digital Camera Using VLSI Design

Audio Watermarking Scheme in MDCT Domain

Physical Layer and Transceiver Algorithm Research

DESIGN AND IMPLEMENTATION OF AN ALGORITHM FOR MODULATION IDENTIFICATION OF ANALOG AND DIGITAL SIGNALS

Audio Informed Watermarking by means of Dirty Trellis Codes

CONCLUSION FUTURE WORK

Using TCM Techniques to Decrease BER Without Bandwidth Compromise. Using TCM Techniques to Decrease BER Without Bandwidth Compromise. nutaq.

A Scheme for Digital Audio Watermarking Using Empirical Mode Decomposition with IMF

Enhancement of Speech Signal Based on Improved Minima Controlled Recursive Averaging and Independent Component Analysis

Background Dirty Paper Coding Codeword Binning Code construction Remaining problems. Information Hiding. Phil Regalia

Sound Quality Evaluation for Audio Watermarking Based on Phase Shift Keying Using BCH Code

Decoding of Block Turbo Codes

Problem Sheet 1 Probability, random processes, and noise

Jayalakshmi M., S. N. Merchant, Uday B. Desai SPANN Lab, Indian Institute of Technology, Bombay jlakshmi, merchant,

Frequency Hopping Spread Spectrum Recognition Based on Discrete Fourier Transform and Skewness and Kurtosis

1. DIGITAL WATERMARKS

ABSTRACT. file. Also, Audio steganography can be used for secret watermarking or concealing

REAL-TIME BROADBAND NOISE REDUCTION

IT is well known that digital watermarking( WM) is an

ECE 6640 Digital Communications

Lossless Image Watermarking for HDR Images Using Tone Mapping

System Identification and CDMA Communication

and compared to a detection threshold to decide whether is watermarked or not. If the detection function is deterministic, the set (1)

Noise Plus Interference Power Estimation in Adaptive OFDM Systems

Frequency-Hopped Spread-Spectrum

SYSTEM-LEVEL PERFORMANCE EVALUATION OF MMSE MIMO TURBO EQUALIZATION TECHNIQUES USING MEASUREMENT DATA

Reversible data hiding based on histogram modification using S-type and Hilbert curve scanning

A low cost soft mapper for turbo equalization with high order modulation

An Audio Fingerprint Algorithm Based on Statistical Characteristics of db4 Wavelet

Coding & Signal Processing for Holographic Data Storage. Vijayakumar Bhagavatula

A Soft-Limiting Receiver Structure for Time-Hopping UWB in Multiple Access Interference

Digital Image Watermarking by Spread Spectrum method

Optimum Power Allocation in Cooperative Networks

Soft Channel Encoding; A Comparison of Algorithms for Soft Information Relaying

FOR THE PAST few years, there has been a great amount

Communications Overhead as the Cost of Constraints

PERFORMANCE EVALUATION OF WIMAX SYSTEM USING CONVOLUTIONAL PRODUCT CODE (CPC)

A DEVELOPED UNSHARP MASKING METHOD FOR IMAGES CONTRAST ENHANCEMENT

PERFORMANCE ANALYSIS OF IDMA SCHEME USING DIFFERENT CODING TECHNIQUES WITH RECEIVER DIVERSITY USING RANDOM INTERLEAVER

Implications for High Capacity Data Hiding in the Presence of Lossy Compression

BEAT DETECTION BY DYNAMIC PROGRAMMING. Racquel Ivy Awuor

The Influence of Image Enhancement Filters on a Watermark Detection Rate Authors

A Three-Microphone Adaptive Noise Canceller for Minimizing Reverberation and Signal Distortion

Watermarking-based Image Authentication with Recovery Capability using Halftoning and IWT

Design of A Robust Spread Spectrum Image Watermarking Scheme

Efficient and Robust Audio Watermarking for Content Authentication and Copyright Protection

Interleaved PC-OFDM to reduce the peak-to-average power ratio

EFFECTS OF PHASE AND AMPLITUDE ERRORS ON QAM SYSTEMS WITH ERROR- CONTROL CODING AND SOFT DECISION DECODING

Narrow-Band Interference Rejection in DS/CDMA Systems Using Adaptive (QRD-LSL)-Based Nonlinear ACM Interpolators

A Study of Polar Codes for MLC NAND Flash Memories


EE 435/535: Error Correcting Codes Project 1, Fall 2009: Extended Hamming Code. 1 Introduction. 2 Extended Hamming Code: Encoding. 1.

CT-516 Advanced Digital Communications

NONCOHERENT COMMUNICATION THEORY FOR COOPERATIVE DIVERSITY IN WIRELESS NETWORKS. A Thesis. Submitted to the Graduate School

Convolutional Coding Using Booth Algorithm For Application in Wireless Communication

Speech Enhancement in Presence of Noise using Spectral Subtraction and Wiener Filter

Speech Enhancement: Reduction of Additive Noise in the Digital Processing of Speech

Optimized threshold calculation for blanking nonlinearity at OFDM receivers based on impulsive noise estimation

SIGNAL DETECTION IN NON-GAUSSIAN NOISE BY A KURTOSIS-BASED PROBABILITY DENSITY FUNCTION MODEL

Encoding a Hidden Digital Signature onto an Audio Signal Using Psychoacoustic Masking

Transcription:

Audio Watermark Detection Improvement by Using Noise Modelling NEDELJKO CVEJIC, TAPIO SEPPÄNEN*, DAVID BULL Dept. of Electrical and Electronic Engineering University of Bristol Merchant Venturers Building, BS8 1UB UNITED KINGDOM *MediaTeam, Information Processing Lab. University of Oulu P.O. Box 45, 4STOINF, 914 Oulu FINLAND Abstract: - In this paper we present an improved error correction approach for digital audio watermarking. It uses a turbo coding algorithm that takes into account temporal variations of the host audio s statistical properties, using a turbo decoder that estimates the unknown host audio distribution in the watermarked audio. Experimental results showed nearly one order of magnitude of the BER decrease during watermark extraction, compared to the basic turbo decoding that does not use noise estimation. Key-Words: - Audio watermarking, watermark detection, noise modelling, turbo codes 1 Introduction Digital watermarking is a process that embeds a perceptually undetectable signature to multimedia content (e.g. images, video and audio seuences). Embedded watermark contains certain information, as signature, logo or an ID number, related uniuely to the owner or the distributor or the multimedia file. Watermarking algorithms were primarily developed for digital images and video seuences; interest and research in audio watermarking started slightly later. In the past few years, several algorithms for embedding and extraction of watermarks in audio seuences have been presented [1,2]. All of the developed algorithms take advantage of perceptual properties of the human auditory system (HAS), foremost occurrence of masking effects in the freuency and time domain, in order to add watermark into a host signal in a perceptually transparent manner. Embedding of additional bits in audio signal is a more tedious task than implementation of the same process on images and video, due to the dynamical superiority of HAS in comparison with the human visual system [2]. Information modulation is usually carried out using the uantisation index modulation (QIM) [1] or the spread-spectrum (SS) [2,3] techniue. SS modulation augments a low amplitude seuence, which is detected by a correlation receiver. The basic approach to watermarking in the time domain is to embed a pseudo-random noise (e.g. the PN seuence) into the host audio by modifying the amplitudes accordingly. Recently, we have developed a spread-spectrum audio watermarking algorithm in time domain [4], presented in Figure 1. The procedure used a time domain embedding algorithm and properties of spread spectrum communications as well as temporal and freuency domain masking in the HAS. Matched filter techniue, based on auto-correlation of the embedded PN seuence, is optimal in the sense of signal to noise ratio (SNR) in the additive white Gaussian noise (AWGN) channel [5]. However, the host audio signal s statistical properties are generally far from the properties of the AWGN, which leads us to the optimal detection problem, since correlation based receivers are optimal in AWGN. In that sense, an advanced noise model of the audio watermark channel is needed in order to increase performance of the watermarking algorithm based on the SS techniue. In this paper we focus on an improved error correction approach for audio watermarking. It uses a turbo coding algorithm that takes into account temporal variations of the host audio s statistical properties in order to increase the overall watermark detection performance of the watermarking system. audio signal pn seuence x(n) temporal analysis shaping filter a(n) f(n) watermark watermarked embedding y(n) audio w(n) spreading information payload Fig. 1. Watermark embedding scheme (a) and extraction scheme (b)

2 Noise Characteristics of the Host Audio In a correlation detection scheme, it is often assumed that the host audio signal is AWGN. However, real audio signals do not have white noise properties as adjacent audio samples are highly correlated. Therefore, presumption for optimal signal detection in the sense of signal to noise ratio is not satisfied, especially if extraction calculations is performed in short time windows of audio signal. Figure 2 depicts a histogram estimate of the probability density function (PDF), performed on 124 successive samples of a short clip of the host audio (Celine Dion), wherein a watermark bit is embedded. It is obvious that the PDF of the host audio is not smooth and has a large variance. Figure 3 presents the values of skewness and kurtosis of the PDF of the windows of 124 samples in time domain, taken from the host audio x(n). Taken that is mean, 3 is the third order moment, 4 the fourth order moment and σ the standard deviation of a distribution, the skewness is defined by S= 3 /σ 3 and is an indicator of the PDF symmetry (for a symmetric PDF, S=) [6]. Kurtosis is defined by K= 4 /σ 4-3 and is an indicator of the PDF Gaussianity (for a Gaussian PDF, K=). Therefore, this particular digital communications scheme, in which we communicate watermark bits through the noisy host audio, does not obey the AWGN hypothesis..3.25.2 where α is the shape parameter, σ the standard deviation, the mean value, 1 2 [ Γ( 3 α )] [ Γ( 1 )] 1 2 ( ) 1 2 α Γ 3 α A =, b = 2 α ( 1 ) Γ α and Γ is the Gamma function. When α =1 a Laplacian distribution is obtained, while α =2 yields a Gaussian distribution. In the extreme cases, for α p(x) becomes an impulse function, whereas for α, p(x) approaches a uniform distribution. The shape parameter α rules the exponential rate of decay: the larger α, the flatter the PDF, the smaller α, the peak of the PDF is more emphasized. There are many methods for parametric estimation of a GGD. In this paper, we use the method based on the moments estimation and that gives an approximation of the reciprocal of the function M(α ) defined as [6]: ( α ) M = 2 ( E X ) 2 E( X ) where X is a GGD random variable. 1.5 -.5-1 -1.5.5 5 1 15 2 25 3 35 4 45 5 (a) -.5.15.1-1 -1.5.5 -.5.5 Fig. 2. Histogram PDF estimation of the host audio signal It is shown below that both Gaussian and Laplacian distributions in the PDF occur in the host audio x(n). The Generalized Gaussian Distribution (GGD) is often used as a model for noise PDF in digital watermarking. It is defined as [6]: α A ( ) x µ p x = exp b σ σ -2 5 1 15 2 25 3 35 4 45 5 (b) Fig. 3. Skewness (a) and kurtosis (b) values for 5 adjacent blocks with 124 samples of the host audio We calculated a piecewise estimate of the GGD for the sample audio extract on a window of 124 samples. The data show that the shape parameter α varies significantly around the value α =2, corresponding to the Gaussian distribution. In fact, α varies between the values of the theoretical Laplacian PDF and the theoretical Gaussian one for 1 different windows of 124 samples. Similar observations can be done from other audio samples

as well. It is concluded therefore that the GGD is a preferred model for additive noise in audio watermarking as well. In the audio watermarking framework, there is a low SNR at the watermark detection side, due to the perceptual constraints. If a low bit error rate (BER) is desired, powerful error correcting codes must be used, at the cost of the decreased watermark bit rate. For example, convolutional error correcting codes have been extensively used in image watermarking [7] due to their low computational complexity. We tested the audio watermarking scheme presented in Figure 1 with a convolutional code (R=1/2, K=3). No significant gain in BER was obtained (for detailed results see Section 4.) This result is due to the fact that the tested convolutional code is not appropriate for the SNR range of the presented audio watermarking scheme and the characteristic piecewise stationarity of the host audio. Therefore, a different error correction strategy with real time decoding metric should be used. Reasonable choices are powerful error correcting codes, suitable to low SNR values at the detection side of the given audio watermarking scheme, as turbo codes and low density parity check codes. 3 Noise-Adaptive Turbo Decoding Algorithm The existing methods of channel coding do not take into account the knowledge of temporal variations of the channel statistics and the decoding algorithms are generally based on the AWGN hypothesis. In order to compensate for the temporal variations we have employed turbo codes that are able to adapt to host audio distribution variations [8]. These turbo decoders have a simple on-line procedure for estimating the unknown noise distribution from each block of the watermarked audio. The procedure is performed in two steps: 1. Quantization of the watermarked audio. 2. Estimation of the host audio distribution from the histogram of the uantized watermarked audio. The purpose of uantization is to reduce the problem of estimating the conditional PDF to the problem of estimating the conditional probability mass function (PMF), which is, in general, considerably simpler. As proposed in [9] we have used an N-level uniform uantizer (where N is an integer power of 2). For N 16, the uantization thresholds are defined as:, if j = 2 T j = j / 2 2, if j = 1,2,...,2 1 +, if j = 2 where =log 2 N. For N 32, the subseuent thresholds are used:, if j = 4 T j = j / 2 8, if j = 1,2,..., 2 1 +, if j = 2 The uantization step size is partially dependent on the number of levels, in order to keep the uantize support region within a reasonable range. Let y(n) be watermarked audio at the detection side, then we denote the uantized watermarked audio block as ŷ (n) and watermark seuence as w(n). Along with the uantized input, the turbo decoder is provided with the conditional PMFs p ( y ) ( n) w( n) ) = + 1 and p ( y ) ( n) w( n) ) = 1. For each block of samples, we calculate the histogram h(ŷ ) of ŷ (n) and symmetrize it by h s (ŷ )=(h(ŷ )+h(- ŷ ))/2. When N 32, the expression for p ( y ) w) = + 1 is given as follows: ) hs ( y), if y + 1 ) ) p( y w = + 1) = hs (2 y), if 6 y + 1 ) ) ( y + a) hs ( a) / 2, if y < 6 where a=8-16/n. For N 16, the exact formula for p ( y ) w) = + 1is: ) ) ) hs ( y) if y + 1 p( y w = + 1) = ) ) hs (2 y) if 2 y < + 1 If p ( y ) w) = + 1is zero, it is set to a small number. Watermark bits were encoded before they were embedded into the host audio and iteratively decoded using the soft output values from correlator during watermark extraction process [1]. Watermark bits were divided in frames of 2 bits and encoded using multiple parallel-concatenated convolutional code. Interleaving inside frame was random and five decoding iterations of soft output values were performed in turbo decoder. Each recursive systematic code was an optimum (5,7) code, giving a punctured code rate of R=½. Frame length and code rate were chosen as a compromise between low computational complexity reuirements of the watermarking algorithm and demand for long iterations during turbo decoding process. 4 Experimental results The influence of described turbo codes on the BER of the watermarking system has been tested using a large set of songs from different music styles

including pop, rock, classic and country music. All music pieces have been watermarked using the described algorithm, with overall watermark to signal ratio from 26.5 db to -28.1dB. Subjective uality evaluations of the watermarking method has been done by blind listening tests involving ten persons that listened to the original and the watermarked audio seuences and were asked to report dissimilarities between the two signals, using a 5-point impairment scale. (5: imperceptible, 4: perceptible but not annoying, 3: slightly annoying, 2: annoying 1: very annoying.) The average mean opinion score was 4.6 and the standard deviation.41. The watermark extraction was performed using the scheme in Figure 1(b) and the results are presented in Figure 4. The soft output values from correlator during watermark extraction process were used as inputs to convolutional and turbo decoders or for hard threshold decision, in uncoded detection. The results thus show that the given convolutional code does not improve the detection performance on the watermark extraction side. On the other hand, for a fixed watermark capacity, turbo code is able to decrease significantly the BER. If the proposed host audio PDF estimation is used, the detection performance of the watermark extraction system is significantly improved, compared with the basic turbo coding scheme. Bit Error Rate 1 1-1 1-2 1-3 1-4 1-5 1-6 Uncoded BER BER using convolutional codes BER using turbo codes without noise PDF estimation BER using turbo codes with noise PDF estimation 5 1 15 2 25 3 35 Watermark capacity Fig. 4. BER vs. watermark data rate (in bits/second) for different decoding algorithms 5 Conclusions Careful noise modelling of audio signals must be performed in order to get best results in watermarking performance. It was demonstrated that the noise model may switch between Laplacian and Gaussian distributions in a random manner within a short excerpt of music. An adaptive noise estimation function should be included as part of audio watermarking algorithms. An improved error correction approach for audio watermarking was presented that uses a noiseadaptive turbo decoding algorithm to take into account temporal variations of the host audio s statistical properties. The implemented turbo decoder estimates the unknown probability density distribution of the host audio, as one component of the watermarked audio. Experimental results showed improved watermark extraction, compared to the results obtained by basic turbo decoding that does not use noise estimation. References: [1] Chen, B., Wornell, G.W. Quantization index modulation: a class of provably good methods for digital watermarking and information embedding. IEEE Transactions on Information Theory, Vol. 47, No. 4, 21, pp. 1423-443. [2] Cox, I.J., Kilian, J., Leight, F.T., Shamoon, T. Secure spread spectrum watermarking for multimedia. IEEE Transactions on Image Processing, Vol. 6, No. 12, 1997, pp. 1673-87. [3] Cvejic, N., Seppänen, T. Spread spectrum audio watermarking using freuency hopping and attack characterization. Signal Processing, Vol. 84, No. 1, 24, pp. 27-213. [4] Cvejic, N., Keskinarkaus, A., Seppänen, T. Audio watermarking using m-seuences and temporal masking. Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New York, NY, 21, 227-23. [5] Kundur, D., Hatzinakos, D. Diversity and Attack Characterization for Improved Robust Watermarking, IEEE Transactions on Signal Processing, Vol. 49, No. 1, 21, pp. 2383-6. [6] Scharf, L. Statistical Signal Processing, Prentice Hall, Englewood Cliffs, NJ, 22. [7] Hernandez, J. R., Delaigle, J. F., Mac, B. Improving data hiding by using convolutional codes and soft-decision decoding. Proc. SPIE Security and Watermarking of Multimedia Contents, Vol. 3971, San Jose, CA, 2, pp. 24-48. [8] Saied-Bouajina, S., Larbi, S., Hamza, R., Slama, L.B., Jidane-Saidane, M. An error correction strategy for digital audio watermarking scheme. Proc. International Symposium on Control, Communication & Signal Processing, Hammamet, Tunisia, 24, pp. 739-742. [9] Xiaoling, H., Nam, P. Turbo decoders which adapt to noise distribution mismatch. IEEE

Communications Letters, Vol. 2, No. 12, 1998, pp. 321-323. [1] Cvejic, N., Tujkovic, D., Seppänen, T. Increasing capacity of an audio watermark channel using turbo codes. Proc. IEEE International Conference on Multimedia & Expo, Baltimore, MD, 23, pp. 217-22.