arxiv:physics/ v1 [physics.optics] 25 Aug 2003

Similar documents
Spatial Investigation of Transverse Mode Turn-On Dynamics in VCSELs

Integrated Optoelectronic Chips for Bidirectional Optical Interconnection at Gbit/s Data Rates

Mode analysis of Oxide-Confined VCSELs using near-far field approaches

High-Power Semiconductor Laser Amplifier for Free-Space Communication Systems

UNIT-II : SIGNAL DEGRADATION IN OPTICAL FIBERS

SIGNAL DEGRADATION IN OPTICAL FIBERS

UNIT Write notes on broadening of pulse in the fiber dispersion?

Fundamentals of Electromagnetics With Engineering Applications by Stuart M. Wentworth Copyright 2005 by John Wiley & Sons. All rights reserved.

Lecture 10. Dielectric Waveguides and Optical Fibers

Examination Optoelectronic Communication Technology. April 11, Name: Student ID number: OCT1 1: OCT 2: OCT 3: OCT 4: Total: Grade:

1. Evolution Of Fiber Optic Systems

Fiber Optic Communication Link Design

Guided Propagation Along the Optical Fiber. Xavier Fernando Ryerson Comm. Lab

Chapter 3 Signal Degradation in Optical Fibers

The absorption of the light may be intrinsic or extrinsic

10 Gb/s transmission over 5 km at 850 nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD

Guided Propagation Along the Optical Fiber. Xavier Fernando Ryerson University

Visible to infrared high-speed WDM transmission over PCF

Lecture 8 Fiber Optical Communication Lecture 8, Slide 1

Guided Propagation Along the Optical Fiber

GREAT interest has recently been shown for photonic

Low Thermal Resistance Flip-Chip Bonding of 850nm 2-D VCSEL Arrays Capable of 10 Gbit/s/ch Operation

The Development of the 1060 nm 28 Gb/s VCSEL and the Characteristics of the Multi-mode Fiber Link

τ mod = T modal = longest ray path shortest ray path n 1 L 1 = L n 2 1

Multimode Optical Fiber

Basic concepts. Optical Sources (b) Optical Sources (a) Requirements for light sources (b) Requirements for light sources (a)

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

is a method of transmitting information from one place to another by sending light through an optical fiber. The light forms an electromagnetic

Section B Lecture 5 FIBER CHARACTERISTICS

Single Mode Optical Fiber - Dispersion

Fiber Optic Communications Communication Systems

Optical Fiber Technology. Photonic Network By Dr. M H Zaidi

Absorption: in an OF, the loss of Optical power, resulting from conversion of that power into heat.

Multi-mode to single-mode conversion in a 61 port photonic lantern

2 in the multipath dispersion of the optical fibre. (b) Discuss the merits and drawbacks of cut bouls method of measurement of alternation.

Lectureo5 FIBRE OPTICS. Unit-03

Total care for networks. Introduction to Dispersion

Variation in Multimode Fiber Response: Summary of Experimental Results

NEW YORK CITY COLLEGE of TECHNOLOGY

Silicon Photonic Device Based on Bragg Grating Waveguide

Selective Excitation of Circular Helical Modes in Power-Law Index Fibers

Waveguides and Optical Fibers

Photonics and Optical Communication Spring 2005

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER

Design and Simulation of Optical Power Splitter By using SOI Material

InP-based Waveguide Photodetector with Integrated Photon Multiplication

Design and Analysis of Resonant Leaky-mode Broadband Reflectors

Optical-Domain Four-Level Signal Generation by High-Density 2-D VCSEL Arrays

CHAPTER 4 RESULTS. 4.1 Introduction

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77. Table of Contents 1

LASER Transmitters 1 OBJECTIVE 2 PRE-LAB

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

HIGH-EFFICIENCY MQW ELECTROABSORPTION MODULATORS

Department of Electrical Engineering and Computer Science

Differential Mode Group Delay (DMGD) in Few Mode Fibers (FMF)

Fiber Optic Communication Systems. Unit-05: Types of Fibers.

Single-photon excitation of morphology dependent resonance

Low-power 2.5 Gbps VCSEL driver in 0.5 µm CMOS technology

Module 12 : System Degradation and Power Penalty

Photonics and Optical Communication

Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

VCSELs With Enhanced Single-Mode Power and Stabilized Polarization for Oxygen Sensing

Splice losses in holey optical fibers

DIELECTRIC WAVEGUIDES and OPTICAL FIBERS

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

There are lots of problems or challenges with fiber, Attenuation, Reflections, Dispersion and so on. So here we will look at these problems.

Light Sources, Modulation, Transmitters and Receivers

Physics of Waveguide Photodetectors with Integrated Amplification

Measuring bend losses in large-mode-area fibers

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

Industrial Automation

High Speed VCSEL Transmission at 1310 nm and 1550 nm Transmission Wavelengths

EC Optical Communication And Networking TWO MARKS QUESTION AND ANSWERS UNIT -1 INTRODUCTION

Versatile Graded-Index Multi-Mode Fiber for High Capacity Single-and Multi-Mode Optical Home Network

EE 233. LIGHTWAVE. Chapter 2. Optical Fibers. Instructor: Ivan P. Kaminow

Two bit optical analog-to-digital converter based on photonic crystals

Bistability in Bipolar Cascade VCSELs

Fiber Optic Principles. Oct-09 1

Analysis of Dispersion of Single Mode Optical Fiber

Nd:YSO resonator array Transmission spectrum (a. u.) Supplementary Figure 1. An array of nano-beam resonators fabricated in Nd:YSO.

Optical Fiber Communication

WHITE PAPER LINK LOSS BUDGET ANALYSIS TAP APPLICATION NOTE LINK LOSS BUDGET ANALYSIS

Faster than a Speeding Bullet

CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING

Improved Output Performance of High-Power VCSELs

af-phy July 1996

High Performance Dispersion and Dispersion Slope Compensating Fiber Modules for Non-zero Dispersion Shifted Fibers

Optimization of supercontinuum generation in photonic crystal fibers for pulse compression

Optical systems have carrier frequencies of ~100 THz. This corresponds to wavelengths from µm.

Migration to 50/125 µm in the Local Area Network

International Journal of Advanced Engineering Technology E-ISSN

Photonics (OPTI 510R 2017) - Final exam. (May 8, 10:30am-12:30pm, R307)

Fiber Optic Communication Systems. Unit-04: Theory of Light.

EXAMINATION FOR THE DEGREE OF B.E. and M.E. Semester

Chapter 8. Digital Links

UNIT I INTRODUCTION TO OPTICAL FIBERS

Polarization Control of VCSELs

Test procedures Page: 1 of 5

High-power All-Fiber components: The missing link for high power fiber lasers

Transcription:

arxiv:physics/0308087v1 [physics.optics] 25 Aug 2003 Multi-mode photonic crystal fibers for VCSEL based data transmission N. A. Mortensen, 1 M. Stach, 2 J. Broeng, 1 A. Petersson, 1 H. R. Simonsen, 1 and R. Michalzik 2 1 Crystal Fibre A/S, Blokken 84, DK-3460 Birkerød, Denmark 2 University of Ulm, Optoelectronics Department, Albert-Einstein-Allee 45, D-89069 Ulm, Germany nam@crystal-fibre.com Abstract: Quasi error-free 10Gbit/s data transmission is demonstrated over a novel type of 50µm core diameter photonic crystal fiber with as much as 100m length. Combined with 850nm VCSEL sources, this fiber is an attractive alternative to graded-index multi-mode fibers for datacom applications. A comparison to numerical simulations suggests that the high bit-rate may be partly explained by inter-modal diffusion. c 2018 Optical Society of America OCIS codes: (060.2280) Fiber design and fabrication, (060.2330) Fiber optics communications, (999.999) Photonic crystal fiber References and links 1. R. Michalzik, K. J. Ebeling, M. Kicherer, F. Mederer, R. King, H. Unold, and R. Jager, Highperformance VCSELs for optical data links, IEICE T. Electron. E84C, 629 (2001). 2. P. Russell, Review: Photonic Crystal Fibers, Science 299, 358 (2003). 3. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley & Sons, New York, 1997). 4. R. Michalzik, F. Mederer, H. Roscher, M. Stach, H. Unold, D. Wiedenmann, R. King, M. Grabherr, and E. Kube, Design and communication applications of short-wavelength VCSELs, Proc. SPIE 4905, 310 (2002). 5. S. G. Johnson and J. D. Joannopoulos, Block-iterative frequency-domain methods for Maxwell s equations in a planewave basis, Opt. Express 8, 173 (2001), http://www.opticsexpress.org/abstract.cfm?uri=opex-8-3-173 6. J. Lægsgaard, A. Bjarklev, and S. E. B. Libori, Chromatic dispersion in photonic crystal fibers: fast and accurate scheme for calculation, J. Opt. Soc. Am. B 20, 443 (2003). 7. A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University Press, Cambridge, 1998). 1 Introduction Optical datacom as employed for the high-speed interconnection of electronic subsystems has rapidly gained importance over the past years. Vertical-cavity surfaceemitting lasers (VCSELs) emitting in the 850 nm wavelength regime and simple stepindex fibers or graded-index fibers are preferred key components for low-cost link solutions [1]. Whereas, due to strong inter-modal dispersion, the use of the former fiber type is limited to link lengths of some meters at Gbit/s data rates, fabrication of the latter requires supreme control over the refractive index profile, especially in optimized 50 µm core diameter fibers enabling up to 300 m serial transmission of 10 Gbit/s signals. Since optical interconnect requirements move toward higher speed over shorter distances, the availability of an easily manufacturable, yet high-speed capable fiber medium would be very beneficial. In this paper, we report on the properties of a new type of multi-mode photonic crystal fiber (PCF) with relatively simple waveguide geometry and demonstrate 850nm data transmission at 10Gbit/s over a length of L = 100m. For a recent review of photonic crystal fibers we refer to Ref. [2] and references therein.

Numerical aperture 0.12 0.1 0.08 0.06 b = 4.8 µm b = 7.0 µm 0.04 0.5 0.7 0.9 1.1 1.3 1.5 Wavelength (µm) Fig. 1. Simulated NA for the 33 µm core PCF (upper left inset) with bridges of width b 4.8µm and the 50µm core PCF (lower right inset) with bridges of width b 7.0µm. Note the different scale for the two insets. 2 Fiber design The design of the new multi-mode photonic crystal fiber is illustrated in the insets of Fig. 1 which show optical micrographs of the fiber cross-sections. The fibers are made from a single material (light regions), and they comprise a solid, pure silica core suspended in air (dark regions) by narrow silica bridges of width b. There is a large degree of freedom in engineering the optical properties and still get fiber designs of practical interest from a fabrication point of view. The properties may be tailored by adjusting parameters such as the size and shape of the core, the dimensions and number of silica bridges, or the fiber material. The numerical aperture (NA) of this type of PCF is essentially determined by the width of the silica bridges relative to the wavelength λ as numerically demonstrated in Fig. 1. Here, we focus on two fibers with 33µm and 50µm core diameter and bridge widths of b = 4.8µm and 7.0µm, respectively, yielding NAs of around 0.07 and 0.05 at a wavelength of 850nm. Despite the zero-index step between the core and the bridges, the fiber is capable of guiding light with good confinement to the multi-mode core. This is illustrated by the near-field intensity distributions for both the 33µm core PCF (Fig. 6) as well as the 50µm core PCF (the inset in Fig. 7). We find that the fibers can be cleaved and spliced with commercially available equipment and typically, the fibers have an attenuation of the order 50 db/km at 850 nm for typical bending radii such as 16 cm. 3 Transmission experiments Assuming worst-case conditions [3], we estimate from the above NA-values a bit ratelength product of around 350MBit/s km for the 50µm fiber, whereas the 33µm sample should have around 180MBit/s km. In what follows we examine the transmission properties of such PCFs with a length of L = 100m.

Relative response (db) 5 0-5 -10 (A) PCF (50 µm) PCF (33 µm) Radial offset (µm) 12 0 (B) PCF (33 µm) PCF (50 µm) -15 0 2 4 6 8 Frequency (GHz) -12 1.2 1.4 1.6 1.8 Relative time delay (nsec) Fig. 2. Panel (A) shows small-signal frequency responses at 850nm for a length L = 100m for the two PCFs illustrated in Fig. 1. Panel (B) shows normalized DMD plots for both fibers at offset positions of 12, 0, and 12µm. 3.1 Small-signal transfer function and DMD In order to get a first indication of the fibers expected transmission bandwidths, we have determined the small-signal frequency responses with a scalar network analyzer. As optical source, standard 850 nm GaAs based VCSELs have been employed. The 12 µm active diameter, oxide-confined devices show transverse multi-mode emission with a root mean square spectral width of less than 0.4 nm even under modulation. The lasing threshold current amounts to 1.8 ma and the bias current for the small-signal as well as data transmission experiments was chosen as 9 ma, where the 3-dB bandwidth is 8.6 GHz. At the receiving end, a multi-mode fiber pigtailed InGaAs pin-photo-receiver with above 8GHz bandwidth was used. Panel (A) of Fig. 2 depicts the relative responses of both PCF samples. The 33 and 50µm core PCFs show a bit rate-length product of B T L 500Mbit/s km and 1000 Mbit/s km, respectively. These figures are significantly larger than expected from the corresponding NAs. In the next section we extend the NA estimations and show simulations of the modal time delays for the two PCFs. In order to get quantitative insight into the modal delay properties, we have determined the PCFs differential mode delay (DMD) characteristics, see Panel (B) of Fig. 2. Here, a 5µm core diameter single-mode fiber is scanned over the PCF input at a distance of about 10 µm in accordance with the IEC pre-standard 60793-1-49, Sect. 3.3. The impulse response at the output end is recorded for each offset position using an Fig. 3. Normalized DMD plots at variable offset positions. Panels (A) and (B) show results for the 33µm and the 50µm PCFs, respectively.

Bit error rate (BER) 10-2 10-4 10-6 10-8 10-10 10-12 5 G, BTB 5 G, PCF (50 µm) 5 G, PCF (33 µm) 10 G, BTB 7.5 G, PCF (50 µm) 10 G, PCF (50 µm) -26-24 -22-20 -18-16 -14-12 Received optical power (dbm) Fig. 4. BER characteristics for both 100m-long PCFs at data rates of 5, 7.5, and 10 Gbit/s. optical sampling oscilloscope with a fiber input compatible to 62.5 µm core diameter multi-mode fibers. A gain-switched 850 nm single-mode VCSEL delivering pulses with less than 40ps full width at half maximum is employed for this purpose [4]. Panel (B) illustrates some of the results. It is seen that the output pulses of the 50µm fiber are rather narrow and virtually independent of the offset position. On the other hand, those of the 33µm sample show larger variability and are up to twice as broad, which well supports the above observations. Figure 3 shows two-dimensional color-coded representations of the full data. 3.2 Digital data transmission Data transmission experiments have been carried out under non-return-to-zero 2 7 1 word length pseudo-random bit sequence modulation using the aforementioned multimode VCSEL driven with 0.9 V peak-to-peak voltage. Figure 4 summarizes obtained bit error rate (BER) curves. With the smaller core diameter fiber, up to 5Gbit/s could be transmitted without indication of a BER floor. The power penalty versus back-toback (BTB) operation is about 3dB at a BER of 10 12. On the other hand, the 50µm fiber even enables 10Gbit/s transmission over L = 100m length with only 2.9dB power penalty. The observed increase in data rate is in full agreement with the small-signal and DMD measurement results. 4 Simulations We use a plane-wave method [5] to calculate the propagation constant β m = n m ω/c of the mth eigenmode where n m is the effective index, ω the angular frequency, and c the vacuum velocity of light. For the refractive index profile we use optical micrographs transformed to one-bit format representing the two-component composite airsilica structure and for the refractive index we use a Sellmeier expression for n(ω) in silica and n = 1 in air. The simulation of Maxwell s equations for a given ω provides us with sets of propagation constants {β m } and eigenfields {E m } where m = 1,2,3,...M with M as the number of guided eigenmodes. We determine M from the experimentally measured NA which we transform to an effective cladding index n cl. The number of

Fig. 5. Panel (A) shows the effective indices of the M = 36 guided eigenmodes at λ = 850nm in the 33µm core PCF (see upper left inset of Fig. 1). The horizontal dashed line indicates the cladding index n cl corresponding to the experimentally measured NA. The filled curve shows the distribution P(n m) (the projection of the data onto the y-axis). Panel (B) shows the corresponding time-delays τ m and the distribution P(τ m). guided eigenmodes M then follows from the requirement that n M > n cl n M+1. The delay-times (or group-delays) are given by τ m = L β m / ω (we calculate the group velocity by the approach described in Ref. [6]). The variation with m usually sets the limit on the bit rate and in that case the bit rate-length product is given by [3, 7] B T L L/ T, T 2 {δ2 τ m }, δτ m = τ m {τ m }, (1) Here, we use the second moment calculated from the full statistics to characterize the width T of the distribution P(τ m ). For the estimate of the bit-rate the eigenmodes are thus weighted equally corresponding to an assumption of uniform launch and attenuation. In literature one often finds the estimate T max{τ m } min{τ m } [3, 7] and in the ray-optical picture max{τ m } can be expressed in terms of the NA in analogy to our estimations in section 3 based on the NA. However, for a sufficiently low number of guided modes the beginning break-down of geometrical optics calls for estimates based on the full statistics. Figure 5 shows results at λ = 850nm for the 33µm core PCF (see upper left inset in Fig. 1). Experimentally, this fiber is found to have an NA 0.07 and the corresponding effective cladding index is indicated by the dashed line in panel (A). For the given core size this results in M = 36 eigenmodes that are guided. Panel (B) shows the results for the time-delays with the filled curve showing the distribution P(τ m ) (the projection of the data onto the y-axis) calculated from a superposition of Gaussians with a width given by the mean level spacing (τ M τ 1 )/(M 1). We have T 0.00087 L/c corresponding to B T L 344MBit/s km which as expected is somewhat larger than the NAestimate. The experimentally observed value is approximately 50% larger. It is wellknown that both non-uniform loss and attenuation as well as intermodal diffusion tends to narrow the spread in time-delays. The DMD plots in Fig. 3 supports the presence of inter-modal diffusion and its dominance over both the excitation conditions as well as variations in modal attenuation. It is thus likely that the enhanced bit-rate length product originates from intermodal diffusion. One could speculate that stress could modify the indexprofile in the silica core and that this in turn could modify the time-delay

(A) (B) (C) Fig. 6. Intensity distributions at λ = 850nm in the 33µm PCF (see upper left inset in Fig. 1). Panel (A) shows the first (m = 1) eigenmode (see http://asger.hjem.wanadoo.dk/mm.gif to view the other M = 36 guided eigenmodes, 700 Kbyte). Panel (B) shows the average eigenfield intensity which agrees well with the experimentally observed near-field intensity shown in Panel (C). In Panels (A) and (B) the contour lines indicate the air-silica interfaces. distribution similarly to the situation in graded-index profiles. However, as we shall see such a hypothesis is not supported by near-field studies. The electric field E is constructed by a linear combination of the eigenfields. For a not too narrow linewidth of the light source we may neglect cross-terms in E 2 and for uniform launch and attenuation we thus expect to measure an intensity distribution proportional to the average eigenfield intensity, i.e., E 2 M 1 M m E m 2. The same will be the case for arbitrary launch and strong inter-modal diffusion. Figure 6 shows the eigenfield intensities with spatial patterns characteristic for a close-to-hexagonal symmetry. The average eigenfield intensity in Panel (B) compares well to the experimentally measured near-field intensity in Panel (C). Together with the DMD measurements this correspondence agrees well with a picture of inter-modal diffusion which tends to populate the modes uniformly. The eigenmodes fall into different groups with different degeneracies (these degeneracies are slightly lifted due to a weakly broken symmetry in the real fiber) as evident from both the effective index in panel (A) of Fig. 5 as well as the intensity plots (click panel (A) in Fig. 6). The first two eigenmodes (m = 1, 2) are the doubly degenerate fundamental mode corresponding to the two polarization states of the fundamental mode in standard fibers and from a practical point of view they can be considered polarization states though the x-polarization in principle has a very small y-component and vice versa. For the 50µm PCF (see lower right inset of Fig. 1) with NA 0.05 we have carried out the same analysis of the effective index and found that M = 20 eigenmodes are guided. Since M increases with both increasing NA and core size, M can be low even for a large core as long as the NA is not too high. Figure 7 shows results for the time-delay which as expected has a more narrow distribution compared to the results for the PCF with the 33µm core, see panel (B) of Fig. 5. The width T 0.00054 L/c corresponds to B T L 559MBit/s km. The experimental value is larger by more than 70% which is attributed to inter-modal diffusion.

1.4626 time delay, τ m [L/c] 1.4624 1.4622 1.462 1.4618 1.4616 0 5 10 15 eigenmode index, m 20 Fig. 7. Time-delays of the M = 20 guided eigenmodes in the 50µm PCF (see lower right inset in Fig. 1). The filled curve shows the distribution P(τ m) and the inset shows the simulated average eigenfield intensity with contour lines indicating the air-silica interfaces. 5 Conclusions For the first time, quasi error-free transmission of 10 Gbit/s digital data signals over a multi-mode photonic crystal fiber with 50 µm core diameter and as much as 100m length has been demonstrated. With some optimizations concerning design and fabrication, these PCFs show good prospects as an alternative to graded-index fibers in optical datacom environments. Comparing to numerical simulations indicates that the high bit-rate may be partly supported by inter-modal diffusion.