Aging Wire Insulation Assessment by Phase Spectrum Examination of Ultrasonic Guided Waves 1

Similar documents
ULTRASONIC GUIDED WAVES FOR AGING WIRE INSULATION ASSESSMENT

INVESTIGATING THE USE OF ULTRASOUND FOR EVALUATING AGING WIRING INSULATION. Nondestructive Evaluation Sciences Branch NASA, Hampton, VA 23681

EFFECT OF SURFACE COATINGS ON GENERATION OF LASER BASED ULTRASOUND

Christine Valle G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

Measurement of phase velocity dispersion curves and group velocities in a plate using leaky Lamb waves

LASER GENERATION AND DETECTION OF SURFACE ACOUSTIC WAVES

Rayleigh Wave Interaction and Mode Conversion in a Delamination

THE ANALYSIS OF ADHESIVE BONDS USING ELECfROMAGNETIC

Time Reversal FEM Modelling in Thin Aluminium Plates for Defects Detection

Theory and Applications of Frequency Domain Laser Ultrasonics

Application of Ultrasonic Guided Waves for Characterization of Defects in Pipeline of Nuclear Power Plants. Younho Cho

Testing of Buried Pipelines Using Guided Waves

FATIGUE CRACK CHARACTERIZATION IN CONDUCTING SHEETS BY NON

Co-Located Triangulation for Damage Position

ASSESSMENT OF WALL-THINNING IN CARBON STEEL PIPE BY USING LASER-GENERATED GUIDED WAVE

Ultrasonic Guided Wave Testing of Cylindrical Bars

Penn State University ESM Ultrasonics R&D Laboratory Joseph L. Rose Research Activities

Ultrasonic Guided Waves for NDT and SHM

Flow Front and Cure Monitoring for Resin Transfer Molding Using Ultrasonic Guided Waves in Cylindrical Wires

Multiple crack detection of pipes using PZT-based guided waves

Change in Time-of-Flight of Longitudinal (axisymmetric) wave modes due to Lamination in Steel pipes

Inspection of pipe networks containing bends using long range guided waves

ULTRASONIC GUIDED WAVE ANNULAR ARRAY TRANSDUCERS FOR STRUCTURAL HEALTH MONITORING

HEALTH MONITORING OF ROCK BOLTS USING ULTRASONIC GUIDED WAVES

A Wire-Guided Transducer for Acoustic Emission Sensing

STUDY ON SAW ATTENUATION OF PMMA USING LASER ULTRASONIC

Barry T. Smith Norfolk Academy, 1585 Wesleyan Drive, Norfolk, Virginia 23502

Piezoelectric transducer excitation for guided waves propagation on pipeline with flexural wave modes

SPARSE ARRAY TOMOGRAPHY SYSTEM FOR CORROSION EXTENT MONITORING H. Bian, H. Gao, J. Rose Pennsylvania State University, University Park, PA, USA

Long Range Ultrasonic Testing - Case Studies

Sensitivity analysis of guided wave characters for transducer array optimisation on pipeline inspections

Quantitative Crack Depth Study in Homogeneous Plates Using Simulated Lamb Waves.

A NEW APPROACH FOR THE ANALYSIS OF IMPACT-ECHO DATA

Ultrasonic Time-of-Flight Shift Measurements in Carbon Composite Laminates Containing Matrix Microcracks

THE LONG RANGE DETECTION OF CORROSION IN PIPES USING LAMB WAVES

NDT 2010 Conference Topics

Time-frequency analysis of the dispersion of Lamb modes

DEFECT CHARACTERIZATION IN THICK COMPOSITES BY ULTRASOUND. David K. Hsu and Ali Minachi Center for NDE Iowa State University Ames, IA 50011

OPTICAL FIBER-BASED SENSING OF STRAIN AND TEMPERATURE

NUMERICAL MODELING OF AIR-COUPLED ULTRASOUND WITH EFIT. D. E. Chimenti Center of Nondestructive Evaluation Iowa State University Ames, Iowa, USA

Ultrasonic Guided Wave Applications

SELECTION OF MATERIALS AND SENSORS FOR HEALTH MONITORING OF COMPOSITE STRUCTURES

Guided wave based material characterisation of thin plates using a very high frequency focused PVDF transducer

Detection of Protective Coating Disbonds in Pipe Using Circumferential Guided Waves

NONLINEAR C-SCAN ACOUSTIC MICROSCOPE AND ITS APPLICATION TO CHARACTERIZATION OF DIFFUSION- BONDED INTERFACES OF DIFFERENT METALS

USE OF GUIDED WAVES FOR DETECTION OF INTERIOR FLAWS IN LAYERED

NARROWBAND ULTRASONIC SPECTROSCOPY FOR NDE OF LAYERED STRUCTURES T. Stepinski and M. Jonsson 1 Uppsala University, Uppsala, Sweden

A STUDY ON NON-CONTACT ULTRASONIC TECHNIQUE FOR ON-LINE INSPECTION OF CFRP

Generation Laser Scanning Method for Visualizing Ultrasonic Waves Propagating on a 3-D Object

A New Lamb-Wave Based NDT System for Detection and Identification of Defects in Composites

Selective Excitation of Lamb Wave Modes in Thin Aluminium Plates using Bonded Piezoceramics: Fem Modelling and Measurements

Excitation and reception of pure shear horizontal waves by

Determination of the width of an axisymmetric deposit on a metallic pipe by means of Lamb type guided modes

MEASUREMENT OF SURFACE ACOUSTIC WAVE USING AIR COUPLED TRANSDUCER AND LASER DOPPLER VIBROMETER

Finite element simulation of photoacoustic fiber optic sensors for surface rust detection on a steel rod

Acoustic-Laser Vibrometry for Standoff Detection of Defects in Materials

A Simulation Study of Attenuation Factors in a Gas Pipeline Guided Wave Testing

Fig. 1 Feeder pipes in the pressurized heavy water reactor.

CONTACT LASER ULTRASONIC EVALUATION OF CONSTRUCTION MATERIALS

Determination of the Structural Integrity of a Wind Turbine Blade Using Ultrasonic Pulse Echo Reflectometry

CIRCULAR LAMB AND LINEAR SHEAR HORIZONTAL GUIDED WAVE ARRAYS FOR STRUCTURAL HEALTH MONITORING

Acoustic Emission Signals versus Propagation Direction for Hybrid Composite Layup with Large Stiffness Differences versus Direction

VIBRATIONAL MODES OF THICK CYLINDERS OF FINITE LENGTH

1818. Evaluation of arbitrary waveform acoustic signal generation techniques in dispersive waveguides

ULTRASONIC GUIDED WAVE FOCUSING BEYOND WELDS IN A PIPELINE

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

CRACK SIZING USING A NEURAL NETWORK CLASSIFIER TRAINED WITH DATA OBTAINED FROM FINI1E ELEMENT MODELS

MEASUREMENT OF RAYLEIGH WAVE ATTENUATION IN GRANITE USING

ON FIBER DIRECTION AND POROSITY CONTENT USING ULTRASONIC PITCH-CATCH TECHNIQUE IN CFRP COMPOSITE SOLID LAMINATES

BINDT Telford. Guided Wave Testing and Monitoring Over Long and Short Ranges

FLEXURAL TORSIONAL GUIDED WAVE PIPE INSPECTION

Long Range Guided Wave Monitoring of Rail Track

RELIABILITY OF GUIDED WAVE ULTRASONIC TESTING. Dr. Mark EVANS and Dr. Thomas VOGT Guided Ultrasonics Ltd. Nottingham, UK

Research on An Inspection Method for De-bond Defects in Aluminum. Skin-Honeycomb Core Sandwich Structure with Guided Waves

A Detailed Examination of Waveforms from Multiple Sensors on a Composite Pressure Vessel (COPV)

TECHNICAL BACKGROUND ON MsS

Structural Integrity Monitoring using Guided Ultrasonic Waves

ULTRASONIC SIGNAL CHARACTERIZATIONS OF FLAT-BOTTOM HOLES IN

ACOUSTO-ULTRASONIC EVALUATION OF HYBRID COMPOSITES USING

EWGAE 2010 Vienna, 8th to 10th September

DETECTION OF LEAKY-RAYLEIGH WA YES AT AIR-SOLID INTERFACES BY

A Numerical study on proper mode and frequency selection for riveted lap joints inspection using Lamb waves.

Guided Wave Travel Time Tomography for Bends

Study on Propagation Characteristics of Ultrasonic Guided Wave for EMAT Sensor

GUIDED WAVES FOR DAMAGE MONITORING IN PLATES FOR NOTCH DEFECTS

Ultrasonic Air-Coupled Non-Destructive Testing of Aerospace Components

Simulation of ultrasonic guided wave inspection in CIVA software platform

FATIGUE CRACK DETECTION IN METALLIC MEMBERS USING SPECTRAL

High contrast air-coupled acoustic imaging with zero group velocity Lamb modes

DISBOND DETECTION AND CHARACTERIZATION USING HORIZONT ALL Y

A COMPACT EMAT RECEIVER FOR ULTRASONIC TESTING AT ELEVATED TEMPERATURES* L. R. Burns, G. A. Alers, and D. T. MacLauchlan

Investigating the Use of Ultrasonic Guided Wave Analysis Methods for Detecting and Classifying a Small Notch in a Thin Metallic Plate

DEVELOPMENT OF HEAT-RESISTANT OPTICAL FIBER AE SENSOR

Acoustic Emission Signal Associated to Fiber Break during a Single Fiber Fragmentation Test: Modeling and Experiment

OPTIMIZATION OF THE DELTA TECHNIQUE AND APPLICATION TO THE EVALUATION OF ELECTRON- BEAM WELDED TITANIUM AIRCRAFT PARTS

FIDELITY OF MICHELSON INTERFEROMETRIC AND CONICAL PIEZOELECTRIC

Multi-Mode and Multi-Frequency Differential Lamb Wave Imaging with in situ Sparse Transducer Arrays

High-temperature Ultrasonic Thickness Gauges for On-line Monitoring of Pipe Thinning for FAC Proof Test Facility

Air Coupled Ultrasonic Inspection of Steel Rubber Interface

MEASUREMENT OF SURFACE DISPLACEMENT EXCITED BY EMAT TRANSDUCER

Transcription:

Aging Wire Insulation Assessment by Phase Spectrum Examination of Ultrasonic Guided Waves 1 Robert F. Anastasi 1 and Eric I. Madaras 2 1 U.S. Army Research Laboratory, Vehicle Technology Directorate, AMSRL-VT-S, Nondestructive Evaluation Sciences Branch, NASA Langley Research Center, Hampton, VA 23681 2 NASA Langley Research Center, Nondestructive Evaluation Sciences Branch, Hampton, VA 23681 ABSTRACT Wire integrity has become an area of concern to the aerospace community including DoD, NASA, FAA, and Industry. Over time and changing environmental conditions, wire insulation can become brittle and crack. The cracks expose the wire conductor and can be a source of equipment failure, short circuits, smoke, and fire. The technique of using the ultrasonic phase spectrum to extract material properties of the insulation is being examined. Ultrasonic guided waves will propagate in both the wire conductor and insulation. Assuming the condition of the conductor remains constant then the stiffness of the insulator can be determined by measuring the ultrasonic guided wave velocity. In the phase spectrum method the guided wave velocity is obtained by transforming the time base waveform to the frequency domain and taking the phase difference between two waveforms. The result can then be correlated with a database, derived by numerical model calculations, to extract material properties of the wire insulator. Initial laboratory tests were performed on a simple model consisting of a solid cylinder and then a solid cylinder with a polymer coating. For each sample the flexural mode waveform was identified. That waveform was then transformed to the frequency domain and a phase spectrum was calculated from a pair of waveforms. Experimental results on the simple model compared well to numerical calculations. Further tests were conducted on aircraft or mil-spec wire samples, to see if changes in wire insulation stiffness can be extracted using the phase spectrum technique. Keywords: wire insulation, ultrasonic, guided waves, phase spectrum 1. INTRODUCTION Electrical wiring in most modern day equipment is subjected to heat, cold, moisture, and vibrations, which can eventually cause the wire insulation and even the wire conductor to fail. In most cases these environmental and operational conditions are modest, but in some cases these conditions are extreme and can cause the insulation to become brittle and crack. The cracks expose the underlying wire conductor and become a potential source for short circuits and fire. In critical situations wire inspections are done visually, but often after-the-fact, in response to an instrument or system failure. Visual inspection may find the cracks and burns, but this method offers little quantitative information about the condition of the wire insulation prior to failure. Ultrasound can be used to obtain the desired quantitative information about the wire insulation. For this purpose, insulated wire may be considered a cylindrical wave-guide or more descriptively a clad rod, where the wire conductor is the core and the wire insulation is the cladding. A number of authors have examined acoustic wave propagation in a cylindrical geometry [1-5] and for detailed analysis the reader is referred to these papers. Some applications of ultrasonic guided waves include material testing or characterization of wire or fibers [6, 7], and for use as ultrasonic 1 SPIE's 8 th International Symposium on NDE for Health Monitoring and Diagnostics, Conference 5046, Paper 29, San Diego, CA, 2-6 March 2003

delay lines. In general many acoustic wave modes will propagate in a cylindrical shape and in part, be a function of material properties, geometry, frequency, propagation order, and circumferential order. Two modes in the low frequency regime are the axisymmetric and flexural modes. The axisymmetric mode is the first signal that arrives in an ultrasonic transmit/receiver arrangement and is nearly non-dispersive in the low-frequency regime. A traditional timeof-flight measurement was previously used in examining the propagation of this mode in heat damaged wire insulation, [8, 9]. Results showed a correlation between the axisymmetric mode phase velocity and heat-damaged condition of the wire insulation. A drawback in this time-of-flight measurement is that it is tedious and extremely times consuming because a constant phase point from signal-to-signal is followed. Also, the amplitude of the axisymmetric mode signal is smaller in magnitude than the flexural mode signal, due in part to the loading geometry. Thus it requires increasing the electronic signal gain. Taking advantage of the larger amplitude signal should improve the signal analysis, but a simple time of flight measurement can not be used to evaluate the flexural mode phase velocity because this mode is dispersive in nature. A Fourier phase method of extracting phase velocities from this type of dispersive signal was described and demonstrated by Sachse and Pao, [10], and used by a number of other authors. [11-14]. These authors applied the Fourier phase method to Lamb wave signals in metallic and laminated composite materials. In this paper the Fourier phase method is investigated for application on small diameter cylindrical geometry and in particular, electrical wire. Flexural mode dispersion curves are obtained for a wire model and for a mil-spec baseline and heat damaged samples. 2. EXPERIMENTS The experimental system is schematically shown in Figure 1. This system consists of two piezoelectric transducers, ultrasonic pulse generator, ultrasonic pre-amp, and oscilloscope. The transducers were low frequency, broadband acoustic emission transducers with a bandwidth of 50 khz to 1.5 MHz. The signal from the ultrasonic receiver is first fed through a pre-amplifier with a 20 khz to 2 MHz bandwidth and a 40 or 60 db gain and then through another amplifier with a maximum gain of 42 db and a bandwidth set at 10 khz to 300 khz. The output of the amplifier was recorded by an 8-bit/500 MHz digitizing oscilloscope. The signal was averaged 100 times to improve signal to noise and then recorded for later analysis. The transducers were mechanically attached to the rod or wire as shown in Figure 2. The clamp face opposite the transducer had a groove machined in it, to hold the wire along the center of the transducer surface. During measurements, a wire was held on a 30-cm long optical rail while the transducers were clipped on the wire at various separations. The wires were nominally 60 cm long and the ends of the wires were clamped to hold the samples while measurements were taken. In the Fourier phase method an elastic wave is generated and detected at two different distances along the rod or wire. For each signal the flexural mode wave is windowed and then the phase (ϕ) of this windowed portion of the signal is obtained by performing a Fourier transform. The phases were unwrapped to remove any 2πn uncertainties and then the phase difference ( ϕ) is obtained. The phase velocity (ν ph ) as a function of frequency (f) can be found to be [10] v ( fd ph f )= 2π φ (1) where d is the distance between the two receiver locations. To validate the method, a flexural mode dispersion curve for a brass rod was obtained experimentally using the Fourier method and calculated numerically. The calculations were performed using a commercially available software package that calculates dispersion curves in plate and cylindrical geometry. The brass rod was then covered with a heat shrink tubing to simulate the insulation on an electrical wire and measurements and calculations were repeated. In the modeling calculations it is assumed there was perfect coupling between the brass rod and heat shrink tubing. Material properties and geometry of the brass rod and heat shrink tubing used in the calculations are shown in Table I. The longitudinal velocity of the heat shrink tubing was measured using ultrasonic pulse echo methods and the density was measured through volume and mass measurements of a small sample. Other values were estimated using these measurements and tabulated text book values for thermoplastic material [15].

TABLE I. Brass and Heat Shrink Tubing Material Properties and Radius. Material Brass Heat Shrink Tubing Young s Modulus, (GPa) 108.94 0.72 Density, (kg/m 3 ) 8500 958 Poission s Ratio 0.35 0.46 Long. Velocity, (m/s) 4535 1868 Shear Velocity, (m/s) 2178 510 Rayleigh Velocity, (m/s) 2036 484 Radius, (mm) 1.59 2.175 Next, measurements were performed on electrical wire samples. The samples were mil-spec MIL-W-22759/34 16- gauge Teflon coated wire. The wire conductor was composed of 19 strands of tin-coated copper. Dimensions and other characteristic of the electrical wire are given in Table II. This electrical wire was examined in a baseline condition (undamaged) and in a heat-damaged or aged condition. Heat damaging or oven aging was performed by heating the wire in an oven for 100 hour at 270 0 C. In its baseline condition the electrical wire insulation was white and flexible. After oven aging the insulation was gray and it remained flexible, but felt stiffer compare to the baseline. For numerical calculations the electrical wire was modeled with a core of solid copper and a cladding of Teflon. Properties and radius used in the calculations are shown in Table III. The properties are typical text book values. TABLE II. Specifications of 16-gauge MIL-W-22759/34 wire Overall Diameter, (mm) 1.90 Wire Bundle Dia., (mm) 1.33 Insulation Thickness, (mm) 0.28 Wire Strands per Bundle 19 Wire Strand Gauge 29 TABLE III. Material Properties and Radius used in numerical model of electrical wire. Material Copper Teflon Young s Modulus, (GPa) 122.70 1.864 Density, (kg/m 3 ) 8900 2200 Poission s Ratio 0.35 0.40 Long. Velocity, (m/s) 4700 1350 Shear Velocity, (m/s) 2260 550 Radius, (mm) 0.66 0.95 3. RESULTS AND DISCUSSION Theoretical dispersion curves for the axisymmetric and flexural low-order modes are shown in Figure 3. These dispersion curves are for an uncoated and coated brass rod of which the material properties and geometry values used to calculate these curves were given in Table I. This figure, illustrate the significant effect of the coating. This effect decreases the range of frequencies where dispersion is most noticeable and decreases the magnitude of the phase velocity. This effect was shown to be a function of the coating thickness [16]. The high-frequency phase velocity limit is the Rayleigh surface wave velocity and for the uncoated and coated rod this is 2100m/s and 510m/s respectively. Experimental measurements were taken on the uncoated and coated brass rod and the flexural mode dispersion curves were obtained as described above. The results shown in Figure 4 are compared with the calculated flexural mode

dispersion curves that were shown in Figure 3. Overall, the experimental measurements follow the trend of the theoretical curves and illustrate the effect of the coating and validate the Fourier method procedures. The difference between the theoretical and experimental curves may be due to differences between actual and textbook material property values and between actual boundary conditions and the assumed perfect coupling of the core and cladding. Experimental and theoretical flexural mode dispersion curves for the baseline and oven aged electrical wire are shown in Figure 5. Values in Table III were used to calculate the theoretical baseline dispersion curve. The experimental data follows the trend of this theoretical curve. The theoretical oven aged dispersion curve was calculated using a Young s Modulus of 4.0GPa, while density, and Poissons s Ratio remained constant and longitudinal and shear wave velocity were recalculated according to elastic relationships. The value of 4.0GPa was chosen to make the theoretical curve follow the experimental data and illustrate stiffening of the wire insulation. Although these curves don t follow the theoretical calculations exactly, in part due to the reasons given above, plus the model used a solid core while the wire core consisted of a bundle of small diameter wires, they do show a difference that may be associated with material stiffness. Although the measurements were easy to obtain, isolating the flexural mode proved more difficult because of the addition of higher wave modes. The fact that boundary conditions may have been less then perfect may have also compounded the difficulty in interpreting signals. The frequency bandwidth of the signals seemed limited compared to the bandwidth of the transducers and this seemed to limit the experimental results. The small frequency bandwidth may in part be due to the coating. The coating in general is a plastic material that attenuates the propagation of ultrasound. In this case the lower frequencies propagate because they have more energy than the higher frequencies. The composition of the core, a bundle of small diameter wires, may have also attributed to signal attenuation by scattering and dephasing of the ultrasonic signal. To overcome these difficulties and improve wire insulation characterization it may be possible to generate only surface waves instead of relying on the natural mode conversion of the transducer generated longitudinal waves. Since the dispersion curves showed that in the high-frequency regime Rayleigh surface waves propagate, it may be beneficial to use this wave mode for measuring wire insulation properties. REFERENCES 1. T.R. Meeker, and A.H. Meitzler., "Guided Wave Propagation in Elongated Cylinders and Plates," in Physical Acoustics - Principles and Methods, edited by W.P. Mason, Academic Press, NY, Vol. 1, Part A, 1964. 2. R.N. Thurston, J. Acoust. Soc. Am., 64, 1, 1-37, (1978). 3. H.D. McNiven, J.L. Sackman, and A.H. Shah, J. Acoust. Soc. Am., 35, 10, 1602-1609,(1963). 4. H.N. Abramson, J. Acoust. Soc. Am., 29, 1, 42-46, (1957). 5. J.L. Rose, Ultrasonic Waves in Solid Media, Cambridge University Press, NY, 1999. 6. E.I. Madaras, T. Kohl, and W.P. Rogers, "Material Property Characterization and Pulse Propagation in Thin Drawn Wire Waveguides," IEEE Ultrasonics Symposium-1992, pp. 957-962. 7. E.I. Madaras, T. Kohl, W.P. Rogers, J. Acoust. Soc. Am., 97, 1, 252-261, (1995). 8. R.F. Anastasi and E.I. Madaras, Ultrasonic Guided Waves For Aging Wire Insulation, The 28 th Annual Review of Progress in QNDE, Eds. D.O. Thompson and D.E. Chimenti, American Institute of Physics, Vol. 21, pp 255-261, 2002. 9. E.I. Madaras and R.F. Anastasi, "Comparison of Ultrasound with Tensile Testing of Thermally Damaged Polyimide Insulated Wire (Mil-W-81381), The 29 th Annual Review of Progress in Quantitative NDE, Western Washington University, Bellingham, Washington, July 14-19, 2002. 10. W. Sachse, W. and Y. Pao, On the determination of Phase and Group Velocities of Dispersive Waves in Solids, J. Appl. Phys, 49(8), August 1978. 11. N.A. Schumacher, C.P. Burger, and P.H. Gien, A Laser-Based Investigation of Higher-Order Modes in Transient Lamb Waves, J. Acoust. Soc. Am., 93(5), pp 2981-2984, May 1993. 12. W.H. Prosser and M.R. Gorman, Plate Mode Velocities in Graphite/Epoxy Plates, J. Acoust. Soc. Am. 96, pp 902-907, August 1994. 13. M. Veidt and M. Sayir, Experimental Evaluation of Global Composite Laminate Stiffness by Structural Wave Propagation, Journal of Composite Materials, Vol. 24, pp 688-706, July 1990. 14. D. Alleyne and P. Cawley, A Two-Dimensional Fourier Transform Method for the Measurement of Propagating Multimode Signals, J. Acoust. Soc. Am. 89(3), pp 1159-1168, March 1991. 15. S. V. Gangal and W. Grot, Tetrafluoroetheylene Polymers, Encyclopedia Of PolymerScience and Engineering, 16, 577-648, 1989. 16. R.C. Reuter, Jr., Dispersion of Flexural Waves in Circular Bimaterial Cylinders- Theoretical Treatment, J. Acoust. Soc. Am. Vol. 46, No. 3, pp 643-648, 1968.

Thin Rod Separation distance Piezoelectric Transducer Ultrasonic Pulser or Waveform Generator diameter Receiver Piezoelectric Transducer Pre-Amp. & Amplifier Oscilloscope Fig. 1: Schematic of experimental setup. Fig. 2: Ultrasonic Transducers Clipped to Insulated Wire.

4000 Phase Velocity (m/s) 3500 3000 2500 2000 1500 1000 Uncoated Coated Axisymmetric Mode Flexural Mode 500 0 0.00 0.50 1.00 1.50 2.00 Frequency (MHz) Fig. 3: Theoretical axisymmetric and flexural dispersion curves for uncoated and plastic coated brass rod. 2000 Phase Velocity (m/s) 1500 1000 500 Theory, Uncoated Theory, Coated Exp. Data, Uncoated Exp. Data, Coated 0 0.00 0.05 0.10 0.15 0.20 Frequency (MHz) Fig. 4: Comparison of theoretical and experimental flexural mode dispersion curves for uncoated and plastic coated brass rod.

1200 1000 Phase Velocity (m/s) 800 600 400 200 Theory, Baseline Theory, Oven Aged Exp. Baseline Exp. Oven Aged 0 0.00 0.05 0.10 0.15 0.20 Frequency (MHz) Fig. 5: Theoretical and experimental flexural mode dispersion curves for baseline and oven aged electrical wire.