Speech Enhancement Using LPC Analysis-A Review

Similar documents
Different Approaches of Spectral Subtraction Method for Speech Enhancement

Enhancement of Speech in Noisy Conditions

Speech Enhancement Using Spectral Flatness Measure Based Spectral Subtraction

Different Approaches of Spectral Subtraction method for Enhancing the Speech Signal in Noisy Environments

Speech Enhancement: Reduction of Additive Noise in the Digital Processing of Speech

Speech Enhancement in Presence of Noise using Spectral Subtraction and Wiener Filter

Enhancement of Speech Communication Technology Performance Using Adaptive-Control Factor Based Spectral Subtraction Method

Speech Enhancement Techniques using Wiener Filter and Subspace Filter

Chapter 4 SPEECH ENHANCEMENT

MMSE STSA Based Techniques for Single channel Speech Enhancement Application Simit Shah 1, Roma Patel 2

Speech Signal Enhancement Techniques

Speech Enhancement Based On Spectral Subtraction For Speech Recognition System With Dpcm

Frequency Domain Implementation of Advanced Speech Enhancement System on TMS320C6713DSK

Perceptual Speech Enhancement Using Multi_band Spectral Attenuation Filter

Online Version Only. Book made by this file is ILLEGAL. 2. Mathematical Description

Adaptive Speech Enhancement Using Partial Differential Equations and Back Propagation Neural Networks

Frequency Domain Analysis for Noise Suppression Using Spectral Processing Methods for Degraded Speech Signal in Speech Enhancement

MODIFIED DCT BASED SPEECH ENHANCEMENT IN VEHICULAR ENVIRONMENTS

Speech Enhancement Based On Noise Reduction

SPEECH ENHANCEMENT USING A ROBUST KALMAN FILTER POST-PROCESSOR IN THE MODULATION DOMAIN. Yu Wang and Mike Brookes

Review on Speech Enhancement using Signal Subspace method

Quality Estimation of Alaryngeal Speech

NOISE ESTIMATION IN A SINGLE CHANNEL

Speech Enhancement for Nonstationary Noise Environments

Noise Estimation based on Standard Deviation and Sigmoid Function Using a Posteriori Signal to Noise Ratio in Nonstationary Noisy Environments

speech signal S(n). This involves a transformation of S(n) into another signal or a set of signals

Reduction of Musical Residual Noise Using Harmonic- Adapted-Median Filter

CHAPTER 3 SPEECH ENHANCEMENT ALGORITHMS

Speech Enhancement in Noisy Environment using Kalman Filter

Available online at ScienceDirect. Procedia Computer Science 54 (2015 )

Analysis of the SNR Estimator for Speech Enhancement Using a Cascaded Linear Model

Speech Signals Enhancement Using LPC Analysis. based on Inverse Fourier Methods

Speech Enhancement using Wiener filtering

Enhancement of Speech Signal by Adaptation of Scales and Thresholds of Bionic Wavelet Transform Coefficients

RECENTLY, there has been an increasing interest in noisy

Modulation Domain Spectral Subtraction for Speech Enhancement

Mel Spectrum Analysis of Speech Recognition using Single Microphone

Optimal Adaptive Filtering Technique for Tamil Speech Enhancement

GUI Based Performance Analysis of Speech Enhancement Techniques

Keywords Decomposition; Reconstruction; SNR; Speech signal; Super soft Thresholding.

EE482: Digital Signal Processing Applications

Estimation of Non-stationary Noise Power Spectrum using DWT

Effective post-processing for single-channel frequency-domain speech enhancement Weifeng Li a

Modified Kalman Filter-based Approach in Comparison with Traditional Speech Enhancement Algorithms from Adverse Noisy Environments

Chapter 3. Speech Enhancement and Detection Techniques: Transform Domain

Dominant Voiced Speech Segregation Using Onset Offset Detection and IBM Based Segmentation

A New Approach for Speech Enhancement Based On Singular Value Decomposition and Wavelet Transform

Speech Enhancement Using Beamforming Dr. G. Ramesh Babu 1, D. Lavanya 2, B. Yamuna 2, H. Divya 2, B. Shiva Kumar 2, B.

EC 6501 DIGITAL COMMUNICATION UNIT - II PART A

SPEECH ENHANCEMENT WITH SIGNAL SUBSPACE FILTER BASED ON PERCEPTUAL POST FILTERING

Robust Voice Activity Detection Based on Discrete Wavelet. Transform

PERFORMANCE ANALYSIS OF SPEECH SIGNAL ENHANCEMENT TECHNIQUES FOR NOISY TAMIL SPEECH RECOGNITION

Audio Restoration Based on DSP Tools

Enhancement of Speech Signal Based on Improved Minima Controlled Recursive Averaging and Independent Component Analysis

REAL-TIME BROADBAND NOISE REDUCTION

Audio Signal Compression using DCT and LPC Techniques

Robust Low-Resource Sound Localization in Correlated Noise

Acoustic Echo Cancellation using LMS Algorithm

A Parametric Model for Spectral Sound Synthesis of Musical Sounds

Analysis of LMS Algorithm in Wavelet Domain

Available online at ScienceDirect. Anugerah Firdauzi*, Kiki Wirianto, Muhammad Arijal, Trio Adiono

Adaptive Noise Reduction of Speech. Signals. Wenqing Jiang and Henrique Malvar. July Technical Report MSR-TR Microsoft Research

Performance Analysiss of Speech Enhancement Algorithm for Robust Speech Recognition System

Speech Synthesis using Mel-Cepstral Coefficient Feature

Modulator Domain Adaptive Gain Equalizer for Speech Enhancement

ANALYSIS OF VARIOUS SPEECH ENHANCEMENT METHODS

Spectral estimation using higher-lag autocorrelation coefficients with applications to speech recognition

Adaptive Noise Reduction Algorithm for Speech Enhancement

Comparative Performance Analysis of Speech Enhancement Methods

Speech Compression for Better Audibility Using Wavelet Transformation with Adaptive Kalman Filtering

Application of Affine Projection Algorithm in Adaptive Noise Cancellation

Performance Evaluation of Noise Estimation Techniques for Blind Source Separation in Non Stationary Noise Environment

ScienceDirect. Unsupervised Speech Segregation Using Pitch Information and Time Frequency Masking

Bandwidth Extension for Speech Enhancement

Auditory modelling for speech processing in the perceptual domain

Improving Channel Estimation in OFDM System Using Time Domain Channel Estimation for Time Correlated Rayleigh Fading Channel Model

EXTRACTING a desired speech signal from noisy speech

Evaluation of clipping-noise suppression of stationary-noisy speech based on spectral compensation

THERE are numerous areas where it is necessary to enhance

ROBUST PITCH TRACKING USING LINEAR REGRESSION OF THE PHASE

Denoising Of Speech Signal By Classification Into Voiced, Unvoiced And Silence Region

Classification of ships using autocorrelation technique for feature extraction of the underwater acoustic noise

Spectral analysis of seismic signals using Burg algorithm V. Ravi Teja 1, U. Rakesh 2, S. Koteswara Rao 3, V. Lakshmi Bharathi 4

Speech Enhancement in a Noisy Environment Using Sub-Band Processing

[Rao* et al., 5(8): August, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

Advances in Applied and Pure Mathematics

Speech Enhancement Based on Non-stationary Noise-driven Geometric Spectral Subtraction and Phase Spectrum Compensation

Linguistic Phonetics. Spectral Analysis

Performance Analysis of gradient decent adaptive filters for noise cancellation in Signal Processing

AN ANALYSIS OF SPEECH RECOGNITION PERFORMANCE BASED UPON NETWORK LAYERS AND TRANSFER FUNCTIONS

SPEECH communication under noisy conditions is difficult

Adaptive Noise Canceling for Speech Signals

Wavelet Speech Enhancement based on the Teager Energy Operator

Implementation of SYMLET Wavelets to Removal of Gaussian Additive Noise from Speech Signal

Analysis Modification synthesis based Optimized Modulation Spectral Subtraction for speech enhancement

Performance Analysis of MFCC and LPCC Techniques in Automatic Speech Recognition

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS: The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or

IMPROVED SPEECH QUALITY FOR VMR - WB SPEECH CODING USING EFFICIENT NOISE ESTIMATION ALGORITHM

Voice Activity Detection for Speech Enhancement Applications

Monophony/Polyphony Classification System using Fourier of Fourier Transform

Transcription:

Speech Enhancement Using LPC Analysis-A Review Rajdeep Kaur 1, Jyoti Gupta 2 1 M.Tech student, M.M Engineering College, 2 Asstt. Prof. ECE Deptt. M.M Engineering College, 1&2 Mullana(Ambala), Haryana, INDIA ABSTRACT Main objective of Speech Enhancement is to improve the perceptual aspects of speech such as overall quality, intelligibility and degree of listener fatigue. Among the all available methods the spectral subtraction algorithm is the historically one of the first algorithm, proposed for background noise reduction. The greatest asset of Spectral Subtraction Algorithm lies in its simplicity. This paper present the review of basic spectral subtraction Algorithm, a short coming of basic spectral subtraction Algorithm, different modified approaches of Spectral Subtraction Algorithms such as Power Spectral Subtraction, Multiband Spectral Subtraction, Inverse Spectral Subtraction methods.as the spectral subtraction produces the Residual noise,musical noise,linear Predictive Analysis method is used to enhance the Speech. Keywords: Speech Enhancement, Spectral Subtraction,Residual Noise, Musical Noise, Linear Predictive Analysis. 1. INTRODUCTION Speech signals from the uncontrolled environment may contain degradation components along with required speech components like background noise, speech from other speakers etc [1].The occurrence of background noise in speech significantly decreases the intelligibility and the quality of the signal. Reducing or suppressing such background noise and improving the perceptual quality and intelligibility of a speech without disturbing the speech signal quality is a crucial task[2].the aim of speech enhancement is to improve the quality and intelligibility of degraded speech signal[1,2]. Speech enhancement systems can be classified in a number of ways based on the criteria such as number of input channels, time domain or frequency domain, adaptive or non adaptive and some additional constraints. During the last decades, various approaches such as spectral subtraction method, subspace methods, Hidden Markov Modelling, wavelet-based methods etc., have been proposed to solve this problem. Among these, spectral subtraction one of the earliest and widely used enhancement methods for all types of noise, has been chosen for its simplicity of implementation and low computational load [2]. Base Spectral Subtraction method is simple and efficient method but it adds a new noise that is musical noise. To reduce this noise, Multi band spectral subtraction is proposed. The problem of correlation arises in multi band spectral subtraction method. To control this problem, Inverse Fourier Transform method is used. Auto-correlation method is used in Linear Predictive Coding Analysis which overcomes the problem of correlation and noise estimation in an effective manner. Section II presents Speech Enhancement. Section III presents Basic Spectral Subtraction Method and its various types, Section IV presents Linear Predictive Analysis Method. Section V presents the Experimental Results. 2. SPEECH ENHANCEMENT Speech enhancement aims at improving the performance of speech communication systems in noisy environments.the quality of the enhanced signal is an subjective measures provides the clarity, distorted nature, and the level of residual noise in that signal. The intelligibility of the enhanced signal is an objective measure which provides the percentage of words that could be correctly identified by listeners[14].there are various speech enhancement methods for reduction of noise and to improve the quality and intelligibility of noise. The block diagram of speech enhancement is shown in Volume 2, Issue 5, May 2013 Page 209

figure 1[3]. The noisy speech signal is first segmented and then windowed by hamming window. Then DFT of the segmented and noisy speech signal is taken and given to the estimation block to estimate the noise during speech pause and find the noise spectrum. If the noise spectrum is too low, unwanted noise residual will be audible, if the noise estimate too high, speech will be distorted. In the figure 1 the speech enhancement block enhance the noisy speech spectrum to generate the clean speech spectrum and then we take inverse Fast Fourier Transform (IFFT) to get the enhanced speech. Figure 1: Block Diagram of Speech Enhancement 3. SPECTRAL SUBTRACTION METHOD The spectral subtraction algorithm[1,2,3] is historically one of the first algorithms proposed for noise reduction. The spectral subtraction method as proposed by Boll [4] is a popular noise reduction technique due to its simple underlying concept and its effectiveness in enhancing speech degraded by additive noise.the goal of spectral subtraction is to suppress the noise from the degraded signal[2].it is based on the principle that one can estimate and update the noise spectrum when speech signal is not present and subtract it from the noisy speech signal to obtain clean speech signal spectrum[4].it is assumed that the noise is additive and its spectrum doesn t change with time.it means noise is stationary or slowly varying with time[1].the Block Diagram of Spectral Subtraction Method is shown in figure (2). Figure 2: Block Diagram of Spectral Subtraction Subtraction The enhanced speech is obtained by subtracting the estimated spectral components of the noise from the spectrum of the input noisy signal.the noise spectrum can be estimated, and updated, during the periods when the signal is absent or when only noise is present[5]. These algorithms attempt to be an omnipresent solution for all types of noise environments. However, the serious drawback of this method is that the enhanced speech is accompanied by unpleasant musical noise artifact which is characterized by tones with random frequencies [2]. The spectrum of real-world noise is not flat. Thus, the noise signal does not affect the speech signal uniformly over the whole spectrum. Some frequencies are affected more adversely than others [6].To reduce such types of distortions,multi-band approach is proposed. Volume 2, Issue 5, May 2013 Page 210

3.1. MULTI BAND SPECTRAL SUBTRACTION In Multi-band Spectral Subtraction[3],the speech spectrum divided into N oversampling bands and spectral subtraction is performed independently in each band. This method performed in 4 stages. In the first stage, the signal is windowed and FFT used to estimate the magnitude spectrum. In the second stage to calculate the over subtraction factor, we divide the noise and speech into different frequency band. The third stage includes processing the individual frequency bands by subtracting the corresponding noise spectrum from the noisy speech spectrum and in the last stage the modified frequency bands are recombined and the time signal is obtained by using the noisy phase information and taking the IFFT. Let y(n) is the noisy speech signal,s(n) is the clean speech signal and d(n) is the additive noise signal.it can be written in mathematical form as : y(n) = s(n) + d(n) (1) The estimate of the clean speech spectrum in the ith band is obtained by equation (2) Where k are the discrete frequencies, are the estimated noise power spectrum during speech absent, αi is the over subtraction factor of the ith band and δi is the additional band[3]. This implementation assumes that the noise affects the speech spectrum uniformly and the over-subtraction factor α subtracts an over-estimate of the noise over the whole spectrum.that is not the case with real-world noise.the segmental SNR is estimated for (linearly-spaced) frequency bands of speech corrupted by speech-shaped noise.the segmental SNR of the high frequency band was significantly lower than the SNR of the low frequency band,by as much as 15 db in some cases.the use of the oversubtraction factor αi provides a degree of control over the noise subtraction level in each band, the use of multiple frequency bands and the use of theδi weights provide an additional degree of control within each band. The negative values in the enhanced spectrum were floored to the noisy spectrum[6].multi-band Spectral Subtraction Method is used to reduce the Musical noise that is produced by Base Spectral Subtraction Method[7].The block diagram of Multi-Band Spectral Subtraction Method is shown in figure (3). (2) Figure 3: Block Diagram of Multi-band Spectral Subtraction Method 3.2. INVERSE FOURIER SPECTRAL SUBTRACTION METHOD In the spectral subtraction method,it is assumed that the noise and the signal are uncorrelated[11]. This condition can be met by applying the autocorrelation function to both sides of equation (1). In this method, the estimated clean speech signal is calculated according to fig(c) Volume 2, Issue 5, May 2013 Page 211

Figure 4: Block diagram of Inverse Fourier Subtraction The inverse Fourier spectral subtraction method is the same as the spectral subtraction method, but here, the subtraction, is applied to the inverse Fourier transform. In this method, the problem of the correlation between the signal and noise is solved to some extent.in the inverse Fourier spectral subtraction method[7], subtraction is applied to the inverse Fourier transform of the magnitude of the Fourier transform of the corrupted signal and the estimated noise signal. It can be evidently said that in the inverse Fourier subtraction method, the subtraction is performed in the time domain in which the uncorrelation between the signal and noise has less accuracy.usually noise is added to the signal in the time domain where it's not certainly uncorrelated, but addition in the frequency domain needs uncorrelation[11]. 4. LINEAR PREDICTIVE CODING (LPC) Linear predictive analysis is one of the most powerful and widely used speech analysis techniques. The importance of this method lies both in its ability to provide accurate estimates of the speech parameters and in its relative speed of computation.linear predictive coding is a tool used mostly in audio signal processing and speech processing for representing the spectral envelope of digital signal of speech in compressed form,using the information of a linear predictive model. It is one of the most useful methods for encoding good quality speech at a low bit rate and provides extremely accurate estimates of speech parameters. LPC analyzes the speech signal by estimating the formants, removing their effects from the speech signal, and estimating the intensity and frequency of the remaining buzz. The process of removing the formants is called inverse filtering, and the remaining signal after the subtraction of the filtered modelled signal is called the residue. LPC is used for data reduction applications in speech processing[10].because speech signals vary with time, this process is done on short chunks of the speech signal, which are called frames; generally 30 to 50 frames per second give intelligible speech with good compression. The LPC is one of the strongest tools in speech signal processing. The idea of this analysis is that each sample of the speech sign can be expressed as a linear equation of previous inputs and outputs[7,11].the transform function of the system can be achieved by applying the Z transform. A all pole model is very good estimation for the transform function. The important point in computing the LPC is that these coefficients can be directly driven from the speech signal for this reason and because of the dependence of the speech signal on times first, windowing is done the signal then the LPC coefficients, are calculated in short frames H(z) = = (3) 5. EXPERIMENTAL RESULTS The Spectral Subtraction algorithms are evaluated using both objective measures such as SNR and MSE and then subjective listening tests.the intelligibility and speech quality measures reflect the true performance of speech enhancement.results from the literature were mentioned as follows. Anuradha R. Fukane et. al. [1] describes that various spectral subtraction method in which the subtraction of noise spectrum from the noisy signal spectrum introduce a distortion in signal known as musical noise. The SNR of the noisy speech play an important role if SNR is less than 0dB no algorithm performed well. Female speech is less affected by noise. So the spectral subtraction algorithms are suitable for hearing aids in different noisy environments. Volume 2, Issue 5, May 2013 Page 212

Vimala.C et.al[2] evaluated that at 0 db the two signals are of equal strength and negative values are associated with loss of intelligibility due to masking whereas positive values are usually associated with better intelligibility. It is observed from the experiments that these algorithms offer better speech quality but less speech intelligibility since it produces negative SNR values. Kamath S. et. al. [4] proposed a new approach to reduce the residual noise. In this algorithm the spectrum is divided into N overlapping bands spectral subtraction performed independently in each bands. The spectral subtraction method is a well-known noise reduction technique for speech enhancement. However, the noise in real world is mostly colored and this noise does not affect the speech signal uniformly over the entire spectrum. This method outperforms the standard power spectral subtraction method to improve the speech quality and largely reduced musical noise. N.Esfandian et.al[5] shows the comparison of LPC based methods with spectral subtraction methods on the basis of SNR improvement.the results are shown in Table[1]. Anuprita P. Pawar et. al. [6] proposes the review of various single channel speech enhancement methods in spectral domain. The authors say that the noise can have major impact on quality of the speech signal. If the noise is too low then the unwanted noise will be audible if it is too high then the speech will be distorted. It is observed that ESS method is suitable for noise reduction because it works in time domain and it is faster than frequency based method. The main advantage by using this NSS technique is that it does not require any voiced detection process by which performance of the system decreased. Table 1 : Test Results without LPC Measurement type : signal to noise ratio (db) Clean signal:sampled clean signal from TIMIT database Added noise to clean signal : White Gaussian Noise Input SNR Enhancement Method 5 db 10 db 15 db PSS 10.122 12.4210 13.8862 IFSS 8.3520 13.4906 17.6932 MBSS 15.6857 15.3443 15.5970 Table 2 : Test Results with LPC Measurement type : signal to noise ratio (db) Clean signal : sampled clean speech signal from TIMIT database Added noise to clean signal : White Gaussian Noise Input SNR Enhancement Method 5 db 10 db 15 db LPSS 7.6068 12.4734 17.1987 LPIFSS 9.7938 14.8062 18.7845 LMBSS 15.7268 15.6472 15.7837 N. Kang and Fransen [7] evaluated the quality of noise processed by the SS algorithm and then fed to a 2400 bps LPC recorder. Here SS algorithm was used as a pre-processor to reduce the input noise level.the Diagnostic Acceptability Volume 2, Issue 5, May 2013 Page 213

Measure (DAM) test was used to evaluate the speech quality of ten sets of noisy sentences, recorded actual military platforms containing helicopter, tank, and jeep noise results indicated that SS algorithm improved the quality of speech.the largest improvement in speech quality was noted for relatively stationary noise sources.the NSS algorithm was successfully used in as a pre-processor to enhance the performance of speech recognition systems in noisy environment. 6. CONCLUSION In this paper,a method for signal speech enhancement is presented based on inverse fourier transform spectral subtraction. Spectral subtraction method is the basic method used for enhancing the speech but it has some severe drawbacks of introducing residual noise,musical noise.lpc Analysis is used for speech enhancement, in which filters are introduced and by applying noise to it's input, we get speech signal at it output.lpc analysis improves the SNR also as compared to other methods. REFERENCES [1.] Anuradha R. Fukane, Shashikant L. Sahare Different Approaches of Spectral Subtraction method for Enhancing the Speech Signal in Noisy Environments International Journal of Scientific & Engineering Research, Volume 2, 1 ISSN 2229-5518,Issue 5, May-2011. [2.] Vimala.C, V.Radha A Family of Spectral Subtraction Algorithms for Tamil Speech Enhancement International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-2, Issue-1, March 2012. [3.] GANGA PRASAD, SURENDER A Review of Different Approaches of Spectral Subtraction Algorithms for Speech Enhancement Department of Electronics, Madhav Institute of Technology & Science Vol 01, 57-64,. Issue 02 April 2013 [4.] S.F. Boll, Suppression of acoustic noise in speech using spectral subtraction, IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 27, No. 2, pp. 113-120, 1979 [5.] Ekaterina Verteletskaya, Boris Simak Noise Reduction Based on Modified Spectral Subtraction Method IAENG International Journal of Computer Science, 38:1, IJCS_38_1_10. [6.] Sunil D. Kamath and Philipos C. Loizou A MULTI-BAND SPECTRAL SUBTRACTION METHOD FOR ENHANCING SPEECH CORRUPTED BY COLORED NOISE Department of Electrical Engineering University of Texas at Dallas. [7.] N. Esfandian1 and E. Nadernejad1,2 Quality Improvement of Speech Signal Using LPC Analysis Adv. Studies Theor. Phys., Vol. 2, no. 14, 673 685, 2008. [8.] Anuprita P. Pawar, Kirtimalini B. Choudhari and Madhuri A Joshi Review of Single Channel Speech Enhancement Methods in Spectral Domain International Journal of Applied Engineering Research, ISSN 0973-4562 Vol. 7 No.11 2012. [9.] Phillips C Loizou Speech enhancement theory and practice 1st ed. Boca Raton, FL.: CRC,. Releases Taylor & Francis, 2007. [10.] M. Thirumarai Chellapandi and P. Kabilan Evaluation of Speech Enhancement in Noisy Conditions using a Spectral subtraction and Linear prediction combination Department of Computer Science, Madurai Kamaraj University College, India. [11.] Mostafa Hydari, Mohammad Reza Karami Speech Signals Enhancement Using LPC Analysis based on Inverse Fourier Methods Contemporary Engineering Sciences, Vol. 2, no. 1, 1 15,2009,. [12.] P. M. Crozier, B. M. G. Cheetham, C. Holt and E. Munday Speech Enhancement employing Spectral Subtraction and Linear Predictive Analysis ELECTRONICS LETTERS Vol. 29 No. 12,10th June 1993. [13.] Berouti,M. Schwartz,R. and Makhoul,J.,"Enhancement of Speech Corrupted by Acoustic Noise", pp208-211 Proc ICASSP 1979, [14.] Yariv Ephraim, Hanoch Lev-Ari and William J.J. Roberts A Brief Survey of Speech Enhancement IEEE Sig. Proc. Let., vol. 10,pp. 104-106, April 2003 s. [15.] Alan O Cinneide, David Dorran and Mikel Gainza, Linear prediction-the technique, ITS solution and Application to Speech, Dublin Institute of Technology, Internal Technical Report, 2008. [16.] M.r. Sambur, N.s. Jayant LPC analysis/synthesis from speech inputs containing guantizing noise or additive white noise, IEEE Trans. Acoust. Speech and signal process. ASSP-24, 6, pp:488-494,dec.1976s. [17.] J. Tierney A study of LPC analysis of speech in additive noise, IEEE trans.acoust. Speech and signal process,assp-28,4, pp:389-379,aug.1980. Volume 2, Issue 5, May 2013 Page 214