Closed loop control of an Improved Dual switch Converter With Passive Lossless Clamping For High Step-Up Voltage Gain

Similar documents
An Interleaved High Step-Up Boost Converter With Voltage Multiplier Module for Renewable Energy System

CLOSED LOOP CONTROL OF HIGH STEP-UP DC/DC CONVERTER BASED ON COUPLED INDUCTOR AND SWITCHED-CAPACITOR

Implementation of Voltage Multiplier Module in Interleaved High Step-up Converter with Higher Efficiency for PV System

A Single Switch High Gain Coupled Inductor Boost Converter

Analysis and Design of a Bidirectional Isolated buck-boost DC-DC Converter with duel coupled inductors

One-Cycle Control of Interleaved Buck Converter with Improved Step- Down Conversion Ratio

A high Step-up DC-DC Converter employs Cascading Cockcroft- Walton Voltage Multiplier by omitting Step-up Transformer 1 A.Subrahmanyam, 2 A.

High Voltage-Boosting Converter with Improved Transfer Ratio

A Transformerless Boost Converters with High Voltage Gain and Reduced Voltage Stresses on the Active Switches

A Novel Bidirectional DC-DC Converter with Battery Protection

Soft-Switching Two-Switch Resonant Ac-Dc Converter

International Journal of Research Available at

Dynamic Performance Investigation of Transformer less High Gain Converter with PI Controller

A HIGHLY EFFICIENT ISOLATED DC-DC BOOST CONVERTER

High Step up Dc-Dc Converter For Distributed Power Generation

Integrating Coupled Inductor and Switched- Capacitor based high gain DC-DC converter for PMDC drive

A DC DC Boost Converter for Photovoltaic Application

Page 1026

A Dual Half-bridge Resonant DC-DC Converter for Bi-directional Power Conversion

Linear Transformer based Sepic Converter with Ripple Free Output for Wide Input Range Applications

Voltage Controlled Non Isolated Bidirectional DC-DC Converter with High Voltage Gain

High Gain DC-DC ConverterUsing Coupled Inductor and Voltage Doubler

ZCS-PWM Converter for Reducing Switching Losses

An Innovative Converter to Reduce Current Stress While Constraining Current Ripple in Renewable Energy System

A High Efficient DC-DC Converter with Soft Switching for Stress Reduction

Implementation of an Interleaved High-Step-Up Dc-Dc Converter with A Common Active Clamp

International Journal of Emerging Technology in Computer Science & Electronics (IJETCSE) ISSN: Volume 11 Issue 1 NOVEMBER 2014.

A Dual Switch Dc-Dc Converter with Coupled Inductor and Charge Pump for High Step up Voltage Gain

Transformerless Buck-Boost Converter with Positive Output Voltage and Feedback

Analysis of Novel DC-DC Boost Converter topology using Transfer Function Approach

Modified Buck-Boost Converter with High Step-up and Step-Down Voltage Ratio

Photovoltaic Controller with CCW Voltage Multiplier Applied To Transformerless High Step-Up DC DC Converter

A Novel Bridgeless Single-Stage Half-Bridge AC/DC Converter

A High Step-Up DC-DC Converter

A High Voltage Gain Interleaved Boost Converter with Dual Coupled Inductors

High Gain Step Up DC-DC Converter For DC Micro-Grid Application

A DC-DC Boost Converter with Voltage Multiplier Module and Fuzzy Logic Based Inverter for Photovoltaic System

Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application

ZVT Buck Converter with Synchronous Rectifier

ZERO VOLTAGE TRANSITION SYNCHRONOUS RECTIFIER BUCK CONVERTER

Performance Improvement of Bridgeless Cuk Converter Using Hysteresis Controller

SIMULATION OF HIGH BOOST CONVERTER FOR CONTINUOUS AND DISCONTINUOUS MODE OF OPERATION WITH COUPLED INDUCTOR

Design And Analysis Of Dc-Dc Converter For Photovoltaic (PV) Applications.

Hardware Implementation of Interleaved Converter with Voltage Multiplier Cell for PV System

PSIM Simulation of a Buck Boost DC-DC Converter with Wide Conversion Range

ISSN Vol.07,Issue.06, July-2015, Pages:

Implementation of Single Stage Three Level Power Factor Correction AC-DC Converter with Phase Shift Modulation

International Journal of Science Engineering and Advance Technology, IJSEAT, Vol 2, Issue 12, December ISSN

An Asymmetrical Dc-Dc Converter with a High Voltage Gain

A Single Switch DC-DC Converter for Photo Voltaic-Battery System

A Boost Converter with Ripple Current Cancellation Based On Duty Cycle Selection

HIGH POWER IGBT BASED DC-DC SWITCHED CAPACITOR VOLTAGE MULTIPLIERS WITH REDUCED NUMBER OF SWITCHES

A NOVEL SOFT-SWITCHING BUCK CONVERTER WITH COUPLED INDUCTOR

Figure.1. Block of PV power conversion system JCHPS Special Issue 8: June Page 89

Key words: Bidirectional DC-DC converter, DC-DC power conversion,zero-voltage-switching.

BIDIRECTIONAL dc dc converters are widely used in

I. INTRODUCTION II. LITERATURE REVIEW

Student Department of EEE (M.E-PED), 2 Assitant Professor of EEE Selvam College of Technology Namakkal, India

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor

A Novel Bidirectional DC-DC Converter with high Step-up and Step-down Voltage Gains

High Frequency Isolated Series Parallel Resonant Converter

Fuel Cell Based Interleaved Boost Converter for High Voltage Applications

Quasi Z-Source DC-DC Converter With Switched Capacitor

High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit

Performance Enhancement of a Novel Interleaved Boost Converter by using a Soft-Switching Technique

Implementation of Single Stage Three Level Power Factor Correction AC-DC Converter with Phase Shift Modulation

Safety Based High Step Up DC-DC Converter for PV Module Application

Bidirectional DC-DC Converter Using Resonant PWM Technique

Multiple Output Converter Based On Modified Dickson Charge PumpVoltage Multiplier

Hybrid Transformer Based High Boost Ratio DC-DC Converter for Photovoltaic Applications

Hybrid Full-Bridge Half-Bridge Converter with Stability Network and Dual Outputs in Series

A High Voltage Gain DC-DC Boost Converter for PV Cells

A Novel Transformer-less Voltage Quadruple with Low Switch Voltage Stress Solar DC-DC Converter by Using Fuzzy Logic Controller

Voltage Balancing Control of Improved ZVS FBTL Converter for WECS

K.Vijaya Bhaskar. Dept of EEE, SVPCET. AP , India. S.P.Narasimha Prasad. Dept of EEE, SVPCET. AP , India.

A Switched Capacitor Based Active Z-Network Boost Converter

TYPICALLY, a two-stage microinverter includes (a) the

Muhammad M, Armstrong M, Elgendy M. A Non-isolated Interleaved Boost Converter for High Voltage Gain Applications.

NOVEL TRANSFORMER LESS ADAPTABLE VOLTAGE QUADRUPLER DC CONVERTER WITH CLOSED LOOP CONTROL. Tamilnadu, India.

3SSC AND 5VMC BASED DC-DC CONVERTER FOR NON ISOLATED HIGH VOLTAGE GAIN

Non-Isolated Three Stage Interleaved Boost Converter For High Voltage Gain

Analysis, Design and Implementation of Snubberless Bidirectional Current Fed Full Bridge Voltage Doubler

MATHEMATICAL MODELLING AND PERFORMANCE ANALYSIS OF HIGH BOOST CONVERTER WITH COUPLED INDUCTOR

A HIGH STEP UP RESONANT BOOST CONVERTER USING ZCS WITH PUSH-PULL TOPOLOGY

DC-DC CONVERTER WITH VOLTAGE MULTIPLIER CIRCUIT FOR PHOTOVOLTAIC APPLICATION

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications

DC-DC Converter Based on Cockcroft-Walton for High Voltage Gain

Closed Loop Controlled ZV ZCS Interleaved Boost Converter System

TRANSFORMERLESS HIGH STEP-UP DC-DC COCKCROFT- WALTON VOLTAGE MULTIPLIER FOR A HYBRID SYSTEM APPLICATION

Renewable Energy Integrated High Step-Up Interleaved Boost Converter for DC Microgrid Applications

High-Gain Switched-Inductor Switched-Capacitor Step-Up DC-DC Converter

Fuzzy controlled modified SEPIC converter with magnetic coupling for very high static gain applications

Analysis and Design of Soft Switched DC-DC Converters for Battery Charging Application

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 03, 2016 ISSN (online):

A Fuzzy Controlled High Voltage Boosting Converter Based On Boost Inductors and Capacitors

ADVANCED HYBRID TRANSFORMER HIGH BOOST DC DC CONVERTER FOR PHOTOVOLTAIC MODULE APPLICATIONS

Design and Simulation of New Efficient Bridgeless AC- DC CUK Rectifier for PFC Application

A High Step-Up Boost-Flyback Converter with Voltage Multiplier Module for Photovoltaic System

A New Phase Shifted Converter using Soft Switching Feature for Low Power Applications

11 LEVEL SWITCHED-CAPACITOR INVERTER TOPOLOGY USING SERIES/PARALLEL CONVERSION

Transcription:

International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 2 Issue: 9 Dec-215 www.irjet.net p-issn: 2395-72 Closed loop control of an Improved Dual switch Converter With Passive Lossless Clamping For High Step-Up Voltage Gain Sonima Gabrial C.G 1, Roshima T V 2 1 PG Scholar, Dept. of EEE, Jyothi Engineering College, Thrissur, India 2 Assistant Professor, Dept. of EEE, Calicut University, Jyothi Engineering College, Thrissur, India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract The conventional dc-dc boost converters are unable to provide high step up voltage gain. The transformer less dc-dc converters are used to achieve high step up voltage gain without an extremely large duty ratio. The improved dual switch converter can achieve high voltage gain with a condition that the parameters are inconsistent. It has advantages of low voltage and current stress on the switches compared to the transformer less dc-dc converters. The proposed converter also provides the solution to balance the voltage on the switches and to suppress the resonance. This is possible due to the presence of passive lossless clamping. With the passive lossless clamping circuits, low voltage switches with small Rds (on) can be utilized, and hence the efficiency of the converter can be increased. The simulation of the circuit with 3 V input, 1V/1A output is done using MATLAB. Keywords highstep-upvoltagegain, passivelossless clamping, parameters are inconsistent,resonance. Introduction The voltage conversion ratio of a traditional boost converter is limited. various technologies have been developed to provide a high step-up voltage gain. The traditional boost converter is hard to provide a large voltage conversion ratio. A large duty cycle is introduced that brings high conduction loss, and the peak current may impact the capacitors. The isolated converters will boost the voltage by increasing the turns ratio of the high frequency transformers. By using the multistage dc to ac to dc power conversion, the cost is increased because many isolated sensors and feedback controllers are required. But the main limitation of the leakage inductance should be handled carefully or it may cause high voltage spikes. The coupled inductors can serve as a transformer that is used to enlarge the voltage gain in transformer less dc/dc converters. By increasing the turns ratio, high voltage gain can be easily achieved but the leakage inductance of the coupled inductors is inevitable. It may also cause high voltage spike, which will increase the voltage stress. The switched inductor boost converter can provide a high voltage conversion ratio, but the voltage stress on the power switches is relatively high. The switched capacitor boost converter can provide a high voltage conversion ratio, whereas multiple diode-capacitor units are utilized with low power density. The cascade boost converter can provide a high step-up voltage, whereas this topology is complicated and the efficiency may deteriorate with a multistage structure. The transformer less dual-switch converter has inherent high step-up characteristic with low voltage and current stress on the power switches. This converter is composed of two inductors and two switches sharing the same operation signals. This topology is very simple,and the voltage and current stress on the power switches is low compared with that on the boost converter. One of the main peculiarity of the transformer less dualswitch converter with passive lossless clamping is that its consistency. Else, the inductors and parasitic capacitors will constitute resonance circuit, which induces increased voltage stress and reduced efficiency. Passive lossless clamping is adopted to balance the voltage across the switches and to suppress the resonance. With the passive lossless clamping circuits, low voltage switches can be utilized, and the efficiency of the converter can be improved. Compared with the two stage boost converter, it has the same amount of power switches and passive components. However the converter has the advantages of the voltage stress across power devices is relatively low compared to the secondary stage of the two-stage boost converter and the system stability of the cascade structure is another issue which can be avoided. The voltage conversion ratio remains high, thus making the converter more suitable for step up dc-dc power conversion. The converter is simulated using MATLAB. Output levels are obtained as per the design values for both converter operations. Simulation results conveys the operability of the dual switch converter with passive lossless clamping structure. LITERATURE SURVEY The dc-dc converters with high step up voltage gain is widely used in many applications such as lasers, fuel cell energy conversion systems, X-ray systems, solar cell energy conversion systems, and high 215, IRJET ISO 91:28 Certified Journal Page 224

International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 2 Issue: 9 Dec-215 www.irjet.net p-issn: 2395-72 intensity-discharge lamp ballasts for automobile headlamps. Theoretically, a dc dc boost converter can achieve a high step up voltage gain with an extremely high duty ratio [1] [3].However, in practice, the step-up voltage gain is limited due to the effect of power switches, rectifier diodes, and the equivalent series resistance (ESR) of inductors and capacitors. The conventional boost converter is used to provide a voltage conversion ratio with low voltage gain. It is hard to provide a large voltage conversion ratio, due to a large duty cycle that brings high conduction loss, and the large peak current may impact the capacitors seriously. Various topologies have been developed to provide a high step up voltage gain without an large duty ratio [4]. The isolated converters will boost the voltage by increasing the turns ratio of the high frequency transformer [5]-[6]. However, it may cause increased weight, volume, high switching losses, high electromagnetic interference. And also the leakage inductance should be carefully handled [7]-[9]. Otherwise, there will be a voltage spike across the power switches. The transformer less dc/dc converters are used instead of the isolated converters. The coupled inductors are used to achieve high voltage gain in the transformer less dc/dc converters. By increasing the turn s ratio, high voltage can be easily achieved [1]-[13]. Unfortunately, the leakage inductance of the coupled inductors is also inevitable. And also it may cause high voltage spike, that will increase the voltage stress [14],[15]. The non coupled inductor type transformer less converters are used such as the switched-capacitorinductor converters. A small resonant inductor is used in these converters to limit the current peak caused by the switched capacitors. Here the voltage stress on the switch is smaller than the voltage stress on the switch in conventional boost converter [16]- [18]. The switched inductor multilevel boost converter [19]-[21] is having a single stage dc-dc boost converter topology with very large voltage conversion ratio based on the pwm technique. A high switching frequency is employed to decrease the size of these components. But the voltage stress on power switches are relatively high. The switched capacitor boost converter [22]-[24] can provide a high voltage conversion ratio, where as the multiple diode-capacitor units are utilized with low power density. The cascade boost converter can provide a high step-up voltage, where as this topology is complicated and the efficiency may deteriorate with a multistage structure. Many topologies have been presented to provide a high step-up voltage gain without an extremely high duty ratio [25]-[26]. A dc-dc fly back converter is a very simple structure with a high step-up voltage gain and an electrical isolation, but the active switch of this converter will suffer a high voltage stress due to the leakage inductance of the transformer. Transformer less dc-dc converters, which include the cascade boost type [27] which are complex and having a higher cost. The modified boost type with switched inductor technique is shown in Fig.1 [28] Fig. 1. Modified boost type with switched inductor technique The structure of this converter is very simple. Only one power stage is used in this converter. But it has mainly two issues: 1) Three power devices exist in the current flow path during the switch-on period, and two power devices exist in the current flow path during the switch-off period, and 2) the voltage stress on the active switch is equal to the output voltage. A transformer less dc-dc high step up converter is shown in Fig.2 [29]. Compared with the converter [28], the proposed converter has the following merits: 1) Two power devices exist in the current flow path during the switch-on period, and one 215, IRJET ISO 91:28 Certified Journal Page 225

International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 2 Issue: 9 Dec-215 www.irjet.net p-issn: 2395-72 power device exists in the current-flow path during the switch off period. 2) The voltage stresses on the active switches are less than the output voltage; and 3) under the same operating conditions, including input voltage, output voltage, and output power, the current stress on the active switch during the switchon period is equal to half of the current stress on the active switch of the converter in [28]. The transformer less dual switch converter has an inherent high step-up characteristic with low voltage and current stress on the power switches [29]. However, the converter has very strict requirement of the device parameters consistency. Otherwise, the inductors and capacitors will constitute the resonance circuit, which induces increased voltage stress and reduced efficiency. The improved dual switch converter with passive lossless clamping for high step-up voltage gain is works on the principle of device inconsistency. In the practical conditions the two inductors, the two parasitic capacitors and the switching speed of the two power switches are not exactly equal. Passive lossless clamping is adopted to balance the voltage across the switches and to suppress the resonance. Fig.2 A transformer less dc-dc high step up converter Fig. 3. Shows the Circuit configuration of the improved dual switch converter with passive lossless clamping for high step-up voltage gain. Switches S1 and S2 share the same operation signals; when the switches are turned on simultaneously, inductors L1 and L2 are parallel connected; and when S1 and S2 are turned off, L1 and L2 are series connected. The figure shows the solutions to suppress the resonance by dividing the original output diode D into two diodes D1 and D2, and a capacitor Cc is added to clamp the switches. Fig. 3: Circuit configuration of the improved dual switch converter with passive lossless clamping for high step-up voltage gain The voltage conversion ratio of the conventional boost converter is D/1-D whereas the voltage conversion ratio of the improved dual switch converter with high step-up voltage gain is 1+D/1-D. And also the voltage stress across the switches are half as compared to the transformer less dual switch converter. In order to simplify the design procedure, all the parameters are designed in the ideal conditions, and the switching transition time is too short and can be omitted. SIMULATION RESULTS The simulation of the improved dual switch converter with improved step up voltage gain has been carried out and the simulink model is shown in Fig. 4. An input voltage of 3V and switching frequency of 5 khz is chosen and an output of 1V/1A is obtained. The duty ratios of both the switches are equal to.538 and the corresponding parameters are listed in Table I. 215, IRJET ISO 91:28 Certified Journal Page 226

International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 2 Issue: 9 Dec-215 www.irjet.net p-issn: 2395-72 TABLE I. PARAMETER VALUES OF THE SIMULATED CONVERTER Parameters Values Input Voltage Output Voltage Power Level Switching Frequency L1 and L2 C Cc 3V 1 V 1 W 5kHz 5µH 47 µf 1 pf 31 3 Input Voltage 29 Output Voltage 2-2 output current 2-2 (a) (b) Fig. 4: Simulink model of the converter (c) 215, IRJET ISO 91:28 Certified Journal Page 227

ouyput current output voltage input voltage output voltage, output current input voltage output current output voltage input voltage International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 2 Issue: 9 Dec-215 www.irjet.net p-issn: 2395-72 1.5 Vgs 41 4.933.933.933.933.933.933.934.934.934.934.934 VD1 1-1.933.933.933.933.933.933.934.934.934.934.934 VD2 1-1.933.933.933.933.933.933.934.934.934.934.934 31 3.5 3 29.5 (d) Fig. 5: Simulated key waveforms of the converter 29 15 1 5-5 31 3 Fig. 6: Load regulation of the converter 29 2 1-1 2 1-1 (a) 39 2 1-1 2 1-1 (b) Fig. 7: Line regulation of the converter at (a)v in = 3 V (b) V in = 4V Fig. 5(a). shows the input voltage (3 V), output voltage and output current waveforms. It is clear from Fig. 5(a) that the output current is continuous. It can be noted that the output voltage current is highly increased. The gate pulses applied to the two switches and the inductor current ripples of L 1, L 2 can be seen in Fig. 5(b). Fig. 5(c) shows the voltage stress of the switches and Fig. 5(d) shows the voltage stress of the diodes. The voltage stress of the diodes and the switches are approximately 5 V, i.e., approximately half the output voltage whereas in the conventional transformerless dual switch converter, the voltage stress of the semi-conductor devices are equal to the output voltage. The no load regulation can be seen in Fig. 6. The line regulation at Vin = 3 V and Vin = 4 V are given if Fig 7(a) and Fig. 7(b) respectively. CONCLUSION The main features of the improved dual switch converter with high step-up conversion ratio has been discussed. The main advantages of the converter compared to the two stage boost converter include: 1) The voltage stress across power devices is relatively low compared to the secondary stage of the two-stage boost converter. 2) The system stability of the cascade structure is another big issue; the proposed converter can avoid it. 3) The voltageconversion ratio remains high, thus making the converter more suitable for step-up dc dc power conversion (The simulation of the converter with 3 V input and 1V/1 A output has been carried out using MATLAB software. 215, IRJET ISO 91:28 Certified Journal Page 228

International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-56 Volume: 2 Issue: 9 Dec-215 www.irjet.net p-issn: 2395-72 REFERENCES [1] B.Bryant and M. K. Kazimierczuk, Voltage- loop power-stage transfer functions with MOSFET delay for boost PWM converter operating in CCM, IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 347 353, Feb. 27. [2] X. Wu, J. Zhang, X. Ye, and Z. Qian, Analysis and derivations for a family ZVS converter based on a new active clamp ZVS cell, IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 773 781, Feb. 28. [3] D.C.Lu, K. W. Cheng, and Y. S. Lee, A single-switch continuous conduction- mode boost converter with reduced reverse-recovery and switching losses, IEEE Trans. Ind. Electron., vol. 5, no. 4, pp. 767 776, Aug. 23. [4] K. C. Tseng and C. C. Huang, High step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system, IEEE Trans. Ind. Electron., vol. 61, no. 3, pp. 1311 1319, Mar. 214. [5] Y. Zhou, D. E. Macpherson, W. Blewitt, and D. Jovcic, Comparison of DC DC converter topologies for offshore wind-farm application, in Proc. 6th IET Int. Conf. PEMD, 212, pp. 1 6. [6] S. K. Ki and D. D. Lu, A high step-down transformerless single-stage single-switch AC/DC converter, IEEE Trans. Power Electron., vol. 28, no. 1, pp. 36 45, Jan. 213. [7] S. R. Jang, H. J. Ryoo, S. H. Ahn, J. Kim, and G. H. Rim, Development and optimization of high-voltage power supply system for industrial magnetron, IEEE Trans. Ind. Electron., vol. 59, no. 3, pp. 1453 1461, Mar. 212. [8] Z. W. Ouyang, O. C. Thomsen, and M. A. E. Andersen, Optimal design and tradeoff analysis of planar transformer in high-power DC DC converters, IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 28 281, Jul. 212. [9] D. Chatterjee, A simple leakage inductance identification technique for three-phase induction machines under variable flux condition, IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 441 448, Nov. 212. [1] T. Soong and P. Lehn, A transformerless high boost DC DC converter for use in medium/high voltage applications, in Proc. IEEE IECON, 212, pp. 174 179. [11] Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, Novel high step-up DC DC converter with coupled-inductor and switched-capacitor techniques, IEEE Trans. Ind. Electron, vol. 59, no. 2, pp. 998 17, Feb. 212. [12] R. J. Wai, C. Y. Lin, R. Y. Duan, and Y. R. Chang, High-efficiency DC DC converter with high voltage gain and reduced switch stress, IEEE Trans. Ind. Electron, vol. 54, no. 1, pp. 354 364, Feb. 27. [13] Y. Deng et al., Single-switch high step-up converters with built-in transformer voltage multiplier cell, IEEE Trans. Power Electron, vol. 27, no. 8, pp. 3557 3567, Aug. 212. [14] A. K. Rathore, A. K. S. Bhat, and R. Oruganti, Analysis, design and experimental results of wide range ZVS active-clamped L-L type currentfed DC/DC converter for fuel cells to utility interface, IEEE Trans. Ind. Electron., vol. 59, no. 1, pp. 473 485, Jan. 212 [15] U. R. Prasanna and A. K. Rathore, Small signal analysis and control design of current-fed full-bridge isolated dc/dc converter with activeclamp, in Proc. IEEE ISIE, 212, pp. 59 514. [16] B. R. Lin and J. J. Chen, Analysis and implementation of a soft switching Converter with high-voltage conversion ratio, Proc. IET- Power Electron, vol. 1, no. 3, pp. 386 394, Sep. 28. [17] R. Caro, J. M. Ramirez, and P. M. Garcia-Vite, Novel DC DC multilevel boost converter, in Proc. IEEE PESC, 28, pp. 2146 2151. [18] Y. M. Ye and K. W. E. Cheng, A family of single-stage switchedcapacitor inductor PWM converters, IEEE Trans. Power Electron, vol. 28, no. 11, pp. 5196 525, Nov. 213. [19] M. Mousa, M. Ahmed, and M. Orabi, A switched inductor multilevel boost converter, in Proc. IEEE PECon, 21, pp. 819 823. [2] M. S. B. Ranjana, N. SreeramulaReddy, and R. K. P. Kumar, A novel non-isolated switched inductor floating output DC DC multilevel boost converter for fuel cell applications, in Proc. IEEE SCEECS, 214, pp. 1 5. [21] O. A. Rahim, M. Orabi, E. Abdelkarim, M. Ahmed, and M. Z. Youssef, Switched inductor boost converter for PV applications, in Proc. IEEE APEC, 212, pp. 21 216 [22] M. N. Gitau and C. L. K. Konga, Multilevel switched-capacitor DC DC converter with reduced capacitor bank, in Proc. IEEE IECON, 21 pp. 576 581. [23] D. H. Kim, S. Moon, C. I. Kim, and J. H. Park, Series-connected isolated-switched-capacitor boost converter, in Proc. IEEE IPEMC, 212, pp. 1343 1346. [24] Y. Hinago and H. Koizumi, A switched-capacitor inverter using series/ parallel conversion with inductive load, IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 878 887, Feb. 212. [25] N. P. Papanikolaou and E. C. Tatakis, Active voltage clamp in flyback converters operating in CCM mode under wide load variation, IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 632 64, Jun. 24. [26] B. R. Lin and F. Y. Hsieh, Soft-switching zeta flyback converter with a buck boost type of active clamp, IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2813 2822, Oct. 27. [27] L. Huber and M. M. Jovanovic, A design approach for server power supplies for networking applications, in Proc. IEEE APEC, 2, pp. 1163 1169. [28] B. Axelrod, Y. Berkovich, and A. Ioinovici, Switched-capacitor/ switched-inductor structures for getting transformerless hybrid DC DC PWM converters, IEEE Trans. Circuits Syst. I, Reg. Papers, vol. n2, pp. 687 696, Mar. 28. [29] L. S. Yang, T. J. Liang, and J. F. Chen, Transformerless DC DC converters with high step-up voltage gain, IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3144 3152, Aug. 29. [3] Yu Tang,and Ting Wang Study of An Improved Dual-Switch Converter With Passive Lossless Clamping, IEEE Trans. Ind. Electron, vol.62, no.2, Feb. 21. 215, IRJET ISO 91:28 Certified Journal Page 229