HPIV using Polarization Multiplexing Holography in Bacteriorhodopsin (br)

Similar documents
Bias errors in PIV: the pixel locking effect revisited.

Confocal Imaging Through Scattering Media with a Volume Holographic Filter

Parallel Digital Holography Three-Dimensional Image Measurement Technique for Moving Cells

plasmonic nanoblock pair

Design of a digital holographic interferometer for the. ZaP Flow Z-Pinch

Exposure schedule for multiplexing holograms in photopolymer films

NEW LASER ULTRASONIC INTERFEROMETER FOR INDUSTRIAL APPLICATIONS B.Pouet and S.Breugnot Bossa Nova Technologies; Venice, CA, USA

SUPPLEMENTARY INFORMATION

Particles Depth Detection using In-Line Digital Holography Configuration

EE119 Introduction to Optical Engineering Spring 2003 Final Exam. Name:

LOS 1 LASER OPTICS SET

USING PIV ON THE SPLASH WATER IN A PELTON TURBINE

Shaping light in microscopy:

4-2 Image Storage Techniques using Photorefractive

Supplementary Figure 1. Effect of the spacer thickness on the resonance properties of the gold and silver metasurface layers.

Gerhard K. Ackermann and Jurgen Eichler. Holography. A Practical Approach BICENTENNIAL. WILEY-VCH Verlag GmbH & Co. KGaA

Study of self-interference incoherent digital holography for the application of retinal imaging

Ultra-stable flashlamp-pumped laser *

Will contain image distance after raytrace Will contain image height after raytrace

Astigmatism Particle Tracking Velocimetry for Macroscopic Flows

Holography as a tool for advanced learning of optics and photonics

A novel tunable diode laser using volume holographic gratings

In-line digital holographic interferometry

Particle Image Velocimetry

Introduction course in particle image velocimetry

The Hong Kong University of Science and Technology Final Year Project presentation 2007

R.B.V.R.R. WOMEN S COLLEGE (AUTONOMOUS) Narayanaguda, Hyderabad.

Three-dimensional quantitative phase measurement by Commonpath Digital Holographic Microscopy

SENSOR+TEST Conference SENSOR 2009 Proceedings II

Measurements of Droplets Spatial Distribution in Spray by Combining Focus and Defocus Images

Vixar High Power Array Technology

RESOLUTION LIMITS OF IN-LINE HOLOGRAPHIC IMAGING SYSTEMS. Joseph Withers. A senior thesis submitted to the faculty of

Laser Speckle Reducer LSR-3000 Series

G. D. Martin, J. R. Castrejon-Pita and I. M. Hutchings, in Proc 27th Int. Conf. on Digital Printing Technologies, NIP27, Minneapolis, MN, USA, 2011

Lab Report 3: Speckle Interferometry LIN PEI-YING, BAIG JOVERIA

Radial Polarization Converter With LC Driver USER MANUAL

Testing Aspheric Lenses: New Approaches

Department of Mechanical and Aerospace Engineering, Princeton University Department of Astrophysical Sciences, Princeton University ABSTRACT

Transmitting Light: Fiber-optic and Free-space Communications Holography

Measurement of the Modulation Transfer Function (MTF) of a camera lens. Laboratoire d Enseignement Expérimental (LEnsE)

Supplementary Figure 1. GO thin film thickness characterization. The thickness of the prepared GO thin

PhD Thesis. Balázs Gombköt. New possibilities of comparative displacement measurement in coherent optical metrology

Single-photon excitation of morphology dependent resonance

3B SCIENTIFIC PHYSICS

The range of applications which can potentially take advantage of CGH is very wide. Some of the

EE119 Introduction to Optical Engineering Spring 2002 Final Exam. Name:

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy

ECEN. Spectroscopy. Lab 8. copy. constituents HOMEWORK PR. Figure. 1. Layout of. of the

Supporting Information

Exp No.(8) Fourier optics Optical filtering

Physics 431 Final Exam Examples (3:00-5:00 pm 12/16/2009) TIME ALLOTTED: 120 MINUTES Name: Signature:

High power VCSEL array pumped Q-switched Nd:YAG lasers

Optical Coherence: Recreation of the Experiment of Thompson and Wolf

Holography. Casey Soileau Physics 173 Professor David Kleinfeld UCSD Spring 2011 June 9 th, 2011

Observational Astronomy

Εισαγωγική στην Οπτική Απεικόνιση

Contouring aspheric surfaces using two-wavelength phase-shifting interferometry

3B SCIENTIFIC PHYSICS

Supplementary Information. Stochastic Optical Reconstruction Microscopy Imaging of Microtubule Arrays in Intact Arabidopsis thaliana Seedling Roots

Lithography. 3 rd. lecture: introduction. Prof. Yosi Shacham-Diamand. Fall 2004

Optics and Lasers. Matt Young. Including Fibers and Optical Waveguides

Optical Components for Laser Applications. Günter Toesko - Laserseminar BLZ im Dezember

Instructions for the Experiment

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5

The below identified patent application is available for licensing. Requests for information should be addressed to:

3D light microscopy techniques

Optical Signal Processing

Use of Computer Generated Holograms for Testing Aspheric Optics

LOPUT Laser: A novel concept to realize single longitudinal mode laser

AgilOptics mirrors increase coupling efficiency into a 4 µm diameter fiber by 750%.

EE119 Introduction to Optical Engineering Fall 2009 Final Exam. Name:

KNIFE-EDGE RIGHT-ANGLE PRISM MIRRORS

Polarization Experiments Using Jones Calculus

On-line spectrometer for FEL radiation at

Department of Electrical Engineering and Computer Science

Criteria for Optical Systems: Optical Path Difference How do we determine the quality of a lens system? Several criteria used in optical design

Very short introduction to light microscopy and digital imaging

Experimental demonstration of polarization-assisted transverse and axial optical superresolution

Testing Aspherics Using Two-Wavelength Holography

Digital Photographic Imaging Using MOEMS

Large scale rapid access holographic memory. Geoffrey W. Burr, Xin An, Fai H. Mokt, and Demetri Psaltis. Department of Electrical Engineering

Acoustic resolution. photoacoustic Doppler velocimetry. in blood-mimicking fluids. Supplementary Information

Pulse energy vs. Repetition rate

Femtosecond laser microfabrication in. Prof. Dr. Cleber R. Mendonca

Dynamic beam shaping with programmable diffractive optics

Kit for building your own THz Time-Domain Spectrometer

COTTON FIBER QUALITY MEASUREMENT USING FRAUNHOFER DIFFRACTION

Compensation of hologram distortion by controlling defocus component in reference beam wavefront for angle multiplexed holograms

7 CHAPTER 7: REFRACTIVE INDEX MEASUREMENTS WITH COMMON PATH PHASE SENSITIVE FDOCT SETUP

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77. Table of Contents 1

Pixel-remapping waveguide addition to an internally sensed optical phased array

Supplementary Figure S1: Schematic view of the confocal laser scanning STED microscope used for STED-RICS. For a detailed description of our

Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region

TSBB09 Image Sensors 2018-HT2. Image Formation Part 1

EARLY DEVELOPMENT IN SYNTHETIC APERTURE LIDAR SENSING FOR ON-DEMAND HIGH RESOLUTION IMAGING

The diffraction of light

Title: Laser marking with graded contrast micro crack inside transparent material using UV ns pulse

Stereoscopic Hologram

An Optical Characteristic Testing System for the Infrared Fiber in a Transmission Bandwidth 9-11μm

Simple interferometric fringe stabilization by CCD-based feedback control

Transcription:

HPIV using Multiplexing Holography in Bacteriorhodopsin (br) by VSSChan (1),WDKoek (2),DHBarnhart (3),CPoelma (1),TAOoms (1), N Bhattacharya (2),JJMBraat (2) and J Westerweel (1) (1) Laboratory for Aero- and Hydrodynamics, Delft University of Technology, Leeghwaterstraat 21, 2628 CA, Delft, The Netherlands (2) Optics Research Group, Delft University of Technology, Lorentzweg 1, 2628 CJ, Delft, The Netherlands (3) Department of Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2983, USA E-mail (1) : v.chan@wbmt.tudelft.nl ABSTRACT This paper demonstrates the use of bacteriorhodopsin (br) as the holographic recording medium for a holographic particle image velocimetry (HPIV) system. Using an off-axis reference beam and forward-scattered holographic geometry, dualexposure particle images in a fluid flow have been recorded successfully onto the br film. Photo-induced anisotropy in br was used to multiplex two polarization holograms at the same location of the holographic film. The transmission holographic recording geometry has been simplified, because polarization multiplexing allows two common beam paths to be used for the two pairs of object and reference waves, respectively. Furthermore, we have also demonstrated that, with a sequential holographic read-out method, the two recorded holograms can be retrieved independently during the holographic reconstruction. This system allows directional ambiguity to be removed in the HPIV flow data (see figure A). Figure A: Extracted HPIV vectors, the jet is flowing from top to bottom and towards the observer.

1. INTRODUCTION Recently, in HPIV, there is a shift of emphasis from traditional holographic recording using silver-halide based films (Hinsch 2002, Barnhart et al 2002a, Herrmann and Hinsch 2004) to direct digital recording of holograms on CCD (Meng et al 2004, Coupland 2004, Ooms et al 2004). Due to the limited size of a CCD pixel (typical size of 7µm), direct registration of a hologram on a CCD array requires a recording geometry of a low numerical aperture (NA) in-line transmission configuration. This imposes a limit on the Mie-scattering angle of no more than a few degrees (Meng et al 2004, Ooms et al 2004). Moreover, the limited serial data transfer rate (typically = 20 MHz) of a CCD chip hinders the development of ultra high resolution sensor large format detectors (giga-pixels camera) which could offer high spatial resolution digital holographic recording. A CMOS sensor that offers parallel transfer rate may eventually overcome this problem. However, at the meantime, br still offers one of the best solutions before this current bottleneck can be overcome. Barnhart et al (2002b) realized the potential of applying br for holographic particle image velocimetry (HPIV), and subsequently pointed out that a centimeter-square area of br film has the same information capacity for several hundred state-of-the-art CCD cameras. Barnhart et al (2004) discussed the advantages and limitations of using br as a recording medium for HPIV Bacteriorhodopsin (br) is a photochromic protein which has been optimized by nature for millions of years. br is found in two dimensional crystalline patches in the cell membrane of the Halobacterium Salinarum. Utilizing photosynthesis, the bacterium uses br to convert light directly into chemical energy (Oesterhelt and Stoeckenius 1971). Specially fabricated and genetically modified br films offer spatially resolvable optical resolution of the order of several thousand-line pairs per millimeter (Hampp 2000). An optical data storage material that requires no processing, no unwanted optical shrinkage with the recorded data, and with read and write cycles over millions of times without degradation of the film quality, quickly attracts interest from scientists and engineers. Shown in figure 1 is a simplified two state photo-cycle of br. Since there is a shift of more than 150 nm between the absorption spectra of the B and the M state, as well as a change in the index of refraction, information can be stored in a br film by converting a modulated recording intensity into a modulation of the B and M populations. After the information has been recorded (in the form of a hologram), molecules in the M state will eventually fall back to the B state due to the thermal transitions. This obviously results in a loss of modulation, and therefore a loss in the reconstructed signal strength, and is referred to as thermal erasure. When reconstructing the hologram, absorption will cause some br molecules to transit from the B to the M state. This loss of modulation is referred to as photo-induced erasure, not to be confused with the intentional optical erasure which is done to prepare the film for a new recording (410 nm) - see figure 1. Because of the wide absorption band of the B state, that is ranging approximately from 500nm to 640 nm (see figure 2), commercially available high power pulsed frequency-doubled Nd:YAG lasers (532 nm) can be used for recording holograms in br. Optical erasure (410nm) B State (570nm) Thermal decay M State (410nm) Optical recording (532nm) absorbance (arbitary units) 2 1 410nm Nd:YAG (532nm) M state 570nm B state HeNe (633nm) 400 450 500 550 600 650 700 Wavelength (nm) Figure 1: Simplified two-state photo-cycle of br (After Hampp 2000). Figure 2: Absorption spectra of the B and M states of br (After Hampp 2000). As has been discussed in Chan et al (2004), various multiplexing methods can be used to record multiple holograms onto a same br film. multiplexing by photo-induced anisotropy in br offers the possibility in removing directional ambiguity in the HPIV data (Koek et al 2004).

Water level Water / particles injector br film Scattered waves Beam dump Expanded laser beam Illuminated particles Sectional view of water tank Collimated reference beam Reference wave Figure 3: Schematic of recording a hologram on br using forward scattering on off axis geometry with a small beam dump. 1/2λ retardation plate Mechanical shutter Mirror Twin-cavity seed-injection double pulsed Nd:YAG laser High power Glan polarizer beam splitter cube Pockels cell 1 & 2 switches the polarization state of reference and object beams between two pulses orthogonal Mirror Pockels cell 1 1/4λ wave plate Pockels cell 2 Mirror Water Tank Reference wave Injection nozzle Scattered wave br film Figure 4: Schematic of the recording set up for the HPIV experiment. 2. EXPERIMENTAL SET UP FOR HOLOGRAPHIC RECORDING As a proof of principle, an experiment was performed on a water jet seeded with 100 µm solid glass sphere. This jet was injected into a clear tank of water through a syringe nozzle. The nozzle has an exit diameter (D) of 2 mm. Since the width of the tank was equal to 50 mm, the wall boundaries of the tank should have little influence on the near field of the flow. The central position of the measurement control volume was located at 12 diameters downstream from the nozzle exit (i.e. X/D=12), which led to a measurement window that was ranging from X/D=8 to X/D=16 along the streamwise direction. It must be stressed that the glass spheres used in this study were heavier than water. The glass spheres are not ideal tracer particles and that their presence may influence the fluid flow, however, they acted as micro-ball lenses that focused the scattered light towards the holographic plate, resulting in a high contrast hologram to be recorded. In order to maximize the signal to noise ratio of the hologram still further, we have adopted a forward scattering geometry with a high numerical aperture (NA) configuration. This led to the recording of diffraction-limited particle images (Chan et al 2004). To protect the film from permanent optical bleaching (or damage) by the high energy object laser beam, a beam stop was incorporated on the surface of the film. The specification of the br film used in this study is listed in table 1.

Table 1. Specification of the used br film made by MIB GmbH ( http://www.mib-biotech.de/) Film Type Film Size Film Thickness Initial Optical Density Refractive Index Thermal Relaxation Time D96N 100 x 100 mm 2 30 µm 1.5 (570 nm) 1.45-1.55 40-80 s In the current set up as shown in figures 3 and 4, a small expanded laser beam from a dual-cavity seed-injection pulsed Nd:YAG (532 nm) with output energy of 300 mj per pulse with pulse duration of 7 ns, was used to illuminate the flow volume twice with a pulse separation time of 230 µs. The object and reference beam fluences were adjusted to be equalto80mj/cm 2 (expanded beam diameter = 9 mm) and 5 mj/cm 2 (expanded beam diameter onto the br film = 80 mm) respectively, where it is noted that only a small fraction of the object light scatters onto the br film. The ratio of the object and reference beam power can be adjusted using a 1/2λ retardation wave plate and a Glan laser polarizer (see figure 4). The two individually positioned quarter wave plates rotated the object wave (horizontal polarization) and the reference wave (vertical polarization) into left and right circular polarizations, respectively. The seeded flow field was illuminated by the object beam in forward scattering direction. The ongoing object beam eventually terminated at a beam dump that mounted on the surface of the holographic plate. The reference beam illuminated the hologram at a subtended angle of 40 o against the optical axis of the object beam. The resulting measurement volume was approximately equal to the size of the spreading jet. No signal was recorded outside the jet because the ambient water was not seeded with particles. When considering polarization holography in br for HPIV, the recording of a hologram involves a two-step procedure (Chan et al 2004). During the first exposure both Pockels cells were switched off, such that the object and the reference wavefront would have left hand circular polarization and right hand circular polarization, respectively, at the plane of the hologram. For the second exposures the Pockels cells were supplied with the half wave voltage, resulting in an interchange of the object and reference polarization. With this set up, we have multiplexed two time separated holograms inside a single film. The recording and reconstruction procedures are summarized in table 1. Table 2. configurations for recording and reconstructing the two br holograms. Reference Wave 1 Object Wave 1 Reference Wave 2 Object Wave 2 Reconstruction Wave 1 Reconstruction Wave 2 Right Circular Left Circular Left Circular Right Circular Left Circular Right Circular R L L R L R 3. DATA EXTRACTION RESULTS AND DISCUSSION The collimated reconstruction beam for the read-out of a hologram has an intensity of 130 µw cm -2. During the phase conjugated reconstruction, a 1/2λ wave plate was mounted on a mechanical switch that was present in the reconstruction path of the CW laser (see figure 5). With the switch activated the right hand circularly polarized reconstruction beam has resulted in the reconstruction of the left hand circularly polarized first particulate image onto a CCD camera. Similarly, when deactivating the switch the second particulate image was reconstructed having right hand circular polarization. Motorised traversing mechanism Reconstructed real particle image at the CCD sensor's plane br film CCD scanning camera Collimating lens Phase conjugation Reference wave 1/2λ wave plate translation switch in and out Spatial filter CW Nd:YAG laser (532nm) 1/2λ wave plate Polarising beam splitter 1/4λ cube wave plate Beam expander Figure 5: Reconstruction of two sequentially multiplexed polarization holograms.

Since the two holograms were stored in a volatile material such as br, the read-out process is time limited (Chan et al 2004). In order to maximize the reconstruction efficiency, the holograms were subsequently reconstructed, scanned and digitized at a constant velocity by the CCD camera (1280 x 1024 pixels, 6.7 µm x 6.7 µm pixel size) that was mounted on a motorized traversing gear. Hence, the switching time of the 1/2 λ wave plate for reconstructing the multiplexed holograms, was determined by the speed of the traversing mechanism. The exposure time of the CCD camera was set to a period that no saturation of the particle images could occur. This was optimized for the local maxima signal intensity analysis. Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame 7 Frame 8 Frame 9 Frame 10 Frame 11 Frame 12 Figure 6: A selected region of the reconstructed particles images, focusing through 50µm step between each frame. Figure 6 shows the reconstructed particle field of one of the two multiplexed holograms through different focal depth (picture resolution = 100x100 pixels). As can be seen in figure 7, the two data sets had been retrieved independently with no cross-talk between the two holographic exposures. In this figure, we have reconstructed around 750 particles within a measurement volume of 7x8x9 mm 3. The magnified view in figure 7 shows each string as a reconstructed particle. Three-dimensional image intensity analysis was performed to determine all velocity components from the recorded flow holograms, e.g. this is done in the following way: 280 continuously scanned image slices were digitized onto the computer of which 140 of them were belong to one of the two holograms. The odd numbers of the image slices belongs to the first hologram and the even numbers of images were from the second multiplexed hologram. Each digitized slice has a resolution of 50µm that was currently limited by the number of images that can be stored on the computer memory buffer. Image processing was performed on each slice to enhance detectability of the reconstructed particles. This was achieved by a special phase preserving denoising image processing routine outlined by Kovesi (1999). In this routine the threshold of the images were determined automatically by wavelet responses in the images. Thresholding of wavelet responses in the complex domain allows one to ensure that perceptually important phase information in the image is not corrupted (Kovesi 1999). All the data extraction and image filtering processes were carried out in MATLAB.

Particle 600µm Magnified view of the boxed region Figure 7: Two independently reconstructed holographic particle fields superimposed on top of each other. Directional ambiguity is resolved by polarization multiplexing two holograms independently in br. Particle detection was performed by cross-correlating each slice with a particle mask, a 5x5 Gaussian model particle. Subsequently, the local maxima in the resulting correlation plane were detected (which correspond to particle centers). All the corresponding images from each slice were re-stacked to form particles intensity streaks along the focal depth of the hologram as shown in figure 7. Each streak contained a corresponding intensity value along its trail. This position of the intensity value was obtained by repeating the aforementioned particle detection procedure but without the denoising image processing technique, because this technique stretches the contrast of image to an artificially high value.

Arbitrary intensity slice along the z direction Figure 8: One of the reconstructed particle strings to show the intensity profile along the slice. To extract the velocity vectors, a nearest neighborhood search routine was performed on detected particle centers between the two stacks of images. The maximum intensity value along the image trail was used to determine the particle location (see figure 8). The directionally resolved data HPIV is presented in figure 9. The vector field exhibits a certain preferential orientation that indicates the jet flowing direction. The obtained maximum flow velocity in the streamwise direction is approximately = 0.65 ms -1. Noting that, the reconstruction was performed in air therefore, the velocity value was corrected for the refractive index in water. The fluid shows a meandering flow profile which could be attributed to the fact that the heavier-than-water particle was used to seed the jet. This is further supported with figure 10, which indicates the jet center line velocity profile was skewed. It is also interesting to note that the velocity values near the edge of the jet did not decay to smaller amplitudes (particle slip velocity ~ 0.2 ms -1 ), this effect was again due to the condition of the seeding particles. The result indicated that we have successfully demonstrated that polarization multiplexing in br offers the capability in removing directional ambiguity in the HPIV data. Currently, the turnaround time for each experiment which includes the recording, digitizing and refreshing of a hologram is approximately 10 minutes. The experimental procedures can be performed routinely by a single operator.

Reference line (A-A) Velocity profile cut A A U Figure 9: Extracted HPIV vectors from figure 6, the jet is flowing from top to bottom. Figure 10: Interpolated streamwise velocity profile (U) along the line A-A ( figure 9) at the center of the jet (X/D=12). (mm)

4. CONCLUSION As a proof of principle, an experiment was conducted on a particle laden water jet. A dual off-axis transmission hologram was recorded which maximizes the signal to noise ratio of particle images. Volumetric three-dimensional velocity information was extracted from the holograms by tracking the particle positions using the local maxima image intensity analysis. The current result was based on a single holographic measurement, and this could be extended to multiple batches of fluid experiments in an hour to hour basis in the near future. For the first time, we have demonstrated the feasibility in using br for the recording of dual-exposure polarization multiplex particulate holograms to remove directional ambiguity in HPIV. The system can be operated routinely by a single operator. ACKNOWLEDGEMENT The work is financially supported by Foundation for Fundamental Research on Matter (FOM), The Netherlands. We thank Wilco Tax for the technical support of this project. REFERENCES Barnhart D.H, Chan V.S.S, Halliwell N.A and Coupland J.M (2002a) Holographic velocimetry using object-conjugate reconstruction (OCR): a new approach for simultaneous, 3-D displacement measurement in fluid and solid mechanics Exp. in Fluids 33 Pages 770-780. Barnhart D.H, Hampp N, Halliwell N.A and Coupland J.M (2002b) Digital holographic velocimetry with bacteriorhodopsin (BR) for real-time recording and numeric reconstruction 11 th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, Paper 2-6. Barnhart D.H, Koek W.D, Juchem T, Hampp N, Coupland J.M and Halliwell N.A (2004) Bacteriorhodopsin as a highresolution, high capacity buffer for digital holographic measurements Meas. Sci. Technol 15 639-646. Chan V.S.S, Koek W.D, Barnhart D.H, Bhattacharya N, Braat J.J.M, and Westerweel J (2004) Application of Holography to Fluid Flow Measurements using Bacteriorhodopsin (br) Meas. Sci. Technol 15 647-655. Coupland J.M (2004) Holographic particle image velocimetry: signal recovery from under-sampled CCD data. Meas. Sci. Technol. 15 711-717. Hampp N (2000) Bacteriorhodopsin as a photochromic retinal protein for optical memories Chem. Rev. 100 1755-1776. Herrmann S.F and Hinsch K.D (2004) Light-in-flight holographic particle image velocimetry for wind-tunnel applications Meas. Sci. Technol. 15 613-621. Hinsch K.D (2002) Holographic particle image velocimetry Meas. Sci. Technol. 13 R61-72. Koek W.D, Bhattacharya N and Braat J.J.M, Chan V.S.S and Westerweel J (2004) Holographic simultaneous read-out polarization multiplexing based on photo-induced anisotropies in bacteriorhodopsin Opt. Lett. 29 101-3. Kovesi P (1999) Phase preserving denoising of images, The Australian Pattern Recognition Society Conference:DICTA 99, Perth WA. 212-217. Meng H, Pan G, Pu Y and Woodward S.H (2004) Holographic particle image velocimetry: from film to digital recording Meas. Sci. Technol. 15 673-685. Oesterhelt D and Stoeckenius W (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nature New Bio. 233 149-152. Ooms T.A, Koek W.D, Chan V.S.S, Braat, J.J.M and Westerweel J (2004) Digital holographic particle image velocimetry: optimizing Fourier filtering, seeding particle size and seeding particle concentration 12 th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal.