Simultaneous strain and temperature fiber grating laser sensor based on radio-frequency measurement

Similar documents
Ultra-short distributed Bragg reflector fiber laser for sensing applications

Sensitivity enhancement of Faraday effect based heterodyning fiber laser magnetic field sensor by lowering linear birefringence

Thermal treatment method for tuning the lasing wavelength of a DFB fiber laser using coil heaters

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

Low-Frequency Vibration Measurement by a Dual-Frequency DBR Fiber Laser

Tunable single frequency fiber laser based on FP-LD injection locking

Single-Frequency, 2-cm, Yb-Doped Silica-Fiber Laser

FABRICATION AND SENSING CHARACTERISTICS OF THE CHEMICAL COMPOSITION GRATING SENSOR AT HIGH TEMPERATURES

SIMULTANEOUS INTERROGATION OF MULTIPLE FIBER BRAGG GRATING SENSORS FOR DYNAMIC STRAIN MEASUREMENTS

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Multiwavelength Single-Longitudinal-Mode Ytterbium-Doped Fiber Laser. Citation IEEE Photon. Technol. Lett., 2013, v. 25, p.

Intensity-modulated and temperature-insensitive fiber Bragg grating vibration sensor

Linear cavity erbium-doped fiber laser with over 100 nm tuning range

Optical fiber-fault surveillance for passive optical networks in S-band operation window

I. INTRODUCTION II. FABRICATION AND OPERATION OF SLM FIBER LASER

Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection

Single-longitudinal mode laser structure based on a very narrow filtering technique

Optical RI sensor based on an in-fiber Bragg grating. Fabry-Perot cavity embedded with a micro-channel

To generate a broadband light source by using mutually injection-locked Fabry-Perot laser diodes

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

TIME-DIVISION-MULTIPLEXED INTERROGATION OF FIBRE BRAGG GRATING SENSORS USING LASER DIODES. A. Wilson, S.W. James & R.P. Tatam

A tunable and switchable single-longitudinalmode dual-wavelength fiber laser with a simple linear cavity

Bragg and fiber gratings. Mikko Saarinen

AN EXPERIMENT RESEARCH ON EXTEND THE RANGE OF FIBER BRAGG GRATING SENSOR FOR STRAIN MEASUREMENT BASED ON CWDM

HIGH POWER LASERS FOR 3 RD GENERATION GRAVITATIONAL WAVE DETECTORS

Gain-clamping techniques in two-stage double-pass L-band EDFA

Supplementary Figures

DC Index Shifted Dual Grating Based Superstructure Fiber Bragg Grating as Multichannel FBG and Multiparameter Sensor

Development of a High Sensitivity DFB Fibre Laser Hydrophone Work in Progress at National University of Singapore

Channel wavelength selectable singleõdualwavelength erbium-doped fiber ring laser

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a)

A broadband fiber ring laser technique with stable and tunable signal-frequency operation

ONE of the technical problems associated with long-period

Multiwatts narrow linewidth fiber Raman amplifiers

Long-distance fiber grating sensor system using a fiber ring laser with EDWA and SOA

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

Multipoint temperature-independent fiber-bragg-grating strain-sensing system employing an optical-power-detection scheme

Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach- Zehnder interferometer couplers

Wavelength switching using multicavity semiconductor laser diodes

Optical Fibers p. 1 Basic Concepts p. 1 Step-Index Fibers p. 2 Graded-Index Fibers p. 4 Design and Fabrication p. 6 Silica Fibers p.

High sensitivity SMS fiber structure based refractometer analysis and experiment

DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs)

Miniature fiber optic pressure and temperature sensors

Stabilisation of Linear-cavity Fibre Laser Using a Saturable Absorber

City, University of London Institutional Repository

Visible to infrared high-speed WDM transmission over PCF

FABRICATION OF FIBER BRAGG GRATINGS IN HIGH GERMANIA BORON CO-DOPED OPTICAL FIBER BY THE PHASE MASK METHOD

Study of multi physical parameter monitoring device based on FBG sensors demodulation system

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings

Single mode EDF fiber laser using an ultra-narrow bandwidth tunable optical filter

Recent Developments in Fiber Optic Spectral White-Light Interferometry

A WDM passive optical network enabling multicasting with color-free ONUs

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers

CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING

VCSEL-powered and polarization-maintaining fiber-optic grating vector rotation sensor

Pico-strain-level dynamic perturbation measurement using πfbg sensor

Novel fiber Bragg grating fabrication system for long gratings with independent apodization and with local phase and wavelength control

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode

Effect of SNR of Input Signal on the Accuracy of a Ratiometric Wavelength Measurement System

Dual wavelength single longitudinal mode Ytterbium-doped fiber laser using a dual-tapered Mach-Zehnder interferometer

(SPIE), (2007) SPIE.,

DIRECT MODULATION WITH SIDE-MODE INJECTION IN OPTICAL CATV TRANSPORT SYSTEMS

Multiwavelength and Switchable Erbium-Doped Fiber Lasers

Tunable single-frequency fiber laser based on the spectral narrowing effect in a nonlinear semiconductor optical amplifier

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback

High bit-rate combined FSK/IM modulated optical signal generation by using GCSR tunable laser sources

All-Optical Clock Division Using Period-one Oscillation of Optically Injected Semiconductor Laser

Spectral Characteristics of Mechanically Induced of Ultralong Period Fiber Gratings (UPFG) as a Pressure Sensor.

Optically switched erbium fibre laser using a tunable fibre-bragg grating

Stabilized Interrogation and Multiplexing. Techniques for Fiber Bragg Grating Vibration Sensors

Demodulation System Intensity Coded for Fiber Bragg Grating Sensors

Realization of Polarization-Insensitive Optical Polymer Waveguide Devices

An Amplified WDM-PON Using Broadband Light Source Seeded Optical Sources and a Novel Bidirectional Reach Extender

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

Optical signal processing for fiber Bragg grating based wear sensors

Photonic Generation of Millimeter-Wave Signals With Tunable Phase Shift

Low Noise High Power Ultra-Stable Diode Pumped Er-Yb Phosphate Glass Laser

Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm

Bent-fiber intermodal interference based dualchannel fiber optic refractometer

Trends in Optical Transceivers:

Novel RF Interrogation of a Fiber Bragg Grating Sensor Using Bidirectional Modulation of a Mach-Zehnder Electro-Optical Modulator

Intensity-Modulated Optical Fiber Sensors Based on Chirped-Fiber Bragg Gratings

HIGH PRECISION OPERATION OF FIBER BRAGG GRATING SENSOR WITH INTENSITY-MODULATED LIGHT SOURCE

Bidirectional Bend Sensor Employing a Microfiber-Assisted U-Shaped Fabry-Perot Cavity

A suite of optical fibre sensors for structural condition monitoring

Gain Flattened L-Band EDFA -Raman Hybrid Amplifier by Bidirectional Pumping technique

Analysis of the Tunable Asymmetric Fiber F-P Cavity for Fiber Strain Sensor Edge-Filter Demodulation

A 100 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 1120 nm

Performance of optical automatic gain control EDFA with dual-oscillating control lasers

Optical Communications and Networking 朱祖勍. Sept. 25, 2017

MICROWAVE photonics is an interdisciplinary area

Tunable Multiwavelength Erbium-Doped Fiber Laser Employing PM-FBG and Mach Zehnder Interferometer with Optical Fiber Delay Line

Optical fiber refractometry based on multimode interference

2394 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 6, JUNE /$ IEEE

ARTICLE IN PRESS. Optics and Lasers in Engineering

International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research)

Transcription:

Simultaneous strain and temperature fiber grating laser sensor based on radio-frequency measurement Yan-Nan Tan, 1,2 Yang Zhang, 1 Long Jin, 2 and Bai-Ou Guan 2,* 1 PolyU-DUT Joint Research Center for Photonics, Dalian University of Technology, Dalian 116024, China 2 Institute of Photonics Technology, Jinan University, Guangzhou 510632, China *tguanbo@jnu.edu.cn Abstract: We propose and experimentally demonstrate a novel simultaneous strain and temperature fiber optic sensor. The sensing head is formed by two concatenated ultra-short distributed Bragg reflector lasers that operate in single longitude mode with two polarization modes. The total length of the sensing head is only 18 mm. The two lasers generate two polarization mode beat notes in the radio-frequency range which show different frequency response to strain and temperature. Simultaneous strain and temperature measurement can be achieved by radio-frequency measurement. This approach has distinctive advantages of ease of interrogation and avoidance of expensive wavelength detection. 2011 Optical Society of America OCIS codes: (060.2370) Fiber optics sensors; (060.2840) Heterodyne; (060.3510) Lasers, fiber; (060.3735) Fiber Bragg gratings. References and links 1. S. W. James, M. L. Dockney, and R. P. Tatam, Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors, Electron. Lett. 32(12), 1133 1134 (1996). 2. P. M. Cavaleiro, F. M. Araújo, L. A. Ferreira, J. L. Santos, and F. Farahi, Simultaneous measurement of strain and temperature using Bragg gratings written in germanosilicate and boron-codoped germanosilicate fibers, IEEE Photon. Technol. Lett. 11(12), 1635 1637 (1999). 3. H. B. Liu, H. Y. Liu, G. D. Peng, and P. L. Chu, Strain and temperature sensor using a combination of polymer and silica fibre Bragg gratings, Opt. Commun. 219(1-6), 139 142 (2003). 4. M. G. Xu, J. L. Archambault, L. Reekie, and J. P. Dakin, Discrimination between strain and temperature effects using dual-wavelength fibre grating sensors, Electron. Lett. 30(13), 1085 1087 (1994). 5. M. Sudo, M. Nakai, K. Himeno, S. Suzaki, A. Wada, and R. Yamauchi, Simultaneous measurement of temperature and strain using PANDA fiber grating, in Proc. 12th International Conference Optical Fibre Sensors, pp. 170 173, Williamsburg, Virginia, USA, October 28 31, 1997. 6. B. O. Guan, H. Y. Tam, X. M. Tao, and X. Y. Dong, Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating, IEEE Photon. Technol. Lett. 12(6), 675 677 (2000). 7. H. F. Lima, P. F. Antunes, J. D. L. Pinto, and R. N. Nogueira, Simultaneous Measurement of Strain and Temperature With a Single Fiber Bragg Grating Written in a Tapered Optical Fiber, IEEE Sens. J. 10(2), 269 273 (2010). 8. B. O. Guan, H. Y. Tam, S. L. Ho, W. H. Chung, and X. Y. Dong, Simultaneous strain and temperature measurement using a single fibre Bragg grating, Electron. Lett. 36(12), 1018 1019 (2000). 9. H. J. Patrick, G. M. Williams, A. D. Kersey, J. R. Pedrazzani, and A. M. Vengsarkar, Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination, IEEE Photon. Technol. Lett. 8(9), 1223 1225 (1996). 10. T. Lui, G. F. Fernando, L. Zhang, I. Bennion, Y. J. Rao, and D. A. Jackson, Simultaneous strain and temperature measurement using a combined fibre Bragg grating/extrinsic Fabry-Perot sensor, in Proc. 12th International Conference Optical Fibre Sensors, pp. 40 43, Williamsburg, Virginia, USA, October 28 31, 1997. 11. D. P. Zhou, L. Wei, W. K. Liu, Y. Liu, and J. W. Y. Lit, Simultaneous measurement for strain and temperature using fiber Bragg gratings and multimode fibers, Appl. Opt. 47(10), 1668 1672 (2008). 12. B. Dong, J. Z. Hao, C. Y. Liaw, B. Lin, and S. C. Tjin, Simultaneous strain and temperature measurement using a compact photonic crystal fiber inter-modal interferometer and a fiber Bragg grating, Appl. Opt. 49(32), 6232 6235 (2010). 13. L. Y. Shao, X. Y. Dong, A. P. Zhang, H. Y. Tam, and S. L. He, High-resolution strain and temperature sensor based on distributed Bragg reflector fiber laser, IEEE Photon. Technol. Lett. 19(20), 1598 1600 (2007). (C) 2011 OSA 10 October 2011 / Vol. 19, No. 21 / OPTICS EXPRESS 20650

14. O. Hadeler, E. Rønnekleiv, M. Ibsen, and R. I. Laming, Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements, Appl. Opt. 38(10), 1953 1958 (1999). 15. R. I. Crickmore, M. J. Gunning, J. Stefanov, and J. P. Dakin, Beat frequency measurement system for multiple dual polarization fiber DFB lasers, IEEE Sens. J. 3(1), 115 120 (2003). 16. B. O. Guan, Y. N. Tan, and H. Y. Tam, Dual polarization fiber grating laser hydrophone, Opt. Express 17(22), 19544 19550 (2009). 17. Y. Zhang, B. O. Guan, and H. Y. Tam, Ultra-short distributed Bragg reflector fiber laser for sensing applications, Opt. Express 17(12), 10050 10055 (2009). 1. Introduction There has been considerable interest in developing simultaneous strain and temperature fiber optic sensors. This is not only because cross sensitivity is a key issue for the practical applications of fiber optic sensors, but also because multi-parameter sensors can reduce the complexity of the sensing systems in situations requiring multi-parameter and multi-point measurement. The principle of simultaneous strain and temperature sensors are usually based on the detection of two physical parameters which have different sensitivities to strain and temperature. Fiber Bragg gratings have been of great interest in sensing technology in recent years because of their small size, wavelength-encoding and multiplexing capability. Many techniques based on fiber Bragg gratings have been reported for simultaneous strain and temperature measurement. A simple and straightforward approach is to employ two independent Bragg gratings with the first one subjected to strain and temperature and the second one isolated from strain. The concept of a sensing head formed by two Bragg gratings with different strain and temperature response has been explored. Examples include configurations based on two gratings in different diameter fibers [1], in different dopant fibers [2], in different base material fibers [3], and operating at different wavelengths [4]. Several approaches based on a single Bragg grating for simultaneous strain and temperature measurement was also demonstrated, such as utilization of a single Bragg grating in birefringent fibers [5], superstructure Bragg grating [6], a single Bragg grating in tapered fiber [7], and a single Bragg grating straddling over the junction of two fibers [8]. A number of schemes based on a sensing head formed by Bragg gratings in combination with other fiber optic devices have also been demonstrated. The configurations include the combination of two Bragg gratings and a long period grating [9], the combination of a Bragg grating and Fabry- Perot interferometer [10], the combination of a Bragg grating and Mach-Zehnder interferometer [11], and the combination of a Bragg grating and photonic crystal fiber based inter-modal interferometer [12]. Recently, a sensing head formed by a dual-polarization fiber grating laser was demonstrated [13], where the mean wavelength and polarization mode beat frequency of the laser were utilized to discriminate strain and temperature. All above approaches can be divided into two categories. The first category is based on the detection of two separate wavelengths which have different response to strain and temperature. The second category is based on the detection of wavelength and intensity (or spectrum bandwidth). The disadvantage of the second category is, the intensity detection undercuts multiplexing capability of fiber Bragg grating sensors. For all above simultaneous strain and temperature sensors, wavelength detection is necessary. However, it is know that, complex and expensive optical systems are required to achieve accurate wavelength measurement. The high cost of the wavelength detection unit impedes further applications of fiber Bragg grating sensors. It will be highly desirable if we can develop a simultaneous strain and temperature sensor which not only shares the advantages of fiber Bragg grating sensors but also avoids expensive wavelength detection. Polarimetric fiber grating laser sensor converts the measurrand into a corresponding change in the beat frequency between the two polarization modes from the laser [14 16]. Because the beat frequency is in the radio-frequency range, this type of sensor has distinctive advantages of ease of interrogation and avoidance of expensive wavelength detection that is required in the passive fiber Bragg grating sensors. In this paper, we present a novel (C) 2011 OSA 10 October 2011 / Vol. 19, No. 21 / OPTICS EXPRESS 20651

simultaneous strain and temperature fiber optic sensor based on radio-frequency measurement. The sensing head is formed by two concatenated ultra-short distributed Bragg reflector (DBR) lasers. The total length of the sensing head is only 18 mm. Both lasers operate in robust single longitude mode with two polarization modes. Each laser generates a polarization mode beat note at radio-frequency range. The two lasers have different beat frequencies which exhibit different response to strain and temperature. Simultaneous strain and temperature measurement can be achieved by monitoring the two beat frequencies. 2. Principle Figure 1 shows the schematic diagram of the proposed simultaneous strain and temperature sensor. The sensor head is formed by two concatenated DBR fiber lasers with the first one fabricated in Er-doped fiber and the second one fabricated in Er/Yb co-doped fiber. Typical DBR fiber lasers are a few cm long, leading to the laser longitude mode spacing much smaller than the grating reflection bandwidth. As a result, there are multiple modes that meet conditions for lasing. The dominant mode oscillates first and other modes are suppressed, so normally the lasers can operate in single longitude mode. However, mode hopping will occur when the laser is subjected to external perturbations that distort the grating spectrum, such as temperature or strain gradient or a localized perturbation to the subsection of the Bragg gratings. This is a key problem limiting the practical applications of DBR fiber lasers. To address this problem, here ultra-short DBR fiber lasers which have longitude mode spacing comparable to the grating reflection bandwidth were employed. Because the ultra-short cavity supports only one longitude mode, it absolutely obviates possibility of mode hopping when the laser is subjected to any external perturbations. Fig. 1. Schematic diagram of the proposed simultaneous strain and temperature sensor. Here the DBR fiber lasers operate in single longitude mode with two polarization states. When the laser output is monitored with a high speed photodetector, a beat note will be generated by the two polarization lines. The beat frequency is given by cb / n (1) where c is the light speed in vacuum, λ 0 is the laser wavelength, n 0 and B are the average index and birefringence of the optical fiber, respectively. Typical the beat frequency is in the range from several hundred MHz to several GHz. When the DBR laser is subjected to strain or temperature perturbation, the birefringence will be changed. As a result, the beat frequency will shift and so can be considered as an effective signal output. The response of the beat frequency to strain and temperature can be expressed as 0 0 (C) 2011 OSA 10 October 2011 / Vol. 19, No. 21 / OPTICS EXPRESS 20652

1 B 1 B 1 pe T, B B T where p e, α, and ξ are the strain-optic coefficient, thermal expansion coefficient, and thermooptic coefficient of the optical fiber. Because of different dopant and slightly different structure-parameters, the DBR lasers in Er-doped fiber and Er/Yb DBR fiber exhibit different beat-frequency-response to strain and temperature. When temperature and strain change simultaneously, using the Eq. (2), we can get the matrix Er ker, ker, T K. k Er / Yb Er / Yb, k Er / Yb, T T T The coefficient matrix K can be defined by separately measuring the strain and temperature responses of the polarization beat frequency of the two lasers. Then the strain and temperature can be determined simultaneously by measuring the beat frequencies of the Erdoped fiber laser and the Er/Yb co-doped fiber laser. 3. Experiment and results The ultra-short DBR fiber lasers were fabricated by directly inscribing two wavelengthmatched Bragg gratings in active fibers using the setup described in [17]. A 193 nm excimer laser and phase mask method were used. Because the 193 nm UV light induces index change by two-photon excitation process, it does not require hydrogen loading to photosensitize the fiber. This avoids the laser efficiency degradation due to hydrogen-induced loss at pump wavelength and excited-state lifetime reduction of Er 3+ ions. The DBR laser in Er/Yb codoped fiber consisted of 2.2-mm-long low reflectivity grating, 4-mm-long high reflectivity grating, and 2 mm grating spacing. The total length of the Er/Yb co-doped fiber laser was 8.2 mm. The DBR laser in Er-doped fiber consisted of two 3-mm-long gratings and 2-mm grating spacing. The entire length of the Er-doped DBR fiber laser was only 8 mm. The two DBR lasers were concatenated in a single fiber as the sensing head. The total length of the sensing head was only 18 mm. The 980 nm pump light was launched into the laser array from the Erdoped fiber laser side through a wavelength division multiplexer (WDM). The backward laser output was launched into a high speed photodetector (PD) through a polarization controller (PC) and an in-line polarizer. A radio-frequency spectrum analyzer was used to monitor the beat notes of the lasers. Figure 2 shows the output spectrum of the laser array with pump power setting to 187 mw. The Er-doped fiber laser operated around 1536.12 nm with signal-to-noise ratio of ~55 db. The Er/Yb co-doped fiber laser operated around 1539 nm with signal-to-noise ratio of ~60 db. Figure 3 shows the beat note spectrum of the laser array measured with the radiofrequency spectrum analyzer. The Er-doped fiber laser generated a beat note at 2.664 GHz with signal-to-noise ratio better than 50 db. The Er/Yb co-doped fiber lasers generated a beat note at 1.336 GHz with signal-to-noise ratio better than 60 db. The beat frequency of the Erdoped fiber laser is much higher than that of the Er/Yb co-doped fiber. This denotes that the Er-doped fiber has much higher birefringence than the Er/Yb co-doped fiber. In spite of the Er-doped fiber laser in the front, the Er/Yb co-coped fiber laser had higher laser output and stronger beat note. This is because the Yb ions have strong absorption at 980 nm and transfer their energy to the Er ions with high efficiency, significantly increased the laser efficiency. (2) (3) (C) 2011 OSA 10 October 2011 / Vol. 19, No. 21 / OPTICS EXPRESS 20653

Fig. 2. Optical output spectrum of the concatenated DBR fiber lasers. Fig. 3. Beat note spectrum of the concatenated DBR fiber lasers. The strain response was investigated by bonding both sides of the sensing head onto two translation stages with epoxy. While the sensing head was stretched with the translation stage, the laser beat frequencies were monitored with the radio-frequency spectrum analyzer. The environment temperature was kept at 15 C during the strain response measurement. Applied strain was calculated from the elongation of the stretched fiber divided by the original length. During the strain response characterization, environment temperature was kept constant. Figure 4 shows measured sensor response to strain in the range from 0 to 1200 με. It is clear that the beat frequencies increase with strain, and the strain sensitivity of Er-doped fiber laser is higher than the Er/Yb co-doped fiber laser. The strain coefficients of the Er-doped fiber (C) 2011 OSA 10 October 2011 / Vol. 19, No. 21 / OPTICS EXPRESS 20654

laser and Er/Yb co-doped fiber laser were estimated, using linear regression fits, as k Er,ε = 8.75 ± 0.104 KHz/με(R 2 = 0.9986), and k Er/Yb,ε = 6.42 ± 0.068 KHz/με (R 2 = 0.9989), respectively. Fig. 4. Strain response of the proposed simultaneous strain and temperature sensor. Fig. 5. Temperature response of the proposed simultaneous strain and temperature sensor. The temperature response was investigated by putting the sensing head into a tube oven. A thermocouple was placed near the sensing head for measurement of the temperature. The sensing head was kept unstrained. Figure 5 shows the measured beat frequency shifts as functions of temperature in the range from 15 C to 100 C. As shown in Fig. 5, the beat frequencies decrease with temperature, and the temperature sensitivity of the Er/Yb co-doped fiber laser is higher than the Er-doped fiber laser. The temperature coefficients of the Erdoped fiber laser and Er/Yb co-doped fiber laser were estimated, using linear regression fits, (C) 2011 OSA 10 October 2011 / Vol. 19, No. 21 / OPTICS EXPRESS 20655

as k Eε,T = 678 ± 5.52 KHz/ C (R 2 = 0.9995), and k Er/Yb,T = 1142 ± 4.11 KHz/ C (R 2 = 0.9999), respectively. By taking the inverse matrix of K and the measured coefficients in (3), we can get the matrix Er / 1 8.75 6.42, T 5639.7 678 1142 Er Yb where the units of δε, δt, δ(δν Er ), and δ(δν Er/Yb ) are με, C, KHz and KHz, respectively. One can thus employ the coefficient matrix above to simultaneously determine strain and temperature by measuring the two fiber lasers beat frequency shifts of the sensor. In our experiments, the sensor was interrogated with a RF spectrum analyzer (Anritsu MS2661C) with resolution of 10 khz, which denotes resolutions of 1.56 με and 0.015 C for strain and temperature measurement, respectively. 4. Conclusion We reported a novel fiber-optic sensor for simultaneous strain and temperature measurement based on radio-frequency detection. The sensor head was formed by two concatenated ultrashort DBR fiber lasers with the first one fabricated in Er-doped fiber and the second one fabricated in Er/Yb co-doped fiber. The total length of the sensing head was only 18 mm. The two lasers generate two polarization mode beat notes at radio-frequency range, which show different frequency response to strain and temperature. Simultaneous strain and temperature measurement can be achieved by monitoring the two beat frequencies. The distinctive advantages of the proposed simultaneous strain and temperature sensor are ease of interrogation and avoidance of expensive wavelength detection. Other advantages include absolute frequency encoding and capability to multiplex a number of sensors on a single fiber by use of frequency division multiplexing technique. Acknowledgments This work was supported by the Key Project of National Natural Science Foundation of China (60736039) and the Fundamental Research Funds for the Central Universities (21609102). (4) (C) 2011 OSA 10 October 2011 / Vol. 19, No. 21 / OPTICS EXPRESS 20656