ICS RF-Hardened, Low-Noise Microphone with Bottom Port and Analog Output

Similar documents
ICS Ultra-Low Noise Microphone with Differential Output

ICS RF Hardened, Low Noise Microphone with Top Port and Analog Output

ICS Analog Microphone with Low Power Mode GENERAL DESCRIPTION APPLICATIONS FEATURES FUNCTIONAL BLOCK DIAGRAM ORDERING INFORMATION

ICS High SPL Analog Microphone with Extended Low Frequency Response

ICS Ultra-Low Noise Microphone with Differential Output

ICS Ultra-low Current, Low-Noise Microphone with Analog Output

ICS Ultra-Low Noise Microphone with Differential Output

RF-Hardened, Ultra-Low Noise Microphone with Bottom Port and Analog Output

ICS Bottom Port PDM Digital Output Multi-Mode Microphone with Ultrasonic Mode

ADMP521 Ultra-Low Noise Microphone with Bottom Port and PDM Digital Output

Wide Dynamic Range Microphone with PDM Digital Output FEATURES

INMP421 Omnidirectional Microphone with Bottom Port and PDM Digital Output

ICS Low-Noise Microphone with TDM Digital Output

VM2000. Low-Noise Bottom Port Piezoelectric MEMS Microphone Data Sheet Vesper Technologies Inc. Differential Analog Output

2018 Data Sheet Vesper Technologies Inc. VM1000. Low-Noise Bottom Port

SMA100. Top Port Analog MEMS Microphone. Datasheet. Rev. 2.0

Precision Top Port SiSonic TM Microphone

Most Reliable Component for Microwave. Data sheet Rev. 00 AM4311R38A0. Analog MEMS Microphone (Rear/ Bottom type)

MEMS audio surface-mount bottom-port silicon microphone with analog output. Description. Table 1. Device summary

SiSonic TM Microphone

SPW2430HR5H-B. Top Port SiSonic TM Microphone. The SPW2430HR5H-B is a miniature, highperformance,

MP23AB01DH. High-performance MEMS audio sensor: fully differential analog bottom-port microphone. Description. Features

SPM0404HE5H-PB. SiSonic TM Microphone With Enhanced RF Protection. The SPM0404HE5H-PB is a miniature, highperformance,

Data Sheet, V1.0, Aug SMM310. Silicon MEMS Microphone. Small Signal Discretes

SPA2629LR5H-B. Low Noise Zero-Height SiSonic TM Microphone. The SPA2629LR5H-B is a miniature, highperformance,

SPU0409LE5H-QB. Zero-Height SiSonic TM Microphone With Enhanced RF Protection. The SPU0409LE5H-QB is a miniature, highperformance,

MP34DT06J. MEMS audio sensor omnidirectional digital microphone. Datasheet. Features. Applications. Description

Wide Bandwidth, Low Noise, Precision Top Port SiSonic Microphone

MP45DT02. MEMS audio sensor omnidirectional digital microphone. Description. Features. Applications

MP34DB02. MEMS audio sensor omnidirectional digital microphone. Description. Features. Applications

MEMS audio sensor omnidirectional digital microphone for industrial applications

BOTTOM PORT SISONIC MICROPHONE

WM7131. Bottom Port Analogue Silicon Microphone DESCRIPTION FEATURES APPLICATIONS BLOCK DIAGRAM

SPM0408LE5H-TB. Amplified Zero-Height SiSonic TM Microphone With Enhanced RF Protection. The SPM0408LE5H-TB is a miniature, highperformance,

SPM0437HD4H-B. Digital SiSonic TM Microphone. The SPM0437HD4H is a miniature, highperformance,

SPU0414HR5H-SB. Amplified SiSonic TM Microphone. The SPU0414HR5H-SB is a miniature, highperformance,

SPU0410HR5H-PB. SiSonic TM Microphone. The SP0410HR5H-PB is a miniature, highperformance,

Order code Temperature range [ C] Package Packing

SPK0833LM4H-B. Digital Zero-Height SiSonic TM Microphone. The SPK0833LM4H-B is a miniature, highperformance,

WM7132, WM7132E. Bottom Port Analogue Silicon Microphone DESCRIPTION FEATURES APPLICATIONS BLOCK DIAGRAM

Dual-Axis, High-g, imems Accelerometers ADXL278

Single-Axis, High-g, imems Accelerometers ADXL193

Data Sheet MSM381A3729Z9A C. V 1.1 / Sept Analog output MEMS microphone

Description. Part number Temperature range [ C] Package Packing

Description. Part number Temperature range [ C] Package Packing

ICM Shield Hardware User Guide

SPH0641LU4H-1. Digital Zero-Height SiSonic TM Microphone With Multi-Mode And Ultrasonic Support. The SPH0641LU4H-1 is a miniature, highperformance,

VM1010. Low-Noise Bottom Port Piezoelectric MEMS Microphone Data Sheet Vesper Technologies Inc. With Wake on Sound Feature

MP34DT04. MEMS audio sensor omnidirectional digital microphone

MP34DT05-A. MEMS audio sensor omnidirectional digital microphone. Description. Features. Applications

Knowles Acoustics 1151 Maplewood Drive Itasca, IL 60143

SPH0641LM4H-1. Digital Zero-Height SiSonic TM Microphone With Multiple Performance Modes. The SPH0641LM4H-1 is a miniature, highperformance,

Integrated Dual-Axis Gyro IDG-500

Low Power Top Port Digital Silicon Microphone FEATURES APPLICATIONS 3D VIEW CLK DAT LRSEL

WM7132, WM7132E. Bottom Port Analogue Silicon Microphone DESCRIPTION FEATURES APPLICATIONS BLOCK DIAGRAM

WM7120A. Top Port Analogue Silicon Microphone DESCRIPTION FEATURES APPLICATIONS BLOCK DIAGRAM

Product Specification ML-3865-B1 MEMS silicon microphone

Integrated Dual-Axis Gyro IDG-1215

Single-Axis, High-g, imems Accelerometers ADXL78

High Performance, Wide Bandwidth Accelerometer ADXL001

OBSOLETE. High Performance, Wide Bandwidth Accelerometer ADXL001 FEATURES APPLICATIONS GENERAL DESCRIPTION FUNCTIONAL BLOCK DIAGRAM

Description. Part number Temperature range [ C] Package Packing

Product Specification ML T1 MEMS silicon microphone

IM69D120. Description. Features. Typical applications. High performance digital XENSIVTM MEMS microphone

VT-800 Temperature Compensated Crystal Oscillator Previous Vectron Model VTC4

MP34DT05. MEMS audio sensor omnidirectional digital microphone

Description. Part number Temperature range [ C] Package Packing

Ultralow Offset Voltage Dual Op Amp AD708

SGM3798 Audio Headset Analog Switch with Reduced GND Switch R ON and FM Capability

F4-(A)HDMOE-J098R3627-5P

Preliminary. Wake on Sound Piezoelectric MEMS Microphone Evaluation Module

SGM4809 Dual 158mW Headphone Amplifier with Active Low Shutdown Mode

SGM W Audio Power Amplifier with Shutdown Mode

TSL250RD, TSL251RD, TSL260RD, TSL261RD LIGHT-TO-VOLTAGE OPTICAL SENSORS

SPK0838HT4H-B. Digital High-SNR SiSonic TM Microphone

Self-Contained Audio Preamplifier SSM2019

Small and Thin ±18 g Accelerometer ADXL321

Four-Channel Sample-and-Hold Amplifier AD684

VT-701 Temperature Compensated Crystal Oscillator Previous Vectron Model VTC2

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Low Cost, General Purpose High Speed JFET Amplifier AD825

ESDARF02-1BU2CK. Single-line bidirectional ESD protection for high speed interface. Features. Applications. Description

Quad Picoampere Input Current Bipolar Op Amp AD704

High Performance, Wide Bandwidth Accelerometer ADXL001

F2-(A)HCDMO-B125T26-6CP

Small, Low Power, 3-Axis ±3 g Accelerometer ADXL337

Reference Diagram IDG-300. Coriolis Sense. Low-Pass Sensor. Coriolis Sense. Demodulator Y-RATE OUT YAGC R LPY C LPy ±10% EEPROM TRIM.

Ultrafast Comparators AD96685/AD96687

Very Low Distortion, Precision Difference Amplifier AD8274

Small, Low Power, 3-Axis ±3 g Accelerometer ADXL335

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

Knowles Acoustics 1151 Maplewood Drive Itasca, IL 60143

VDD 0.1 F A1 C1 IN+ IS31AP2145A IN- CTRL GND. Figure 1 Typical Application Circuit (Differential Input)

IXYS IXI848A. High-Side Current Monitor. General Description. Features: Applications: Ordering Information. General Application Circuit

SGM W Fully Differential Audio Power Amplifier

ams AG TAOS Inc. is now The technical content of this TAOS datasheet is still valid. Contact information:

VV-701 Voltage Controlled Crystal Oscillator Previous Vectron Model VVC1/VVC2

EL2142. Features. Differential Line Receiver. Applications. Ordering Information. Pinout. Data Sheet February 11, 2005 FN7049.1

VT-841 VT-841. Temperature Compensated Crystal Oscillator. Description. Applications. Features. Block Diagram. Output V DD.

Improved Second Source to the EL2020 ADEL2020

Transcription:

RF-Hardened, Low-Noise Microphone with Bottom Port and Analog Output GENERAL DESCRIPTION The ICS-40180 * is an analog MEMS microphone with high SNR and enhanced RF immunity. The ICS-40180 includes a MEMS microphone element, an impedance converter, and an output amplifier. Other high-performance specification include a linear response up to 124 db SPL, tight ±1 db sensitivity tolerance, and enhanced immunity to both radiated and conducted RF interference. The ICS-40180 is available in a small, 3.5 mm 2.65 mm 0.98 mm, surface-mount package. *Protected by U.S. Patents 7,449,356; 7,825,484; 7,885,423; and 7,961,897. Other patents are pending. APPLICATIONS Smartphones Tablet Computers Wearable Devices Still and Video Cameras Bluetooth Headsets Notebook PCs Security and Surveillance FEATURES High 65 dba SNR 38 dbv Sensitivity ±1 db Sensitivity Tolerance Non-Inverted Signal Output Extended Frequency Response from 60 Hz to 20 khz Enhanced RF Immunity 124 db SPL Acoustic Overload Point Low Current Consumption: 190 µa Single-Ended Analog Output High 78 dbv PSR 3.5 2.65 0.98 mm Surface-Mount Package Compatible with Sn/Pb and Pb-Free Solder Processes RoHS/WEEE Compliant FUNCTIONAL BLOCK DIAGRAM ORDERING INFORMATION OUTPUT AMPLIFIER OUTPUT PART TEMP RANGE PACKAGING ICS-40180 40 C to +85 C 13 Tape and Reel EV_ICS-40180-FX ICS-40180 POWER VDD GND InvenSense reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. InvenSense Inc. 1745 Technology Drive, San Jose, CA 94089 U.S.A +1(408) 988 7339 www.invensense.com Rev Date: 04/03/2015

TABLE OF CONTENTS General Description... 1 Applications... 1 Features... 1 Functional Block Diagram... 1 Ordering Information... 1 Table of Contents... 2 Specifications... 3 Table 1. Electrical Characteristics... 3 Absolute Maximum Ratings... 4 Table 2. Absolute Maximum Ratings... 4 ESD Caution... 4 Soldering Profile... 5 Table 3. Recommended Soldering Profile*... 5 Pin Configuration And Function Descriptions... 6 Table 4. Pin Function Descriptions... 6 Typical Performance Characteristics... 7 Applications Information... 8 Codec Connection... 8 Supporting Documents... 9 Evaluation Board User Guide... 9 Application Notes... 9 PCB Design And Land Pattern Layout... 10 PCB Material And Thickness... 10 Handling Instructions... 11 Pick And Place Equipment... 11 Reflow Solder... 11 Board Wash... 11 Outline Dimensions... 12 Ordering Guide... 12 Revision History... 13 Compliance Declaration Disclaimer... 14 Page 2 of 14

SPECIFICATIONS TABLE 1. ELECTRICAL CHARACTERISTICS T A = 25 C, V DD = 1.5 to 3.63 V, unless otherwise noted. Typical specifications are not guaranteed. PARAMETER CONDITIONS MIN TYP MAX UNITS NOTES PERFORMANCE Directionality Omni Output Polarity Non-Inverted Sensitivity 1 khz, 94 db SPL 39 38 37 dbv Signal-to-Noise Ratio (SNR) 20 Hz to 20 khz, A-weighted 65 dba Equivalent Input Noise (EIN) 20 Hz to 20 khz, A-weighted 29 dba SPL Dynamic Range Derived from EIN and maximum acoustic input 95 db Frequency Response Low frequency 3 db point 60 Hz High frequency 3 db point >20 khz 1 Total Harmonic Distortion (THD) 105 db SPL 0.3 1 % Power-Supply Rejection (PSR) 217 Hz, 100 mvp-p square wave superimposed on V DD = 1.8 V 78 dbv Power Supply Rejection Ratio (PSRR) 1 khz, 100 mvp-p sine wave superimposed on V DD = 1.8 V 46 db Acoustic Overload Point 10% THD 124 db SPL POWER SUPPLY Supply Voltage (V DD ) 1.5 3.63 V Supply Current (I S ) V DD = 1.8 V 190 240 µa V DD = 3.3 V 210 260 µa OUTPUT CHARACTERISTICS Output Impedance 350 Ω Output DC Offset 0.7 V Maximum Output Voltage 124 db SPL input 0.398 V rms Noise Floor Note 1: See Figure 3 and Figure 4. 20 Hz to 20 khz, A-weighted, rms 103 dbv Page 3 of 14

ABSOLUTE MAXIMUM RATINGS Stress above those listed as Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to the absolute maximum ratings conditions for extended periods may affect device reliability. TABLE 2. ABSOLUTE MAXIMUM RATINGS PARAMETER Supply Voltage (V DD ) Sound Pressure Level Mechanical Shock Vibration Temperature Range Biased Storage RATING 0.3 V to +3.63 V 160 db 10,000 g Per MIL-STD-883 Method 2007, Test Condition B 40 C to +85 C 55 C to +150 C ESD CAUTION ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore proper ESD precautions should be taken to avoid performance degradation or loss of functionality. Page 4 of 14

SOLDERING PROFILE T P RAMP-UP t P CRITICAL ZONE T L TO T P TEMPERATURE T L T SMIN T SMAX t S PREHEAT t L RAMP-DOWN t 25 C TO PEAK TEMPERATURE TIME Figure 1. Recommended Soldering Profile Limits TABLE 3. RECOMMENDED SOLDERING PROFILE* PROFILE FEATURE Sn63/Pb37 Pb-Free Average Ramp Rate (T L to T P ) 1.25 C/sec max 1.25 C/sec max Minimum Temperature (T SMIN ) 100 C 100 C Preheat Minimum Temperature (T SMIN ) 150 C 200 C Time (T SMIN to T SMAX ), t S 60 sec to 75 sec 60 sec to 75 sec Ramp-Up Rate (T SMAX to T L ) 1.25 C/sec 1.25 C/sec Time Maintained Above Liquidous (t L ) 45 sec to 75 sec ~50 sec Liquidous Temperature (T L ) 183 C 217 C Peak Temperature (T P ) 215 C +3 C/ 3 C 260 C +0 C/ 5 C Time Within +5 C of Actual Peak Temperature (t P ) 20 sec to 30 sec 20 sec to 30 sec Ramp-Down Rate 3 C/sec max 3 C/sec max Time +25 C (t 25 C ) to Peak Temperature 5 min max 5 min max *The reflow profile in Table 3 is recommended for board manufacturing with InvenSense MEMS microphones. All microphones are also compatible with the J-STD-020 profile Page 5 of 14

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS 3 GND 4 GND GND 2 5 VDD OUTPUT 1 Figure 2. Pin Configuration Top View (Terminal Side Down) Not to Scale TABLE 4. PIN FUNCTION DESCRIPTIONS PIN NAME FUNCTION 1 OUTPUT Analog Output Signal 2 GND Ground 3 GND Ground 4 GND Ground 5 VDD Power Supply Page 6 of 14

TYPICAL PERFORMANCE CHARACTERISTICS 20 15 20 15 NORMALIZED AMPLITUDE (db) 10 5 0 5 NORMALIZED AMPLITUDE (db) 10 5 0 5 10 10 15 15 10 100 1k 10k FREQUENCY (Hz) 20 10 100 1k 10k FREQUENCY (Hz) Figure 3. Frequency Response Mask Figure 4. Typical Frequency Response (Measured) 40 41 42 10 43 PSRR (db) 44 45 46 47 48 49 THD + N (%) 1 50 100 1k 10k FREQUENCY (Hz) Figure 5. PSR vs. Frequency, 100 mv p-p Swept Sine Wave 0.1 90 100 110 120 130 INPUT (db SPL) Figure 6. Total Harmonic Distortion + Noise (THD+N) vs. Input SPL -5 1.4-10 1.2 OUTPUT AMPLITUDE (dbv) -15-20 -25-30 -35-40 -45 90 100 110 120 130 INPUT AMPLITUDE (db SPL) Figure 7. Linearity OUTPUT (V) 1.0 0.8 0.6 0.4 0.2 0 0 0.5 1.0 TIME (ms) Figure 8. Clipping Characteristics 120dB SPL 124dB SPL 128dB SPL 132dB SPL Page 7 of 14

APPLICATIONS INFORMATION CODEC CONNECTION The ICS-40180 output can be connected to a dedicated codec microphone input (see Figure 9) or to a high input impedance gain stage. A 0.1 µf ceramic capacitor placed close to the ICS-40180 supply pin is used for testing and is recommended to adequately decouple the microphone from noise on the power supply. A DC blocking capacitor is required at the output of the microphone. This capacitor creates a high-pass filter with a corner frequency at f C = 1/(2π C R) where R is the input impedance of the codec. A minimum value of 2.2 μf is recommended in Figure 9 because the input impedance of some codecs can be as low as 2 kω at their highest PGA gain setting, which results in a high-pass filter corner frequency at 37 Hz. Figure 10 shows the ICS-40180 connected to an op amp configured as a noninverting preamplifier. VDD ICS-40180 OUTPUT GND 0.1 µf 2.2 µf MINIMUM MICBIAS ADC OR CODEC INPUT Figure 9. ICS-40180 Connected to a Codec 1.8-3.3 V GAIN = (R1 + R2)/R1 R1 R2 V REF 0.1µF VDD ICS-40180 OUTPUT 1µF MINIMUM AMP V OUT GND 10kΩ V REF Figure 10. ICS-40180 Connected to an Op Amp Page 8 of 14

SUPPORTING DOCUMENTS For additional information, see the following documents. EVALUATION BOARD USER GUIDE UG-325, Analog Output MEMS Microphone Flex Evaluation Board APPLICATION NOTES AN-100, MEMS Microphone Handling and Assembly Guide AN-1003, Recommendations for Mounting and Connecting the InvenSense Bottom-Ported MEMS Microphones AN-1112, Microphone Specifications Explained AN-1124, Recommendations for Sealing InvenSense Bottom-Port MEMS Microphones from Dust and Liquid Ingress AN-1140, Microphone Array Beamforming AN-1165, Op Amps for Microphone Preamp Circuits AN-1181, Using a MEMS Microphone in a 2-Wire Microphone Circuit Page 9 of 14

PCB DESIGN AND LAND PATTERN LAYOUT Below is the lay out the PCB land pattern for the ICS-40180, at a 1:1 ratio to the solder pads on the microphone package, (see Figure 11.) Take care to avoid applying solder paste to the sound hole in the PCB. Figure 12 shows a suggested solder-paste stencil pattern layout. The response of the ICS-40180 is not affected by the PCB hole size, as long as the hole is not smaller than the sound port of the microphone (0.25 mm, or 0.01 inch, in diameter). A 0.5 mm to 1 mm (0.020 inch to 0.040 inch) diameter for the hole is recommended. Align the hole in the microphone package with the hole in the PCB. The exact degree of the alignment does not affect the performance of the microphone as long as the holes are not partially or completely blocked. 0.522x0.725(4X) Ø1.625 Ø1.025 1.675 0.838 0.822 1.252 Figure 11. Recommended PCB Land Pattern Layout 0.422x0.625(4X) Ø1.625 1.675 Ø1.125 0.1(4x) 0.822 1.252 Figure 12. Recommended Solder Paste Stencil Pattern Layout PCB MATERIAL AND THICKNESS The performance of the ICS-40180 is not affected by PCB thickness. The ICS-40180 can be mounted on either a rigid or flexible PCB. A flexible PCB with the microphone can be attached directly to the device housing with an adhesive layer. This mounting method offers a reliable seal around the sound port while providing the shortest acoustic path for good sound quality. Page 10 of 14

HANDLING INSTRUCTIONS PICK AND PLACE EQUIPMENT The MEMS microphone can be handled using standard pick-and-place and chip shooting equipment. Take care to avoid damage to the MEMS microphone structure as follows: Use a standard pickup tool to handle the microphone. Because the microphone hole is on the bottom of the package, the pickup tool can make contact with any part of the lid surface. Do not pick up the microphone with a vacuum tool that makes contact with the bottom side of the microphone. Do not pull air out of or blow air into the microphone port. Do not use excessive force to place the microphone on the PCB. REFLOW SOLDER For best results, the soldering profile must be in accordance with the recommendations of the manufacturer of the solder paste used to attach the MEMS microphone to the PCB. It is recommended that the solder reflow profile not exceed the limit conditions specified in Figure 1 and Table 3. BOARD WASH When washing the PCB, ensure that water does not make contact with the microphone port. Do not use blow-off procedures or ultrasonic cleaning. Page 11 of 14

OUTLINE DIMENSIONS Figure 13. 5-Terminal Chip Array Small Outline No-Lead Cavity [LGA_CAV] 3.5 2.65 0.98 mm Body Dimensions shown in millimeters P A R T NUMBER PIN 1 INDIC A TION 180 Y Y XXX D A TE C ODE L O T TR A C E ABILITY C ODE Figure 14. Package Marking Specification (Top View) ORDERING GUIDE PART TEMP RANGE PACKAGE QUANTITY PACKAGING ICS-40180 40 C to +85 C 5-Terminal LGA_CAV 10,000 13 Tape and Reel EV_ICS-40180-FX Flexible Evaluation Board Page 12 of 14

REVISION HISTORY REVISION DATE REVISION DESCRIPTION 10/7/2014 1.0 Initial Release 11/17/2014 1.1 Updated General Description information 04/03/2015 1.2 Corrected PSRR spec and replaced Figure 5 Page 13 of 14

COMPLIANCE DECLARATION DISCLAIMER InvenSense believes the environmental and other compliance information given in this document to be correct but cannot guarantee accuracy or completeness. Conformity documents substantiating the specifications and component characteristics are on file. InvenSense subcontracts manufacturing, and the information contained herein is based on data received from vendors and suppliers, which has not been validated by InvenSense. This information furnished by InvenSense is believed to be accurate and reliable. However, no responsibility is assumed by InvenSense for its use, or for any infringements of patents or other rights of third parties that may result from its use. Specifications are subject to change without notice. InvenSense reserves the right to make changes to this product, including its circuits and software, in order to improve its design and/or performance, without prior notice. InvenSense makes no warranties, neither expressed nor implied, regarding the information and specifications contained in this document. InvenSense assumes no responsibility for any claims or damages arising from information contained in this document, or from the use of products and services detailed therein. This includes, but is not limited to, claims or damages based on the infringement of patents, copyrights, mask work and/or other intellectual property rights. Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by implication or otherwise under any patent or patent rights of InvenSense. This publication supersedes and replaces all information previously supplied. Trademarks that are registered trademarks are the property of their respective companies. InvenSense sensors should not be used or sold in the development, storage, production or utilization of any conventional or mass-destructive weapons or for any other weapons or life threatening applications, as well as in any other life critical applications such as medical equipment, transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, disaster prevention and crime prevention equipment. 2015 InvenSense, Inc. All rights reserved. InvenSense, MotionTracking, MotionProcessing, MotionProcessor, MotionFusion, MotionApps, DMP, AAR and the InvenSense logo are trademarks of InvenSense, Inc. Other company and product names may be trademarks of the respective companies with which they are associated. 2015 InvenSense, Inc. All rights reserved. Page 14 of 14