Multi-Carrier CDMA in Rayleigh Fading Channel

Similar documents
PERFORMANCE ANALYSIS OF MC-CDMA COMMUNICATION SYSTEMS OVER NAKAGAMI-M ENVIRONMENTS

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang

Prof. P. Subbarao 1, Veeravalli Balaji 2

Linear MMSE detection technique for MC-CDMA

Multi-Carrier Systems

A Blind Array Receiver for Multicarrier DS-CDMA in Fading Channels

International Conference On Communication Technology Proceedings, Icct, 1998, v. 2, p. S42021-S42024

BER of Multi-Carrier CDMA in an Indoor Rician Fading Channel

A Unified Perspective of Different Multicarrier CDMA Schemes

Dynamic Spreading Code Allocation Strategy for A Downlink MC-CDMA System

DOPPLER PHENOMENON ON OFDM AND MC-CDMA SYSTEMS

Performance Evaluation of different α value for OFDM System

Combination of Space-Time Block Coding with MC-CDMA Technique for MIMO systems with two, three and four transmit antennas

SPREADING SEQUENCES SELECTION FOR UPLINK AND DOWNLINK MC-CDMA SYSTEMS

Block Processing Linear Equalizer for MIMO CDMA Downlinks in STTD Mode

Combined Transmitter Diversity and Multi-Level Modulation Techniques

Multirate schemes for multimedia applications in DS/CDMA Systems

Performance of a Flexible Form of MC-CDMA in a Cellular System

COMPARISON OF CHANNEL ESTIMATION AND EQUALIZATION TECHNIQUES FOR OFDM SYSTEMS

Performance of Wideband Mobile Channel with Perfect Synchronism BPSK vs QPSK DS-CDMA

Multiuser Detection for Synchronous DS-CDMA in AWGN Channel

Performance Evaluation of MIMO-OFDM Systems under Various Channels

Comparison of ML and SC for ICI reduction in OFDM system

Study of Turbo Coded OFDM over Fading Channel

Subspace Adaptive Filtering Techniques for Multi-Sensor. DS-CDMA Interference Suppression in the Presence of a. Frequency-Selective Fading Channel

Analysis of maximal-ratio transmit and combining spatial diversity

Single Carrier Ofdm Immune to Intercarrier Interference

ORTHOGONAL frequency division multiplexing (OFDM)

ADAPTIVITY IN MC-CDMA SYSTEMS

Orthogonal Frequency Division Multiplexing (OFDM) based Uplink Multiple Access Method over AWGN and Fading Channels

Decrease Interference Using Adaptive Modulation and Coding

Performance Evaluation of OFDM System with Rayleigh, Rician and AWGN Channels

Cognitive Radio Transmission Based on Chip-level Space Time Block Coded MC-DS-CDMA over Fast-Fading Channel

Performance Enhancement of Multi User Detection for the MC-CDMA

Performance Evaluation of ½ Rate Convolution Coding with Different Modulation Techniques for DS-CDMA System over Rician Channel

OFDM Code Division Multiplexing with Unequal Error Protection and Flexible Data Rate Adaptation

The Effect of Carrier Frequency Offsets on Downlink and Uplink MC-DS-CDMA

Simulation Study and Performance Comparison of OFDM System with QPSK and BPSK

Joint Transmitter-Receiver Adaptive Forward-Link DS-CDMA System

Performance degradation of OFDM and MC-CDMA to carrier phase jitter

Performance of Generalized Multicarrier DS-CDMA Using Various Chip Waveforms

Key words: OFDM, FDM, BPSK, QPSK.

WAVELET OFDM WAVELET OFDM

BER Analysis for MC-CDMA

Lecture 13. Introduction to OFDM

Mobile Radio Systems OPAM: Understanding OFDM and Spread Spectrum

ENHANCING BER PERFORMANCE FOR OFDM

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FADING CHANNEL CHARACTERIZATION AND MODELING

A novel multiple access scheme for mobile communications systems

Analysis of Interference & BER with Simulation Concept for MC-CDMA

Impact of Mobility and Closed-Loop Power Control to Received Signal Statistics in Rayleigh Fading Channels

A Soft-Limiting Receiver Structure for Time-Hopping UWB in Multiple Access Interference

CHAPTER 3 ADAPTIVE MODULATION TECHNIQUE WITH CFO CORRECTION FOR OFDM SYSTEMS

Bandwidth Scaling in Ultra Wideband Communication 1

THE EFFECT of multipath fading in wireless systems can

Chapter 2 Channel Equalization

MULTIPATH fading could severely degrade the performance

Statistical Analysis and Reduction of Multiple Access Interference in MC-CDMA Systems

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday

Study of Performance Evaluation of Quasi Orthogonal Space Time Block Code MIMO-OFDM System in Rician Channel for Different Modulation Schemes

Performance Analysis of CDMA System using Direct Sequence Spread Spectrum and Frequency Hopping Spread Spectrum Techniques

Error Probability of Different Modulation Schemes for OFDM based WLAN standard IEEE a

An Overview of MC-CDMA Synchronisation Sensitivity

A Research Concept on Bit Rate Detection using Carrier offset through Analysis of MC-CDMA SYSTEM

On the Spectral Efficiency of MIMO MC-CDMA System

Amplitude Frequency Phase

Evaluation of channel estimation combined with ICI self-cancellation scheme in doubly selective fading channel

Effects of Fading Channels on OFDM

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications

CHAPTER 4 PERFORMANCE ANALYSIS OF THE ALAMOUTI STBC BASED DS-CDMA SYSTEM

Turbo Coded Space-time Block codes for four transmit antennas with linear precoding

About Homework. The rest parts of the course: focus on popular standards like GSM, WCDMA, etc.

Multiuser Decorrelating Detector in MIMO CDMA Systems over Rayleigh and Rician Fading Channels

KURSOR Menuju Solusi Teknologi Informasi Vol. 9, No. 1, Juli 2017

Weight Tracking Method for OFDM Adaptive Array in Time Variant Fading Channel

ULTRA-WIDEBAND (UWB) communication systems

Channel Estimation and Signal Detection for Multi-Carrier CDMA Systems with Pulse-Shaping Filter

Adaptive Lattice Filters for CDMA Overlay. Wang, J; Prahatheesan, V. IEEE Transactions on Communications, 2000, v. 48 n. 5, p

Ieee Transactions On Communications, 1999, v. 47 n. 12, p

LETTER A Simple Expression of BER Performance in COFDM Systems over Fading Channels

DESIGN AND ANALYSIS OF MULTIBAND OFDM SYSTEM OVER ULTRA WIDE BAND CHANNELS

A SURVEY OF LOW COMPLEXITY ESTIMATOR FOR DOWNLINK MC-CDMA SYSTEMS

Spread Spectrum Techniques

MITIGATING CARRIER FREQUENCY OFFSET USING NULL SUBCARRIERS

New Techniques to Suppress the Sidelobes in OFDM System to Design a Successful Overlay System

Power Allocation Tradeoffs in Multicarrier Authentication Systems

PERFORMANCE EVALUATION OF DIRECT SEQUENCE SPREAD SPECTRUM UNDER PHASE NOISE EFFECT WITH SIMULINK SIMULATIONS

PHASE NOISE COMPENSATION FOR OFDM WLAN SYSTEMS USING SUPERIMPOSED PILOTS

S PG Course in Radio Communications. Orthogonal Frequency Division Multiplexing Yu, Chia-Hao. Yu, Chia-Hao 7.2.

MIMO-OFDM adaptive array using short preamble signals

Performance analysis of MISO-OFDM & MIMO-OFDM Systems

AWGN Channel Performance Analysis of QO-STB Coded MIMO- OFDM System

Multicarrier CDMA with OFDM as Data Enhancement Technique and BER Analysis

High Performance Phase Rotated Spreading Codes for MC-CDMA

Bit Loading of OFDM with High Spectral Efficiency for MIMO

Chapter 2: Signal Representation

Takeshi ITAGAKI a), Student Member and Fumiyuki ADACHI, Member

Implementation of Different Interleaving Techniques for Performance Evaluation of CDMA System

IMPROVED PREDICTIVE POWER CONTROL OF CDMA SYSTEM IN RAYLEIGH FADING CHANNEL

On the Performance of Energy-Division Multiple Access over Fading Channels

Transcription:

Multi-Carrier CDMA in Rayleigh Fading Channel Jean-Paul Linnartz and Nathan Yee 1 Dept. of Electrical Engineering and Computer Science University of California, Berkeley 9470 Telephone: 10-64-81 E-mail: linnartz@eecs.berkeley.edu Abstract: The application of Wiener filtering to the detection of Multi-Carrier Code Division Mult i- ple Access (MC-CDMA) signals is analyzed. An analytical model is developed to evaluate an MC- CDMA system with a very large number of subcarriers. This model is compared with simulations for 8 and 64 subcarriers. Simulation results are also presented on the effect of correlated fading (in the frequency domain) at the subcarriers. I. Introduction In an earlier paper, the authors discussed the utilization of MC-CDMA as a digital modulation and multiple access technique in an indoor wireless environmen t [1]. Due to its special signal stru c- ture, MC-CDMA signals will not experience significant linear distortion in fading channels where the symbol duration,, is much larger than the delay spread, T d. With orthogonal MC-CDM A [], each data symbol is simultaneously transmitted at N binary phase shift-keying (BPSK) narrowband subcarriers, each separated by F/ Hz where F is an integer. As shown in the transmitter model of Fig. 1, each of the N subcarrier waveforms is modulated (mu l- tiplied) by a single (time constant) chip belonging to a spreading code of length N. Different users transmit at the same set of subcarriers but with a different spreading code in the frequency domain. In contrast to Direct-Sequence CDM A [] (or other wideband) signals, MC-CDMA signals are not si g- nificantly affected by delay spreads due to their narrowband composition. This modulation technique should not be confused with transmitting multiple DS-CDMA signals at different frequencies as done so in [4]. Note that the signal structure of MC-CDMA is similar to that of Orthogonal Frequency Division Multiplexing (OFDM ) [] but the manner in which the signals are used is very different. While the general shape of each individual subcarrier will not experience significant linear disto r- tion after transmission, the flat fading that each subcarrier with experience results in an amplitude scaling. Unequal scaling a different subcarriers distorts the orthogonality between users. While the conventional detection methods of equal gain combining (EGC) and maximal ratio combining (MRC) may be sufficient in an additive white Gaussian noise (AWGN) channel, these detection am[k] c m [0] cos(πfct) cm[1] cos(πfct + πft/tb).. Σ sm(t) cm[n-1] cos(πf c t + πf(n-1)t/ ) Fig. 1 Transmitter Model of the mth user

methods do not directly address the issues of orthogonality and of interference cancellation. Cons e- quently, these detection methods do not perform as well in interference limited channels. In this paper, we will apply Wiener filtering to the detection of MC-CDMA signals. Wiener fi l- tering is optimal in a mean-squared error sense with respect to both the noise and the interference. In most fading channels, the determination of the Wiener coefficients is performed adaptively. In this paper, we are primarily concerned with the theoretical limits and not the implementation aspects of how to track the channel fluctuation s [6]. Thus, it is assumed that accurate estimates of the complete channel state information (i.e., the fading at the subcarriers) are available and that the Wiener coeff i- cients are chosen accordingly. where a m Denote the vector of the data symbols b y II. Channel Model k {, } corresponds to the data symbol of the mth user. If user m is inactive, then. Define the code matrix C to be a m [ ] 1 1 [ k] 0 where the mth column vector of C corresponds to the spreading code, { c m [] i i 0, 1,, N 1}, of the mth user. Using the vector and matrix notation described above, an equivalent discrete vector repr e- sentation of the transmitted signal described in Fig. 1 i s where si[k] represents the signal components of all users at the ith subcarrier for the kth symbol interval. The actual continuous-time transmitted signal corresponding the kth data symbol of the mth user, am[k], is where f c is the carrier frequency and p T () t is a unit pulse that is non-zero for t [ 0, T ) and zero otherwise. Note that in a distortionless channel, that data symbol of the mth user can be recovered using the orthogonality of the codes as indicated by the following operatio n where C s m A a 0 [ k] a 1 [ k] a N 1 [ k] T c 0 [ 0] c 1 [ 0] c N 1 [ 0] c 0 [ 1] c 1 [ 1] c N 1 [ 1] c 0 [ N 1] c 1 [ N 1] c N 1 [ N 1] S s 0 [ k] s 1 [ k] s N 1 [ k] T CA N 1 F () t a m [ k] c m [] i cos { π f c + -----i t} i 0 p Tb ( t k ) a m [ k] 1 N ---C m S denotes the inner product between two vectors an d () () ()

d 0 /Tbcos(πfct + θ 0 ) d 1 / cos(πfct+ πft/tb + θ 1 ).. d N-1 Σ INTEG / cos(πfct + πf(n-1)t/tb + θ N-1 ) Fig. Receiver Model C m c m [ 0] c m [ 1] c m [ N 1] T (6) is a vector containing the spreading code of the mth user. In this paper, we will focus on downlink transmissions, i.e., from the base station to the mobiles. Assuming that the delay spread is much smaller than the symbol duration, the effect of the channel at the ith subcarrier may be approximated by a constant amplitude scaling, p i [k], and a constant phase offset, θ i [ k], over the symbol duration. Using this assumption, the index k will be suppressed throughout the rest of this paper. Applying the received signal to the receiver model shown in Fig., the equivalent discrete representation of the received signal i s Y y 0 y 1 y N 1 T HCA + N 1 where y i represents the component of the received signal at the ith subcarrier, the channel matrix H is defined to be H ρ 0 0 0 ρ 1 0 0 0 0 ρ N 1, (8) and N 1 η 0 η 1 η N 1 is a vector containing the corresponding AWGN terms with η i representing the noise term at the ith subcarrier with power N 0. Obviously, the discrete representation of the demodulated signal given i n Eq.(7) is an approximation. However, under the condition» T d, each subcarrier faces a relatively flat channel an d Eq.(7) provides a reasonable representation. The application of Wiener filtering to this received signal involves linearly combining the diffe r- ent subcarrier diversity components to yield the decision variabl e T where the vector D d 0 d 1 d N 1 represents the optimal weighting coefficients. These coeff i- cients can also be viewed as an amplitude equalization to compensate for the fading at the subcarr i- ers. Arbitrarily choosing m 0 as the desired signal, the optimal choice of the equalization vector D in the mean-squared sense can be determined to b e T ν 0 D Y (7) (9) where D 1 R YH R a0 YH (10)

R YH E{ YY T } HCE ( AA T ) C T H N 0 + -----I represents the autocorrelation matrix of the received vector Y and R a0 YH represents the cross-correl a- tion vector between the desired symbol, a 0, and the received signal vector, Y. In the formulation of this method, it is assumed that estimates of the channel amplitudes, { i 0, 1,, N 1}, are available and are consequently treated as deterministic constants. A closed form solution o f Eq.(10) is difficult to obtain except for the case of a full load, i.e., when all N users are active. The corresponding equalization coefficient at the ith subcarrier for a full load i s As expected, Eq. indicates that the linear combination of the subcarrier components should include the inner product of the desired user s spreading code vector with the received signal vector. For small, the equalization coefficient should be small to avoid excessive amplification of the noise. For large, the correction factor should be proportional to taking the inverse of the channel, 1, in order to restore the orthogonality between users. For sufficiently large values of N, the average bit error rate (BER) for the case of a full load may be approximated usin g Eq.(9) and the Central Limit Theorem b y where ------------------------------- - and ------------------------------- -. In obtaining this expression, independent and ident i- w i N 0 cally distributed (IID) fading at the subcarriers was assumed. d i v i N + N + To study the effect of correlated fading through simulations, the following algorithm for genera t- ing correlated Rayleigh r.v.s was used. The correlation between two frequencies separated by w πf n l radians in a complex gaussian fading channel is given by Jake s [7] to be ( ) --------------------------------c 0 [] i. N + N 0 BER 1 --erfc 1 -- ( NEw i ) ----------------------------------------- N N 0 σ wi + N-----Ev i N 0 (11) R ρ ( w) 1 + j πf ----------------------------T ( n l) T d ----------------------------------------------------- b. (14) πf( n l) 1 ---------------------------- --------- pm N + T d where j 1 and p m is the local-mean power of the mth user. Defining H as a vector of dimension N whose elements, h i for i 0, 1,..., N-1, are the complex correlated gaussian fading variables at the different subcarriers, the autocorrelation matrix of H, R H EHH (with H meaning the conjugate transpose of H), can be determined usin g Eq.(14). The vector H can be generated by taking linear combinations of IID unit normal gaussian r.v.s : H where G is a vector of dimension N containing IID unit normal r.v.s. A possible choice of the transformation matrix A is AG 1 A ------EΛ 1 (1) N N (16) 4

where E is an N N matrix with the eigenvectors of R H as its column vectors and Λ R N N is a diagonal matrix with the eigenvalues of R H as its entries. The relationship between the fading variables of Eq.(8) and H is h i. (17) III. Simulation and Numerical Results Due to the lengthy time consumption of the simulations, results for only spreading factors of N 8 and N 64 were obtained. Shown in Fig. is a plot of the average BER versus the signal-to-noise ratio (SNR) in a Rayleigh fading channel for a full load with N 8. IID fading at the subcarriers is assumed. It is also assumed that all users are received with equal power. Note that the analytical results for Wiener filtering differ significantly from the simulation results for large SNR. This di s- crepancy is due to the application of the Central Limit Theorem to small spreading factors. Shown in Fig. 4 are the results for N 64. Examining Fig. and 4, it can be seen tha t Eq. is more accurate for large N. Also included in Fig. are the curves for a single narrowband subcarrier with AWGN, and with and without fading. Note that the performance of MC-CDMA is better than a single narro w- band transmission due to frequency diversity even with a fully loaded system. The average BER versus the SNR for correlated fading was also examined for the case of N 8 (see Fig. ). The degree of correlation was measured in terms o f Small α s correspond to highly correlated fading at th e subcarriers while large α s correspond to IID fading. Ideally, the larger the value of α, the higher the degree of frequency diversity. In a DS- CDMA system, the number of resolvable paths is equal t o. (19) Note that for α 0.1 (L ) most of the benefits in performance from frequency diversity have already been achieved. Avg. BER 1e-0 1e-0 1e-04 1e-0 α T d -----. (18) L Nα + 1 () () 10 1 SNR (db) Fig. Average BER vs SNR with Rayleigh fading and a full load for Wiener Filtering: analytical, N -> INF, () simulation, N 8, () analytical, N 1 (single narrowband), and analytical, N 1 with linear time invariant AWGN channel.

Avg. BER 1e-0 1e-0 1e-04 1e-0 10 1 Fig. 4 Average BER vs SNR with Rayleigh fading and a full load for Wiener Filtering: analytical, N -> INF, () simulation, N 64, () analytical, N 1 (single narrowband), and analytical, N 1 with linear time invariant AWGN channel. Shown in Fig. 6 is a plot of the simulation results for the average BER versus the number of inte r- feres. The SNR was chosen to be 10dB. Because of the time consuming nature of the simulator, a re l- atively small spreading factor of N 8 was used. Besides the curves for Wiener filtering, the simulation results of conventional EGC and MRC detection are also include d [1]. As expected, Wiener filtering outperforms EGC and MRC substantially in combating interference. () () SNR (db) IV. Conclusion In this paper, the application of Wiener filtering was applied to the detection process of MC- CDMA. In contrast to conventional diversity combining techniques, this detection technique directly addresses the effects of the interference on the BER. It was shown that even with a full load, MC- Avg. BER 1e-0 1e-0 1e-04 1e-0 10 1 SNR (db) Fig. Average BER vs SNR with Rayleigh fading and a full load for Wiener Filtering: analytical, N 1, (single subcarrier), () analytical, N 1 with linear time invariant AWGN channel, () simulation, N 8, with IID fading (α INF), simulation, N 8, correlated fading with α 0.001 (L 1) and () α 0.1 (L ). () () () 6

Avg. BER 1e-0 () () 1e-0 0 7 # of interferers Fig. 6 Average BER vs # of interferers for spreading factor N 8 with Rayleigh fading and SNR10dB. Simulation results for Maximal Ratio Combining () Equal Gain Combining () Wiener filtering. CDMA with Wiener filtering outperforms single narrowband transmissions in a Rayleigh fading channel. It was also shown that Wiener filtering outperforms conventional detection methods su b- stantially. Analytical approximations for N appeared reasonably accurate for SNRs up to 1dB and for N 64 subcarriers. As the number of subcarriers is increased, the accuracy of the analytical results improves.. It was also shown that most of the benefits of frequency diversity can be achieved even in a channel with a significant degree of correlated fading at the subcarriers. Acknowledgments Portions of this research have been funded by the California Department of Transportation, Partners in Advanced Transit and Highways (PATH), Teknekron Communication Systems, Berkeley, the University of California MICRO Program and AirTouch International. V. References [1] N. Yee, J. P. Linnartz and G. Fettweis, Multi-Carrier CDMA in Indoor Wireless Radio Networks, Proceedings PIMRC 9, Yokohama, Japan, 199, pp. 109-11. [] G. Fettweis, Multi-Carrier Code Division Multiple Access (MC-CDMA): Basic Idea, Technekron Communication Systems - Internal Report. [] R. L. Pickholtz, D. L. Schilling and L.B. Milstein, Theory of Spread-Spectrum Communications - A Tutorial, IEEE Transactions on Communications, COM-0, May 198, pp. 8-884. [4] S. Kondo and L. B. Milstein, MultiCarrier CDMA System with Co-channel Interference Cancellation for an Asynchronous Forward Link, 44th IEEE Veh Tech Conf, June 7-10 1994, Stockholm. [] Leonard J. Cimini, Jr., Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency Division Multiplexing, IEEE Transactions on Communications, vol. COM-, pp. 66-6. [6] G. Fettweis, K. Anvari, and A. Shaikh Bahai, On MultiCarrier Code Division Multiple Access (MC-CDMA) Modem Design, 44th IEEE Veh Tech Conf, June 7-11 1994, Stockholm. [7] W. C. Jakes Jr., Microwave Mobile Communication s, New York: Wiley, 1974. 7