AN AT89C52 MICROCONTROLLER BASED HIGH RESOLUTION PWM CONTROLLER FOR 3-PHASE VOLTAGE SOURCE INVERTERS

Similar documents
Field Programmable Gate Array-Based Pulse-Width Modulation for Single Phase Active Power Filter

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER

Simulation And Comparison Of Space Vector Pulse Width Modulation For Three Phase Voltage Source Inverter

CHAPTER 5 NOVEL CARRIER FUNCTION FOR FUNDAMENTAL FORTIFICATION IN VSI

International Journal of Emerging Researches in Engineering Science and Technology, Volume 1, Issue 2, December 14

AC Induction Motor (ACIM) Control using a Digital Signal Controller (DSC)

THREE-PHASE voltage-source pulsewidth modulation

Z-SOURCE INVERTER WITH A NEW SPACE VECTOR PWM ALGORITHM FOR HIGH VOLTAGE GAIN

Performance Analysis of Three-Phase Four-Leg Voltage Source Converter

CHAPTER 2 CONTROL TECHNIQUES FOR MULTILEVEL VOLTAGE SOURCE INVERTERS

CHAPTER IV DESIGN AND ANALYSIS OF VARIOUS PWM TECHNIQUES FOR BUCK BOOST CONVERTER

Space Vector (PWM) Digital Control and Sine (PWM) Pulse Width Modulation modelling, simulations Techniques & Analysis by MATLAB and PSIM (Powersys)

Current Rebuilding Concept Applied to Boost CCM for PF Correction

Field Programmable Gate Array (FPGA) Based Pulse Width Modulation for Single Phase Hybrid Active Power Filters U. Krishna Reddy 1 Ch.

HARDWARE IMPLEMENTATION OF DIGITAL SIGNAL CONTROLLER FOR THREE PHASE VECTOR CONTROLLED INDUCTION MOTOR

Module 5. DC to AC Converters. Version 2 EE IIT, Kharagpur 1

International Journal of Advance Engineering and Research Development. SVPWM Based VFD drive using 8- bit Microcontroller

Lecture 20. Single-phase SPWM inverters

Switching Loss Characteristics of Sequences Involving Active State Division in Space Vector Based PWM

CHAPTER 3 CASCADED H-BRIDGE MULTILEVEL INVERTER

Hysteresis Controller and Delta Modulator- Two Viable Schemes for Current Controlled Voltage Source Inverter

Module 5. DC to AC Converters. Version 2 EE IIT, Kharagpur 1

NOVEL SPACE VECTOR BASED GENERALIZED DISCONTINUOUS PWM ALGORITHM FOR INDUCTION MOTOR DRIVES

Micro-controller Based Three-phase Voltage Source Inverter for Alternative Energy Source. Abstract

Lecture 21. Single-phase SPWM inverter switching schemes

Reduced PWM Harmonic Distortion for a New Topology of Multilevel Inverters

INTRODUCTION. In the industrial applications, many three-phase loads require a. supply of Variable Voltage Variable Frequency (VVVF) using fast and

Micro Controller Based Ac Power Controller

MODELING AND SIMULATION OF A THREE PHASE MULTILEVEL INVERTER FOR HARMONIC REDUCTION BASED ON MODIFIED SPACE VECTOR PULSE WIDTH MODULATION (SVPWM)

Space Vector PWM and Model Predictive Control for Voltage Source Inverter Control

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 14, NO. 3, MAY A Sliding Mode Current Control Scheme for PWM Brushless DC Motor Drives

Nicolò Antonante Kristian Bergaplass Mumba Collins

A New Multilevel Inverter Topology with Reduced Number of Power Switches

Experiment 4: Three-Phase DC-AC Inverter

POWER- SWITCHING CONVERTERS Medium and High Power

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE

Modeling and Simulation of Induction Motor Drive with Space Vector Control

Performance analysis of a Ĉuk regulator applying variable switching frequency

IMPLEMENTATION OF QALU BASED SPWM CONTROLLER THROUGH FPGA. This Chapter presents an implementation of area efficient SPWM

SVPWM Based Two Level VSI for Micro Grids

Real time digital audio processing with Arduino

Development of a Single-Phase PWM AC Controller

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 05 Issue: 12 Dec p-issn:

New Inverter Topology for Independent Control of Multiple Loads

DYNAMICALLY RECONFIGURABLE PWM CONTROLLER FOR THREE PHASE VOLTAGE SOURCE INVERTERS. In this Chapter the SPWM and SVPWM controllers are designed and

AC-DC-AC 3 Level PWM Converter

ARDUINO BASED SPWM THREE PHASE FULL BRIDGE INVERTER FOR VARIABLE SPEED DRIVE APPLICATION MUHAMAD AIMAN BIN MUHAMAD AZMI

Pulse width modulated (PWM) inverters are mostly used power electronic circuits in

Implementation of Different Methods of Space Vector Pulse Width Modulation (PWM) - A Survey

SHUNT ACTIVE POWER FILTER

Five Level Output Generation for Hybrid Neutral Point Clamped Inverter using Sampled Amplitude Space Vector PWM

Svpwm Technique to Eliminate Harmonics and Power Factor Improvement Using Hybrid Power Filter and By Using Dsp Tms 320lf2407

Speed Control of Induction Motor using Multilevel Inverter

CHAPTER 5 MODIFIED SINUSOIDAL PULSE WIDTH MODULATION (SPWM) TECHNIQUE BASED CONTROLLER

Effective Algorithm for Reducing DC Link Neutral Point Voltage and Total Harmonic Distortion for Five Level Inverter

Literature Survey: Multilevel Voltage Source Inverter With Optimized Convention Of Bidirectional Switches

Low Order Harmonic Reduction of Three Phase Multilevel Inverter

Design of double loop-locked system for brush-less DC motor based on DSP

A Novel Control Method for Input Output Harmonic Elimination of the PWM Boost Type Rectifier Under Unbalanced Operating Conditions

CHAPTER 3 SINGLE SOURCE MULTILEVEL INVERTER

A MATLAB Model of Hybrid Active Filter Based on SVPWM Technique

CHAPTER 4 FIELD PROGRAMMABLE GATE ARRAY IMPLEMENTATION OF FIVE LEVEL CASCADED MULTILEVEL INVERTER

TO OPTIMIZE switching patterns for pulsewidth modulation

Comparison of SPWM,THIPWM and PDPWM Technique Based Voltage Source Inverters for Application in Renewable Energy

CHAPTER 3 VOLTAGE SOURCE INVERTER (VSI)

A New Family of Matrix Converters

Three Level Three Phase Cascade Dual-Buck Inverter With Unified Pulsewidth Modulation

Simulation of Space Vector Modulation in PSIM

Tutorial 5 - Isolated DC-DC Converters and Inverters

CHAPTER 7 MAXIMUM POWER POINT TRACKING USING HILL CLIMBING ALGORITHM

International Journal of Advance Engineering and Research Development

MODELLING AND SIMULATION OF DIODE CLAMP MULTILEVEL INVERTER FED THREE PHASE INDUCTION MOTOR FOR CMV ANALYSIS USING FILTER

Effect of Carrier Frequency on the Performance of Three Phase SPWM Inverter

A Three-Phase AC-AC Buck-Boost Converter using Impedance Network

Performance Study of Multiphase Multilevel Inverter Rajshree Bansod*, Prof. S. C. Rangari**

CHAPTER 3 COMBINED MULTIPULSE MULTILEVEL INVERTER BASED STATCOM

An On-Line Harmonic Elimination Pulse Width Modulation Scheme for Voltage Source Inverter

AN ABSTRACT OF THE THESIS OF

Analysis of Voltage Source Inverters using Space Vector PWM for Induction Motor Drive

Digitally-Implemented Naturally Sampled PWM Suitable for Multilevel Converter Control

Determination of EMI of PWM fed Three Phase Induction Motor. Ankur Srivastava

Generation of Voltage Reference Signal in Closed-Loop Control of STATCOM

CHAPTER 2 VSI FED INDUCTION MOTOR DRIVE

Speed Control of Induction Motor using Space Vector Modulation

Hybrid Modulation Techniques for Multilevel Inverters

DESIGN ANALYSIS AND IMPLEMENTATION OF SPACE VECTOR PULSE WIDTH MODULATING INVERTER USING DSP CONTROLLER FOR VECTOR CONTROLLED DRIVES

Resonant Controller to Minimize THD for PWM Inverter

A Novel Four Switch Three Phase Inverter Controlled by Different Modulation Techniques A Comparison

Power Quality improvement of a three phase four wire system using UPQC

Improving Passive Filter Compensation Performance With Active Techniques

354 Facta Universitatis ser.: Elec. and Energ. vol. 13, No.3, December 2000 in the audio frequency band. There are many reasons for moving towards a c

Harmonics Analysis Of A Single Phase Inverter Using Matlab Simulink

IJSER

Chapter 2 Shunt Active Power Filter

Mitigation of Voltage Sag, Swell and Load Hamonics by the Combined Opertation of Series APF and Solar System

5-Level Parallel Current Source Inverter for High Power Application with DC Current Balance Control

Analysis of Advanced Techniques to Eliminate Harmonics in AC Drives

Speed Measurement Method for Digital Control System

The Design and Construction of a DDS based Waveform Generator

CHAPTER 3 H BRIDGE BASED DVR SYSTEM

Transcription:

IIUM Engineering Journal, Vol. 6, No., 5 AN AT89C5 MICROCONTROLLER BASED HIGH RESOLUTION PWM CONTROLLER FOR 3-PHASE VOLTAGE SOURCE INVERTERS K. M. RAHMAN AND S. J. M. IDRUS Department of Mechatronics Engineering Faculty of Engineering, International Islamic University Malaysia, P.O. Box, 578, Malaysia kazi@iiu.edu.my, junita@iiu.edu.my Abstract: A novel technique for generating real time high resolution pulse width modulated patterns for a three phase voltage source inverter is presented in this paper. An AT89C5 microcontroller computes the PWM pulse widths on carrier cycle basis based on the input frequency. The microcontroller send the pulse width information for the three phases to a memory minimized ROM lookup table, which is scanned by a binary counter to generate the real time PWM patterns. The on board timer of AT89C5 is utilized to generate programmed clock for the scanning binary counter. The overall design is hardware minimized and compact that makes it feasible for low cost high performance ac drive applications. The proposed PWM controller supports variable frequency variable voltage operation for wide range and hence is ideally suited for industrial drives requiring wide speed variations. Keywords: Pulse width modulation, Microcontroller application, Voltage source inverter, variable speed ac drives.. INTRODUCTION Three phase voltage source inverters are controlled by pulse width modulation (PWM) techniques. The prime goal of a PWM technique is to minimize the harmonics in the phase voltage and phase current spectrum. Different PWM strategies are available in the literature for controlling three phase inverters using per phase modulation such as regular sampled PWM (RSPWM) or voltage space vector (SVPWM) technique. Both RSPWM [-4] and SVPWM [5-6] have well defined switching equations for computing PWM pulse widths and are usually implemented using timers and a microprocessor. The SVPWM needs more computations than the RSPWM, however, SVPWM have linear over modulation capability. Harmonic elimination PWM (HEPWM) is another technique that computes switching points strategically eliminating some selective harmonics and is the most computation intensive PWM technique that cannot be implemented directly in real time. Switching patterns close to HEPWM are obtainable using regular sampled harmonic elimination PWM (RSHEPWM), where, the leading edge of a PWM switching pulse for any phase is calculated from the sine modulating reference and the trailing edge is computed from a shifted sine reference [7-8]. Considering harmonic behaviour, the RSPWM is the most efficient PWM technique for feed forward inverter control 7

IIUM Engineering Journal, Vol. 6, No., 5 applications. The RSPWM is one of the mostly used PWM techniques and have a number of derivatives. The symmetric time averaged RSPWM [9] is very efficient in respect of both performance and speed. The performance of a PWM scheme depends on how the PWM control patterns are calculated and also on the implementation strategy. Even the most efficient PWM technique may offer worst performance if the resolution of the PWM pattern is not maintained properly. This happens because of the limitations of the digital hardware through which the PWM strategy is implemented in real time.. PULSE WIDTH CALCULATIONS The PWM pulse widths are to be calculated such that the inverter output has the lowest order harmonic near the carrier switching frequency. Amongst the various PWM strategies, the regular sampled PWM is found to give better output at lesser computation complexity.. Regular Sampled PWM The modulating signal is a sinusoid at the inverter fundamental frequency (f). The modulating signal is sampled at regular intervals at the carrier frequency (fs). The number of samples in a fundamental period is N given by, f N s () f The three phase modulating signals are, va Vm sin( t) v V sin( t / 3) () b v V c m m sin( t 4 / 3) v a = V m sin(t) +V s/ t wa(n) -Vs/ T s nts Fig. : Pulse width calculations for two-level PWM, the area under the modulating signal for n th carrier period is equated to be same as the area of the two-level PWM pulse. For the n th PWM pulse, the area of the two-level PWM pulse should be equal to the shaded area under the modulating signal as illustrated in Fig., 8

IIUM Engineering Journal, Vol. 6, No., 5 Vs Vs twa T s twa Vm sin( n Ts ) Ts (3) Solving (3), the PWM pulse width is given by, T s V m twa sin( n Ts ) (4) Vs Ts t wa M sin( nts ) (5) where, M is the index of modulation, M = V m/v s. Equation (5) gives the PWM pulse width for phase A. For phases B and C, the PWM pulse widths are, Ts t wb M sin( nts / 3) (6) Ts t wc M sin( nts 4 / 3) (7) Adding (5), (6) and (7) results, 3Ts t wa t wb twc (8) From (8), the PWM pulse width for phase C can be obtained as, 3T s t wc t wa twb (9). PWM Pulse Width in Sampled Domain For generating real time PWM waveforms for the three phase inverter using a digital hardware, the PWM pulse widths are transformed into sampled domain. Considering K samples in a carrier period T s, the sampling time T s is given by, T T s () s K If K a(n), K b(n), and K c(n) are the numbers of HIGH samples for the phases A, B, and C respectively in sampled domain, their magnitudes are given by, twa K K K a M sin( nts ) () T s t wb K K K b M sin( nts / 3) () T K c t s 3K wc K K (3) T s 3. IMPLEMENTATION SCHEME a b The PWM implementation scheme is shown in Fig.. The core processor is an AT89C5 microcontroller, where, the desired frequency/speed is set by an analogue potentiometer. An 8-bit ADC (ADC84) converts the frequency/speed setting into digital binary code that is given as input to port of AT89C5. 9

IIUM Engineering Journal, Vol. 6, No., 5 +5V Frequency P.6 Interrupt Pot 8-bit ADC P P. P Clock 8 8-bit binary counter 8 Ripple carry output AT89C5 Latch Scan g +5V P. Select Pulse width g 4 Start/Stop R P.7 P.3 Select Latch Scan Pulse width g 3 g 6 Latch 3 Scan g 5 P.4 P.5 Select 3 Pulse width ROM enable g Fig.. An AT89C5 microcontroller based scheme for three-phase PWM pattern generation using three ROM lookup tables and a scan counter. The microcontroller calculates the scan clock frequency and sets the corresponding RCAPL and RCAPH values for the onboard Timer. The Timer of AT89C5 is configured in clock generator mode that gives the programmed clock output at P.. The scan counter is clocked from P. and the ripple carry out from the scan counter is made to interrupt the microcontroller after every 56 counts that correspond to the total number samples in a carrier period. The PWM waveform pattern samples are sent to ROM lookup tables through port P. The PWM patterns for three phases are sent through the same port P using multiplexing and latch principle. For each phase there is a set of latch and ROM lookup table, so that they can generate the PWM patterns independently. 3. Frequency Setting The fundamental frequency of the PWM output patterns are dependent on the microcontroller clock frequency (f CPU), counter clock frequency (f CLK) and the number of carrier pulses per fundamental cycle (N ). Since the counter clock (f CLK) is derived from the microcontroller clock frequency (f CPU) by a divide by counter (Timer of the microcontroller), the output frequency (f) is given by f f CLK (4) N 56 3

IIUM Engineering Journal, Vol. 6, No., 5 f CLK f CPU 4 65536 DIVN Combining () and (), the DIVN value is given by f CPU (5) DIVN 65536 (6) 4 fn DIVN RCAPH floor (7) 56 RCAPL DIVN - RCAPH (8) 3. Integer Arithmetic Models for PWM Patterns The microcontroller does not have floating point computation support. Hence, it can not compute sine functions directly. Rather, it has to be calculated using tailor series expansion method that require huge computation time. To reduce the computation complexity, () and () are simplified having only integer manipulations. K K K K M K K a M sin( ) ( ) ( ) nts S n MS a n a K / (9) K M tag Sa K K K where, Sa sin( nt s ) and M tag M. For phase B, K M tag K b S b () K K K where, S b sin( nts / 3) and M tag M. The values of S a(n) and S b(n) are computed off line, rounded to integer numbers and stored in lookup table inside the program code of the AT89C5. The Mtag value is chosen from the ADC output that is always an integer. Hence, the computations of K a(n), K b(n) using (9) and () involves only integer arithmetic that can be done efficiently with AT89C5 in real time. 3.3 Real Time PWM Pattern Generation PWM patterns having 56 different duties are stored in the PWM ROMs as a lookup table. The microcontroller computes the PWM patterns on carrier cycle basis and the real time PWM patterns are generated in the ROM data bus using the following algorithm: Algorithm for PWM Pattern Generation Step. Set P.5 = to disable the PWM ROMs. Step. Initialize n =. Step 3. Read P and set f tag = P. Step 4. Choose N and f clock, set RCAPL and RCAPH. Step 5. Compute K a(n), K b(n) and K c(n). Step 6. Set P = K a(n) and P. = (K a(n) data to Latch ). 3

IIUM Engineering Journal, Vol. 6, No., 5 Step 7. Set P = K b(n) and P.3 = (K b(n) data to Latch ). Step 8. Set P = Kc(n) and P.4 = (Kc(n) data to Latch 3). Step 9. Wait for interrupt at P.6 and goto step if interrupt occurs, otherwise loop to Step. Enable the data ROMs by setting P.5 =. Step. Read the shut down status at P.7. Step. If P.7 =, disable the data ROMs (set P.5 = ) and goto step 6, else goto step. Step 3. Increment n, n = n+. Step 4. If n>n, set n =. Step 5. Goto step 3. Step 6. Halt operation. 3.4 Performance simulation The performances of the proposed PWM scheme are studied through simulation with a three phase voltage source inverter. The inverter is shown in Fig. 3 and drives a star connected inductive load with insulated neutral. The switching functions for phases A, B and C are S a, S b and S c respectively. The switching function and associated transistor status are shown in Table. Each switching function has two level statuses; either + or -, where, + drives the top transistor and - drives the bottom transistor of a leg of the inverter. Vs + Q Q3 S a A S b B S c Q5 C - Q4 Q6 Q i a i b i c v an R L Fig. 3: Three phase voltage source inverter connected to star connected R-L load with insulated neutral (Sa, Sb and Sc are two level switching functions having magnitudes + and -, for driving the associate top and bottom transistors in a leg). The PWM switching patterns for three phases and inverter output phase voltages are shown in Fig. 4 for supply voltage V s = 6V ( pu), modulation index M = at f = 5 Hz, and carrier frequency f s =. khz. The corresponding Fourier frequency spectrum of the PWM switching function (S a) and line to neutral (phase) voltage v an are shown in Fig. 5. The noticeable point is that although the fundamental frequency amplitude in S a is pu (equal to M), the fundamental phase voltage output is.5 pu, that confirms the analysis described earlier. The inverter output currents (three phases) and Fourier frequency spectrum are shown in Fig. 6 for an R-L load of ohms at.8 pf lagging. Due to low v bn R L n v cn R L 3

IIUM Engineering Journal, Vol. 6, No., 5 pass action in the output current, the harmonics die out in the current spectrum (Fig. 6) although they are noticeable in the phase voltage spectrum (Fig. 5). Table : Switching functions and transistor operating status for the three phase voltage source inverter. Switching function Switching status Transistor status S a (Leg a) + Q = ON Q 4 = OFF - Q = OFF Q4 = ON S b (Leg b) + Q 3 = ON Q 6 = OFF - Q 3 = OFF Q 6 = ON Sc (Leg c) + Q5 = ON Q = OFF - Q 5 = OFF Q = ON S a -.5..5. v a -.5..5. S b -.5..5. v b -.5..5. S c v c -.5..5. -.5..5. Fig. 4: PWM switching patterns at f = 5 Hz, f s =. khz, M = for the three phase legs of the inverter and the phase voltages for star connected load with insulated neutral. 33

IIUM Engineering Journal, Vol. 6, No., 5 (a) S a.8.6.4. 3 4 5 6 7 8 9 Frequency (xf) (b) v a.5 3 4 5 6 7 8 9 Frequency (xf) Fig. 5: Voltage spectrum of (a) switching function S a and (b) the corresponding phase voltage v a for the three phase inverter. (a) Current (A) Magnitude i a (A) -..4.6.8...4.6.8. (b) 3 3 4 5 6 7 8 9 Frequency (xf) Fig. 6: Inverter output currents (three phases, a, b and c) and Fourier frequency spectrum at f = 5 Hz, M =, fs =. khz, Vs = 6V, Z = ohm at.8 pf lagging. 34

IIUM Engineering Journal, Vol. 6, No., 5 4. CONCLUSIONS A simplified technique of implementing regular sampled sine PWM is presented. The simplification involves integer arithmetic only that can be implemented with a low cost microcontroller at moderate speed. The simulation results show no deterioration in performance, although computations are all transformed from floating point into integer arithmetic. The hardware implementation scheme is compact, employing a memory minimized real time PWM pattern generator having less burden on the microcontroller. Due to low cost and high performance operating characteristics, the proposed PWM scheme is suitable for household, commercial and industrial applications for efficient control of voltage source inverters. REFERENCES [] K. M. Rahman and M. Quamruzzaman, A new hybrid PWM scheme for voltage source inverters, in Proc. ICECE, Dhaka, Bangladesh, pp. 33-335, 6-8 December. [] S. R. Bowes, Novel real-time harmonic minimized PWM control for drives and static power converters, IEEE Trans. Power Electron., vol. 9, no. 3, pp. 56-6, May 994. [3] S. R. Bowes, Advanced regular sampled PWM control techniques for drives and static power converters, IEEE Trans. Ind. Electron., vol. 4, no. 4, pp. 367-373, August 995. [4] S. R. Bowes, Regular sampled harmonic elimination PWM control of inverter drives, IEEE Trans. Power Electron., vol., no. 5, pp. 5-53, September 995. [5] K. M. Rahman, PC controlled look-up table based PWM scheme for voltage source inverters and ac drives, in Proc. ICCIT 99, Dhaka, Bangladesh, pp. 84-88, 3-5 December 999. [6] K. M. Rahman, PC based regular sampled pulse width modulator for inverters and drives, in Proc. ICCIT 99, Dhaka, Bangladesh, pp. 89-93, 3-5 December 999. [7] K. M. Rahman, Analysis and implementation of PC based space vector PWM controller for VSI inverters and ac drives, in Proc. ICCIT, Dhaka, Bangladesh, pp. 49-54, 5-6 January. [8] K. M. Rahman, K. M. Z. Shams and A. H. M. Z. Alam, FPGA implementation of space vector PWM controller for three phase voltage source inverters, in Proc. ICCIT, Dhaka, Bangladesh, pp. 5459, 8-9 December. [9] S. R. Bowes and S. S. Grewal, Novel space-vector harmonic elimination inverter control, IEEE Trans. Ind. Applicat., vol. 36, no., pp. 549-557, March. [] Y. S. Lai and S. R. Bowes, A new suboptimal pulse-width modulation technique for per-phase modulation and space vector modulation, IEEE Trans. Energy Convert., vol., no. 4, pp. 3-36, December 997. 35