ICS Ultra-Low Noise Microphone with Differential Output

Similar documents
ICS Ultra-Low Noise Microphone with Differential Output

ICS Ultra-Low Noise Microphone with Differential Output

ICS High SPL Analog Microphone with Extended Low Frequency Response

ICS Analog Microphone with Low Power Mode GENERAL DESCRIPTION APPLICATIONS FEATURES FUNCTIONAL BLOCK DIAGRAM ORDERING INFORMATION

ICS RF-Hardened, Low-Noise Microphone with Bottom Port and Analog Output

ICS RF Hardened, Low Noise Microphone with Top Port and Analog Output

ICS Ultra-low Current, Low-Noise Microphone with Analog Output

RF-Hardened, Ultra-Low Noise Microphone with Bottom Port and Analog Output

ICS Bottom Port PDM Digital Output Multi-Mode Microphone with Ultrasonic Mode

ADMP521 Ultra-Low Noise Microphone with Bottom Port and PDM Digital Output

Wide Dynamic Range Microphone with PDM Digital Output FEATURES

INMP421 Omnidirectional Microphone with Bottom Port and PDM Digital Output

VM2000. Low-Noise Bottom Port Piezoelectric MEMS Microphone Data Sheet Vesper Technologies Inc. Differential Analog Output

ICS Low-Noise Microphone with TDM Digital Output

2018 Data Sheet Vesper Technologies Inc. VM1000. Low-Noise Bottom Port

SMA100. Top Port Analog MEMS Microphone. Datasheet. Rev. 2.0

Most Reliable Component for Microwave. Data sheet Rev. 00 AM4311R38A0. Analog MEMS Microphone (Rear/ Bottom type)

Precision Top Port SiSonic TM Microphone

MEMS audio surface-mount bottom-port silicon microphone with analog output. Description. Table 1. Device summary

SiSonic TM Microphone

MP23AB01DH. High-performance MEMS audio sensor: fully differential analog bottom-port microphone. Description. Features

SPW2430HR5H-B. Top Port SiSonic TM Microphone. The SPW2430HR5H-B is a miniature, highperformance,

WM7131. Bottom Port Analogue Silicon Microphone DESCRIPTION FEATURES APPLICATIONS BLOCK DIAGRAM

MP34DT06J. MEMS audio sensor omnidirectional digital microphone. Datasheet. Features. Applications. Description

MP45DT02. MEMS audio sensor omnidirectional digital microphone. Description. Features. Applications

SPA2629LR5H-B. Low Noise Zero-Height SiSonic TM Microphone. The SPA2629LR5H-B is a miniature, highperformance,

SPU0409LE5H-QB. Zero-Height SiSonic TM Microphone With Enhanced RF Protection. The SPU0409LE5H-QB is a miniature, highperformance,

SPM0404HE5H-PB. SiSonic TM Microphone With Enhanced RF Protection. The SPM0404HE5H-PB is a miniature, highperformance,

MEMS audio sensor omnidirectional digital microphone for industrial applications

MP34DB02. MEMS audio sensor omnidirectional digital microphone. Description. Features. Applications

Wide Bandwidth, Low Noise, Precision Top Port SiSonic Microphone

Order code Temperature range [ C] Package Packing

Data Sheet, V1.0, Aug SMM310. Silicon MEMS Microphone. Small Signal Discretes

SPM0437HD4H-B. Digital SiSonic TM Microphone. The SPM0437HD4H is a miniature, highperformance,

SPM0408LE5H-TB. Amplified Zero-Height SiSonic TM Microphone With Enhanced RF Protection. The SPM0408LE5H-TB is a miniature, highperformance,

BOTTOM PORT SISONIC MICROPHONE

SPU0414HR5H-SB. Amplified SiSonic TM Microphone. The SPU0414HR5H-SB is a miniature, highperformance,

WM7132, WM7132E. Bottom Port Analogue Silicon Microphone DESCRIPTION FEATURES APPLICATIONS BLOCK DIAGRAM

SPK0833LM4H-B. Digital Zero-Height SiSonic TM Microphone. The SPK0833LM4H-B is a miniature, highperformance,

Description. Part number Temperature range [ C] Package Packing

VM1010. Low-Noise Bottom Port Piezoelectric MEMS Microphone Data Sheet Vesper Technologies Inc. With Wake on Sound Feature

SPU0410HR5H-PB. SiSonic TM Microphone. The SP0410HR5H-PB is a miniature, highperformance,

Description. Part number Temperature range [ C] Package Packing

Single-Axis, High-g, imems Accelerometers ADXL193

Dual-Axis, High-g, imems Accelerometers ADXL278

ICM Shield Hardware User Guide

WM7132, WM7132E. Bottom Port Analogue Silicon Microphone DESCRIPTION FEATURES APPLICATIONS BLOCK DIAGRAM

MP34DT04. MEMS audio sensor omnidirectional digital microphone

SPH0641LU4H-1. Digital Zero-Height SiSonic TM Microphone With Multi-Mode And Ultrasonic Support. The SPH0641LU4H-1 is a miniature, highperformance,

MP34DT05-A. MEMS audio sensor omnidirectional digital microphone. Description. Features. Applications

Knowles Acoustics 1151 Maplewood Drive Itasca, IL 60143

Description. Part number Temperature range [ C] Package Packing

WM7120A. Top Port Analogue Silicon Microphone DESCRIPTION FEATURES APPLICATIONS BLOCK DIAGRAM

Data Sheet MSM381A3729Z9A C. V 1.1 / Sept Analog output MEMS microphone

SPH0641LM4H-1. Digital Zero-Height SiSonic TM Microphone With Multiple Performance Modes. The SPH0641LM4H-1 is a miniature, highperformance,

Preliminary. Wake on Sound Piezoelectric MEMS Microphone Evaluation Module

Low Power Top Port Digital Silicon Microphone FEATURES APPLICATIONS 3D VIEW CLK DAT LRSEL

Integrated Dual-Axis Gyro IDG-1215

Integrated Dual-Axis Gyro IDG-500

SGM3798 Audio Headset Analog Switch with Reduced GND Switch R ON and FM Capability

Ultralow Offset Voltage Dual Op Amp AD708

IM69D120. Description. Features. Typical applications. High performance digital XENSIVTM MEMS microphone

F4-(A)HDMOE-J098R3627-5P

High Performance, Wide Bandwidth Accelerometer ADXL001

OBSOLETE. High Performance, Wide Bandwidth Accelerometer ADXL001 FEATURES APPLICATIONS GENERAL DESCRIPTION FUNCTIONAL BLOCK DIAGRAM

MP34DT05. MEMS audio sensor omnidirectional digital microphone

Description. Part number Temperature range [ C] Package Packing

Single-Axis, High-g, imems Accelerometers ADXL78

Product Specification ML T1 MEMS silicon microphone

SGM W Audio Power Amplifier with Shutdown Mode

VT-800 Temperature Compensated Crystal Oscillator Previous Vectron Model VTC4

Product Specification ML-3865-B1 MEMS silicon microphone

SPK0838HT4H-B. Digital High-SNR SiSonic TM Microphone

F2-(A)HCDMO-B125T26-6CP

Small and Thin ±18 g Accelerometer ADXL321

TSL250RD, TSL251RD, TSL260RD, TSL261RD LIGHT-TO-VOLTAGE OPTICAL SENSORS

SGM4809 Dual 158mW Headphone Amplifier with Active Low Shutdown Mode

SGM W Fully Differential Audio Power Amplifier

5V Capable Low-Voltage DPDT Analog Switch

Improved Second Source to the EL2020 ADEL2020

Self-Contained Audio Preamplifier SSM2019

Zero Height Ultra Mini SiSonic Microphone Specification With MaxRF Protection Halogen Free PRELIMINARY

Knowles Acoustics 1151 Maplewood Drive Itasca, IL 60143

Four-Channel Sample-and-Hold Amplifier AD684

EL2142. Features. Differential Line Receiver. Applications. Ordering Information. Pinout. Data Sheet February 11, 2005 FN7049.1

IXYS IXI848A. High-Side Current Monitor. General Description. Features: Applications: Ordering Information. General Application Circuit

Quad Picoampere Input Current Bipolar Op Amp AD704

VT-841 VT-841. Temperature Compensated Crystal Oscillator. Description. Applications. Features. Block Diagram. Output V DD.

VT-701 Temperature Compensated Crystal Oscillator Previous Vectron Model VTC2

Low Cost, General Purpose High Speed JFET Amplifier AD825

Dual, Ultralow Distortion, Ultralow Noise Op Amp AD8599

Small, Low Power, 3-Axis ±3 g Accelerometer ADXL335

High Performance, Wide Bandwidth Accelerometer ADXL001

SGM mW Differential Input, Stereo Audio Power Amplifier

VDD 0.1 F A1 C1 IN+ IS31AP2145A IN- CTRL GND. Figure 1 Typical Application Circuit (Differential Input)

Ultrafast Comparators AD96685/AD96687

VT-860 Temperature Compensated Crystal Oscillator

ams AG TAOS Inc. is now The technical content of this TAOS datasheet is still valid. Contact information:

Single Supply, Rail to Rail Low Power FET-Input Op Amp AD820

RT mA Dual LDO Regulator. General Description. Features. Applications. Ordering Information. Pin Configurations (TOP VIEW) Marking Information

Transcription:

Ultra-Low Noise Microphone with Differential Output GENERAL DESCRIPTION The ICS-40720* is an ultra-low noise, differential analog output, bottom-ported MEMS microphone. The ICS-40720 includes a MEMS microphone element, an impedance converter, a differential output amplifier and an enhanced RF package. The ICS-40720 s 70 db SNR and ±2 db sensitivity tolerance make it an excellent choice for microphone arrays and far field voice control applications. The ICS-40720 has a linear response up to 124 db SPL with a differential output sensitivity specification of 32 dbv. It can be used in a single-ended mode with 38 dbv sensitivity and the same high SNR. The ICS-40720 is available in a small 4.00 mm 3.00 mm 1.20 mm surface-mount package. APPLICATIONS FEATURES Smartphones Tablet Computers Teleconferencing Systems Digital Still and Video Cameras Bluetooth Headsets Security and Surveillance Microphone Arrays Voice Control and Activation Ultra-High 70 dba SNR 32 dbv Differential Sensitivity, 38 dbv Single- Ended Sensitivity ±2 db Sensitivity Tolerance Small 4 3 1.2 mm Surface-Mount Package Non-Inverted Signal Output Extended Frequency Response from 75 Hz to 20 khz Enhanced RF Performance 285 µa Current Consumption 124 db SPL Acoustic Overload Point 77 dbv PSR Compatible with Sn/Pb and Pb-Free Solder Processes RoHS/WEEE Compliant FUNCTIONAL BLOCK DIAGRAM ORDERING INFORMATION OUTPUT AMPLIFIER OUTPUT+ OUTPUT PART TEMP RANGE PACKAGING ICS-40720 40 C to +85 C 13 Tape and Reel EV_ICS-40720-FX ICS-40720 POWER VDD GND InvenSense reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. InvenSense Inc. 1745 Technology Drive, San Jose, CA 94089 U.S.A +1(408) 988 7339 www.invensense.com Rev Date: 05/07/15

TABLE OF CONTENTS General Description... 1 Applications... 1 Features... 1 Functional Block Diagram... 1 Ordering Information... 1 Table of Contents... 2 Specifications... 3 Table 1. Electrical Characteristics... 3 Absolute Maximum Ratings... 4 Table 2. Absolute Maximum Ratings... 4 ESD Caution... 4 Soldering Profile... 5 Table 3. Recommended Soldering Profile*... 5 Pin Configurations And Function Descriptions... 6 Table 4. Pin Function Descriptions... 6 Typical Performance Characteristics... 7 Theory Of Operation... 8 Balanced Output... 8 Single-Ended Operation... 8 Applications Information... 9 Codec Connection... 9 Supporting Documents... 10 Evaluation Board User Guide... 10 Application Notes... 10 PCB Design And Land Pattern Layout... 11 PCB Material And Thickness... 12 Handling Instructions... 13 Pick And Place Equipment... 13 Reflow Solder... 13 Board Wash... 13 Outline Dimensions... 14 Ordering Guide... 14 Revision History... 15 Compliance Declaration Disclaimer... 16 Page 2 of 16

SPECIFICATIONS TABLE 1. ELECTRICAL CHARACTERISTICS T A = 25 C, V DD = 1.5 to 3.63 V, unless otherwise noted. Typical specifications are not guaranteed. PARAMETER CONDITIONS MIN TYP MAX UNITS NOTES PERFORMANCE Directionality Omni Sensitivity 1 khz, 94 db SPL, differential 34 32 30 dbv 1 khz, 94 db SPL, single-ended 40 38 36 dbv Signal-to-Noise Ratio (SNR) 20 Hz to 20 khz, A-weighted, differential 70 dba 20 Hz to 20 khz, A-weighted, single-ended 70 dba Equivalent Input Noise (EIN) 20 Hz to 20 khz, A-weighted 24 dba SPL Dynamic Range Derived from EIN and maximum acoustic input 100 db Frequency Response Low frequency 3 db point 75 Hz High frequency 3 db point >20 khz 1 Total Harmonic Distortion (THD) 105 db SPL 0.6 % 217 Hz, 100 mvp-p square wave Power-Supply Rejection (PSR) superimposed on V DD = 1.8 V, 77 dbv A-weighted Power Supply Rejection Ratio (PSRR) 1 khz, 100 mv p-p sine wave superimposed on V DD = 1.8 V 45 db Acoustic Overload Point 10% THD 124 db SPL POWER SUPPLY Supply Voltage (V DD ) 1.5 3.63 V Supply Current (I S ) V DD = 1.8 V 285 350 µa V DD = 3.3 V 375 µa OUTPUT CHARACTERISTICS Output Impedance Differential 750 Ω Single-Ended, OUTPUT+ 340 Ω Single-Ended, OUTPUT 410 Ω Output DC Offset OUTPUT+ 0.66 V OUTPUT 0.70 V Maximum Output Voltage Differential, 124 db SPL input 0.79 V rms Single-Ended, 124 db SPL input 0.40 V rms Noise Floor 20 Hz to 20 khz, A-weighted, rms 102 dbv Note 1: See Figure 3 and Figure 4. Page 3 of 16

ABSOLUTE MAXIMUM RATINGS Stress above those listed as Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to the absolute maximum ratings conditions for extended periods may affect device reliability. TABLE 2. ABSOLUTE MAXIMUM RATINGS PARAMETER Supply Voltage (V DD ) Sound Pressure Level Mechanical Shock Vibration Temperature Range Biased Storage RATING 0.3 V to +3.63 V 160 db 10,000 g Per MIL-STD-883 Method 2007, Test Condition B 40 C to +85 C 55 C to +150 C ESD CAUTION ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore proper ESD precautions should be taken to avoid performance degradation or loss of functionality. Page 4 of 16

SOLDERING PROFILE T P RAMP-UP t P CRITICAL ZONE T L TO T P TEMPERATURE T L T SMIN T SMAX t S PREHEAT t L RAMP-DOWN t 25 C TO PEAK TEMPERATURE TIME Figure 1. Recommended Soldering Profile Limits TABLE 3. RECOMMENDED SOLDERING PROFILE* PROFILE FEATURE Sn63/Pb37 Pb-Free Average Ramp Rate (T L to T P ) 1.25 C/sec max 1.25 C/sec max Preheat Minimum Temperature (T SMIN ) 100 C 100 C Minimum Temperature (T SMIN ) 150 C 200 C Time (T SMIN to T SMAX ), t S 60 sec to 75 sec 60 sec to 75 sec Ramp-Up Rate (T SMAX to T L ) 1.25 C/sec 1.25 C/sec Time Maintained Above Liquidous (t L ) 45 sec to 75 sec ~50 sec Liquidous Temperature (T L ) 183 C 217 C Peak Temperature (T P ) 215 C +3 C/ 3 C 260 C +0 C/ 5 C Time Within +5 C of Actual Peak Temperature (t P ) 20 sec to 30 sec 20 sec to 30 sec Ramp-Down Rate 3 C/sec max 3 C/sec max Time +25 C (t 25 C ) to Peak Temperature 5 min max 5 min max *Note: The reflow profile in Table 3 is recommended for board manufacturing with InvenSense MEMS microphones. All microphones are also compatible with the J-STD-020 profile Page 5 of 16

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS GND 4 3 OUTPUT+ 2 OUTPUT ICS-40720 1 VDD TOP VIEW (TERMINAL SIDE DOWN) Not to Scale Figure 2. Pin Configuration TABLE 4. PIN FUNCTION DESCRIPTIONS PIN NAME FUNCTION 1 VDD Power Supply 2 OUTPUT Analog Output Signal 3 OUTPUT+ Analog Output Signal+ 4 GND Ground Page 6 of 16

OUTPUT AMPLITUDE (dbv) OUTPUT (V) PSRR (db) ICS-40720 TYPICAL PERFORMANCE CHARACTERISTICS 20 15 20 15 NORMALIZED AMPLITUDE (db) 10 5 0 5 10 NORMALIZED AMPLITUDE (db) 10 5 0 5 10 15 15 20 10 100 1k 10k FREQUENCY (Hz) 20 10 100 1k 10k FREQUENCY (Hz) Figure 3. Frequency Response Mask Figure 4. Typical Frequency Response (Measured) 40 41 10 42 43 44 45 46 47 48 THD+N (%) 1 0.1 49 50 100 1k 10k FREQUENCY (Hz) Figure 5. Power-Supply Rejection Ratio (PSRR) vs. Frequency 0.01 90 95 100 105 110 115 120 125 130 INPUT (db SPL) Figure 6. THD + N vs. Input Level 0-5 -10-15 -20 1.00 0.75 0.50 0.25 0.00-25 -30-35 -40 90 100 110 120 130 INPUT AMPLITUDE (db SPL) -0.25-0.50-0.75-1.00 0 0.5 TIME (ms) 120 db SPL 124 db SPL 128 db SPL 132 db SPL 1 Figure 7. Linearity Figure 8 Clipping Characteristics Page 7 of 16

THEORY OF OPERATION BALANCED OUTPUT The ICS-40720 has a balanced differential output with 700 Ω output impedance. This configuration is compatible with a fullydifferential codec input and provides the benefits of a balanced signal between the microphone and codec. A balanced analog audio signal provides rejection of common-mode noise that is present on both the positive and negative signals. SINGLE-ENDED OPERATION The ICS-40720 can be used as a single-ended microphone by using the signal from only one of the two output pins. In this configuration, the sensitivity will be 6 db lower than the differential output, but with the same high SNR performance. Pin OUTPUT+ will output the non-inverted signal, relative to the acoustic input, while the OUTPUT pin will output an inverted signal. The unused output pin should be left disconnected when the mic is used in single-ended mode; do not connect the unused pin to ground. Page 8 of 16

APPLICATIONS INFORMATION CODEC CONNECTION The ICS-40720 output can be connected to a dedicated codec microphone input (see Figure 9) or to a high input impedance gain stage. A 0.1 µf ceramic capacitor placed close to the ICS-40720 supply pin is used for testing and is recommended to adequately decouple the microphone from noise on the power supply. DC blocking capacitors are required at the outputs of the microphone. These capacitors create a high-pass filter with a corner frequency at where R is the input impedance of the codec. A minimum value of 2.2 μf is recommended in Figure 9 because the input impedance of some codecs can be as low as 2 kω at their highest PGA gain setting, which results in a high-pass filter corner frequency at 37 Hz. VDD ICS-40720 OUTPUT+ OUTPUT GND 0.1µF 2.2µF MINIMUM MICBIAS CODEC IN+ IN Figure 9. ICS-40720 Connected to a Differential-Input Codec Page 9 of 16

SUPPORTING DOCUMENTS For additional information, see the following documents. EVALUATION BOARD USER GUIDE AN-000012, Differential Analog Output MEMS Microphone Flex Evaluation Board APPLICATION NOTES AN-100, MEMS Microphone Handling and Assembly Guide AN-1003, Recommendations for Mounting and Connecting the InvenSense Bottom-Ported MEMS Microphones AN-1112, Microphone Specifications Explained AN-1124, Recommendations for Sealing InvenSense Bottom-Port MEMS Microphones from Dust and Liquid Ingress AN-1140, Microphone Array Beamforming AN-1165, Op Amps for Microphone Preamp Circuits AN-1181, Using a MEMS Microphone in a 2-Wire Microphone Circuit Page 10 of 16

PCB DESIGN AND LAND PATTERN LAYOUT Lay out the PCB land pattern for the ICS-40720 at a 1:1 ratio to the solder pads on the microphone package (see Figure 10.) Take care to avoid applying solder paste to the sound hole in the PCB. Figure 11 shows a suggested solder paste stencil pattern layout. The response of the ICS-40720 is not affected by the PCB hole size, as long as the hole is not smaller than the sound port of the microphone (0.75 mm, or 0.0295 inch, in diameter). A 1 mm (0.040 inch) diameter for the hole is recommended. Align the hole in the microphone package with the hole in the PCB. The exact degree of the alignment does not affect the performance of the microphone as long as the holes are not partially or completely blocked. Figure 10. Suggested PCB Land Pattern Layout Figure 11. Suggested Solder Paste Stencil Pattern Layout Page 11 of 16

PCB MATERIAL AND THICKNESS The performance of the ICS-40720 is not affected by PCB thickness. The ICS-40720 can be mounted on either a rigid or flexible PCB. A flexible PCB with the microphone can be attached directly to the device housing with an adhesive layer. This mounting method offers a reliable seal around the sound port while providing the shortest acoustic path for good sound quality. Page 12 of 16

HANDLING INSTRUCTIONS PICK AND PLACE EQUIPMENT The MEMS microphone can be handled using standard pick-and-place and chip shooting equipment. Take care to avoid damage to the MEMS microphone structure as follows: Use a standard pickup tool to handle the microphone. Because the microphone hole is on the bottom of the package, the pickup tool can make contact with any part of the lid surface. Do not pick up the microphone with a vacuum tool that makes contact with the bottom side of the microphone. Do not pull air out of or blow air into the microphone port. Do not use excessive force to place the microphone on the PCB. REFLOW SOLDER For best results, the soldering profile must be in accordance with the recommendations of the manufacturer of the solder paste used to attach the MEMS microphone to the PCB. It is recommended that the solder reflow profile not exceed the limit conditions specified in Figure 1 and Table 3. BOARD WASH When washing the PCB, ensure that water does not make contact with the microphone port. Do not use blow-off procedures or ultrasonic cleaning. Page 13 of 16

OUTLINE DIMENSIONS Figure 12. 4-Terminal Chip Array Small Outline No Lead Cavity 4 mm 3 mm 1.2 mm Dimensions shown in millimeters DATE CODE LOT TR ACEABILITY PART NUMBER PIN 1 INDICATION Figure 13. Package Marking Specification (Top View) ORDERING GUIDE PART TEMP RANGE PACKAGE QUANTITY PACKAGING ICS-40720 40 C to +85 C 4-Terminal LGA_CAV* 10,000 13 Tape and Reel EV_ICS-40720-FX Flex Evaluation Board Page 14 of 16

REVISION HISTORY REVISION DATE REVISION DESCRIPTION 2/20/2015 1.0 Initial Version 05/07/2015 1.1 Removed Preliminary Technical Data from headers Page 15 of 16

COMPLIANCE DECLARATION DISCLAIMER InvenSense believes the environmental and other compliance information given in this document to be correct but cannot guarantee accuracy or completeness. Conformity documents substantiating the specifications and component characteristics are on file. InvenSense subcontracts manufacturing, and the information contained herein is based on data received from vendors and suppliers, which has not been validated by InvenSense. This information furnished by InvenSense is believed to be accurate and reliable. However, no responsibility is assumed by InvenSense for its use, or for any infringements of patents or other rights of third parties that may result from its use. Specifications are subject to change without notice. InvenSense reserves the right to make changes to this product, including its circuits and software, in order to improve its design and/or performance, without prior notice. InvenSense makes no warranties, neither expressed nor implied, regarding the information and specifications contained in this document. InvenSense assumes no responsibility for any claims or damages arising from information contained in this document, or from the use of products and services detailed therein. This includes, but is not limited to, claims or damages based on the infringement of patents, copyrights, mask work and/or other intellectual property rights. Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by implication or otherwise under any patent or patent rights of InvenSense. This publication supersedes and replaces all information previously supplied. Trademarks that are registered trademarks are the property of their respective companies. InvenSense sensors should not be used or sold in the development, storage, production or utilization of any conventional or mass-destructive weapons or for any other weapons or life threatening applications, as well as in any other life critical applications such as medical equipment, transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, disaster prevention and crime prevention equipment. 2015 InvenSense, Inc. All rights reserved. InvenSense, MotionTracking, MotionProcessing, MotionProcessor, MotionFusion, MotionApps, DMP, AAR and the InvenSense logo are trademarks of InvenSense, Inc. Other company and product names may be trademarks of the respective companies with which they are associated. 2015 InvenSense, Inc. All rights reserved. Page 16 of 16