AUTOMOTIVE CURRENT TRANSDUCER HAH3DR 700-S00

Similar documents
AUTOMOTIVE CURRENT TRANSDUCER HAH3DR 700-S02

AUTOMOTIVE CURRENT TRANSDUCER HAH1DR 300-S

AUTOMOTIVE CURRENT TRANSDUCER HC2F100-SN CLIPS

AUTOMOTIVE CURRENT TRANSDUCER HC6F600-S

AUTOMOTIVE CURRENT TRANSDUCER HC6H1000-S

AUTOMOTIVE CURRENT TRANSDUCER DHAB S/15

AUTOMOTIVE CURRENT TRANSDUCER HC6F700-S

AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HAH1DR 200-S

AUTOMOTIVE CURRENT SENSOR HC6H300-S

AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HAH3DR 800-S03/SP2

AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HAH1DRW 300-S

AUTOMOTIVE CURRENT SENSOR HC6H500-S. Datasheet

AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HAH3DR 1100-S07

HC2F100-SN CLIPS AUTOMOTIVE CURRENT TRANSDUCER HC2F100-SN CLIPS. Datasheet

AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY DHAB S/124

AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HAH3DR 800-S0C

AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY DHAB S/157

AUTOMOTIVE CURRENT SENSOR DHAB S/18. Datasheet

AUTOMOTIVE CURRENT SENSOR DHAB S/25. Datasheet

AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HSW S01

AUTOMOTIVE CURRENT TRANSDUCERS OPEN LOOP TECHNOLOGY

Current Transducer CTSR 1-P = 1A

For the electronic measurement of current: DC, AC, pulsed..., with galvanic isolation between the primary and the secondary circuit.

Ref: HLSR 10-P/SP3, HLSR 20-P/SP3, HLSR 40-P/SP3, HLSR 50-P/SP3

Ref: HLSR 10-SM, HLSR 16-SM, HLSR 20-SM, HLSR 32-SM, HLSR 40-SM, HLSR 50-SM

High Performance Current Transducer IT 200-S ULTRASTAB = A. ε L

Ref: HLSR 10-SM/SP33, HLSR 20-SM/SP33, HLSR 32-SM/SP33, HLSR 40-P/SP33, HLSR 50-SM/SP33

Ref: HO 50-S/SP33, HO 100-S/SP33, HO 150-S/SP33, HO 200-S/SP33, HO 250-S/SP33

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

Current transducer FHS 40-P/SP600

HO 50-S/SP30, HO 100-S/SP30, HO 150-S/SP30, HO 200-S/SP30, HO 250-S/SP30 and HO 200-S/SP31

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

I PN. Ref: HO 50-S, HO 100-S, HO 150-S, HO 200-S, HO 240-S, HO 250-S

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

Current Sensor: ACS750xCA-100

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

AUTOMOTIVE CURRENT TRANSDUCER HAB 60-S/SP5

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary circuit and the secondary circuit.

For ultra-high precision measurement of current: DC, AC, pulsed..., with galvanic separation between primary and secondary. Applications.

Current transducer FHS 40-P/SP600

Current Sensor: ACS750xCA-050

For ultra-high precision measurement of current: DC, AC, pulsed..., with galvanic separation between primary and secondary. Applications.

Current Sensor: ACS752SCA-050

For ultra-high precision measurement of current: DC, AC, pulsed..., with galvanic separation between primary and secondary. Applications.

Current Sensor: ACS755SCB-200

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

High Performance Current Transducer ITL 900-T = A

Current Sensor: ACS754SCB-200

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

For ultra-high precision measurement of current: DC, AC, pulsed..., with galvanic separation between primary and secondary. Applications.

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

Voltage transducer DVL 50

For the electronic measurement of voltage: DC, AC, pulsed..., with galvanic isolation between the primary and the secondary circuit.

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

AUTOMOTIVE CURRENT TRANSDUCER FLUXGATE TECHNOLOGY CAB 300-C/SP3-XXX

For the electronic measurement of voltage: DC, AC, pulsed..., with galvanic isolation between the primary and the secondary circuit.

Current Sensor: ACS754xCB-100

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

For ultra-high precision measurement of current: DC, AC, pulsed..., with galvanic separation between primary and secondary. Applications.

Limited Availability Product

For ultra-high precision measurement of current: DC, AC, pulsed..., with galvanic separation between primary and secondary. Applications.

Typical Application VCC IP+ ACS755 GND C F 3 R F

= 1000 V. Voltage transducer DVC 1000-P V P N

Typical Application C BYP C F 3 R F

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

For the electronic measurement of voltage: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

Discontinued Product

Last Time Buy. Deadline for receipt of LAST TIME BUY orders: May 1, 2008.

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

Current Sensor : F02P***S05L

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and secondary circuit.

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

Unipolar voltage - Current output 4-20 ma Ref: DVL 50-UI, DVL 150-UI, DVL 250-UI, DVL 500-UI, DVL 750-UI, DVL 1000-UI, DVL 1500-UI

For the electronic measurement of voltage: DC, AC, pulsed..., with galvanic isolation between the primary and the secondary circuit.

DL2000ID. Specification highlights Symbol Unit Min Typ Max. Features. Applications: 1 ppm linearity. MPS for particles accelerators.

= 600 V. Voltage transducer DVM 600 V PN

Typical Application VCC IP+ ACS755 GND C F 3 R F

V P N. Voltage transducer DVM 2000-B = 2000 V

DS400ID. Specification highlights Symbol Unit Min Typ Max. Features. Applications: Linearity error maximum 1.5 ppm. MPS for particles accelerators

DQ600ID. Specification highlights Symbol Unit Min Typ Max. Features. Applications: Linearity error maximum 1 ppm. MPS for particles accelerators

SPECIFICATION Item no.: T60404-N4646-X764

DS200ID-CD100. Specification highlights Symbol Unit Min Typ Max. Features. Applications: Linearity error maximum 2 ppm. MPS for particles accelerators

DS2000ICLA. Specification highlights Symbol Unit Min Typ Max. Features. Applications: 1 ppm linearity. MPS for particles accelerators.

DS2000UBLA-10V. Features. Applications: 20 ppm linearity. MPS for particles accelerators. 15 ppm offset. Gradient amplifiers for MRI devices

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

For the electronic measurement of current: DC, AC, pulsed..., with galvanic separation between the primary and the secondary circuit.

ACS718. High Isolation Linear Current Sensor IC with 850 µω Current Conductor ACS718. Package: 16-Pin SOICW (suffix MA)

ACS717. High Isolation, Linear Current Sensor IC with 850 µω Current Conductor ACS717. Package: 16-Pin SOICW (suffix MA)

AUTOMOTIVE CURRENT TRANSDUCER CAB 300-C/SP2

IMC-Hall Current Sensor

DM1200ID. Specification highlights Symbol Unit Min Typ Max. Applications: Features. Power measurement and power analysis

Current Sensor Solutions. Hall-IC based. Partners of SSG. Current sensors 2014 Seite: 1

I PM. Current Transducer ITZ 5000-SB FLEX ULTRASTAB = 5000 A

Transcription:

AUTOMOTIVE CURRENT TRANSDUCER HAH3DR 700-S00 Introduction The HAH3DR family, a tri-phase tranducer is for the electronic measurement of DC, AC or pulsed s in high power automotive applications with galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit). The HAH3DR family gives you the choice of having different measuring ranges in the same housing (from ± 100 A up to ± 900 A). Features Open Loop transducer using the effect PCB mounting Low voltage application Unipolar + 5 V DC power supply measuring range up to ± 700 A Maximum RMS primary limited by the busbar, the magnetic core or the ASIC temperature T < + 150 C Operating temperature range: - 40 C < T < + 125 C voltage: full ratiometric (in sensitivity and offset). Principle of HAH3DR Family The open loop transducers uses a effect integrated circuit. The magnetic flux density B, contributing to the rise of the voltage, is generated by the primary to be measured. The to be measured is supplied by a source i.e. battery or generator (Fig. 1). Within the linear region of the hysteresis cycle, B is proportional to: B ( ) = constant (a) x The voltage is thus expressed by: V H = (R H /d) x I x constant (a) x Except for, all terms of this equation are constant. Therefore: V H = constant (b) x The measurement signal V H amplified to supply the user output voltage or. Advantages +V c Exent accuracy Very good linearity Very low thermal offset drift Very low thermal sensitivity drift Wide frequency bandwidth No insertion losses Very fast response time. -V c 0V Isolated output voltage Automotive applications Starter Generators Inverters HEV application EV application DC / DC converter. Fig. 1: Principle of the open loop transducer Page 1/5

Dimensions HAH3DR family (in mm) Bill of materials Electronic schematic Plastic case PBT GF 30 % (UL 94 V0) Magnetic core FeSi wound core Pins Copper alloy tin plated (lead free) Mass 74 g ± 5 % Ip1 HAH3DR 700-S 00 Phase 1 Amplifier 4 3 2 Vc 1 OUT 1 PC Board Interface +5 VDC OUT 1 R L C L >10 kw optional resistor for signal line diagnostic 4 nf < C L < 18 nf EMC protection Nominal value 4.7 nf (C L is an obligation to stabilize and to avoid the undulation of the output signal) Ip2 Phase 2 Amplifier 1 8 7 6 Ref 1 Vc 2 OUT 2 OUT 2 Capacitor of V ref / Capacitor of V c / 1 nf < < 47 nf 47 nf < < 1 mf Ip3 Phase 3 5 E 12 11 Amplifier 10 Ref 2 Vc 3 OUT 3 OUT 3 9 Ref 3 Page 2/5

Absolute maximum ratings Parameter Symbol Unit Operating charcteristics Parameter Symbol Unit HAH3DR 700-S00 Specification Min Typ Max Electrical Data A -700 700 Supply voltage *) V C V 4.75 5.00 5.25 voltage (Analog) 3) V OUT V V OUT = (V C /5) X (2.5 + G X ) @ V C Sensitivity 3) *) G mv/a 2.86 @ V C = 5 V Conditions Current consumption (for 3 phases) *) I C ma 44 50 @ V C = 5 V, @ - 40 C < T A < 125 C Load resistance R L ΚΩ 10 internal resistance R OUT Ω 10 DC to 1 khz Capacitive loading C L nf 4 4.7 18 Ambient operating temperature T A C -40 125 drift versus power supply V OUT PS % 0.5 Sensitivity error *) ε G % Specification Min Typ Max Electrical Data Max primary peak max A 1) Supply continuous over voltage V C V 8 Not operating Performance Data (Phases Coupling influences included) @ 4 Sigma ± 0.5 @ T A ± 1 @ T A, after T cycles Electrical offset voltage *) V OE ± 4 @ T A, @ V C = 5 V Magnetic offset *) V OM mv -7.5 7.5 @ T A, @ V C = 5 V, after ± Global offset voltage *) V O -20.0 20.0 @ T A, @ V C = 5 V, Hysteresis included Average temperature coefficient of V OE TCV OE AV mv/ C -0.15 0.15 @ - 40 C < T < 125 C Average temperature coefficient of G TCG AV %/ C -0.040 ± 0.01 0.040 @ - 40 C < T < 125 C Linearity error *) ε L % -1 1 @ V C = 5 V @, T A, @ I = Response time to 90 % of N step t r µs 4 6 @ di/dt = 100 A/µs Frequency bandwidth 4) BW khz 40 @ -3 db Phase delay -4 0 @ DC to 1 khz voltage noise peak-peak V no pp mv 20 DC to 1MHz 6.5 Conditions Exceeding this voltage may temporarily reconfigure the circuit until next power-on voltage min 0.2 @ V C = 5 V, T A V sz V voltage max 4.8 @ V C = 5 V, T A Maximum reverse polarity 2) ma -80 80 Continuous output I OUT ma -1 1 R L = 10 kω Rms voltage for AC isolation test V d kv 2.5 50 Hz, 1 min, IEC 60664 part1 Isolation resistance R IS MΩ 500 500 V DC- ISO 16750 Electrostatic discharge voltage (HBM) V ESD kv 2 JESD22-A114-B class 2 Ambient storage temperature T S C -50 125 Clearance distance dci mm 3.78 Creepage distance dcp mm 4.78 Notes: *) The parameter with *) will be checked 100% during the calibration phase 1) Busbar temperature must be below 150 C 2) Transducer not protected against reverse polarity. 3) The output voltage V OUT is fully ratiometric. The offset and sensitivity are dependent on the supply voltage V C relative to the following formula: VC 1 5 IP = VOUT with G in (V/A) 2 G VC 4) Tested only with small signal only to avoid excessive heating of the magnetic core. Page 3/5

Global Absolute Error (mv) HAH3DR700-S 700-S00 : Global absolute error (mv) All phases coupling influences included & Specified at 4 Sigma ±100.0 ±90.0 ±80.0 ±70.0 ±60.0 ±50.0 ±40.0 ±30.0 ±20.0 ±10.0 ±0.0-700 -600-500 -400-300 -200-100 0 100 200 300 400 500 600 700 Ip (A) Global error @ 25 C (mv) Global error @ T range (mv) Global absolute error specified at 4 Sigma (A) Globale error @ 25 C (mv) Globale error @ T range (mv) -700 ±40.0 ±85.0 0 ±20.0 ±35.0 700 ±40.0 ±85.0 Page 4/5

noise voltage: The output voltage noise is the result of the noise floor of the elements and the linear I C amplifier gain. Magnetic offset: The magnetic offset is the consequence of an over- on the primary side. It s defined after an excursion of max. Linearity: The maximum positive or negative discrepancy with a reference straight line V OUT = f ( ). Unit: linearity (%) expressed with full scale of max. Linearity is measured on cycle +, O, -, O, + without magnetic offset (average values used). V OUT PERFORMANCES PARAMETERS DEFINITIONS Non linearity example Sensitivity: The Transducer s sensitivity G is the slope of the straight line = f ( ), it must establish the relation: ( ) = V C /5 (G x + 2.5) (*) (*) For all symetrics transducers. Offset with temperature: The error of the offset in the operating temperature is the variation of the offset in the temperature considered with the initial offset at 25 C. The offset variation I OT is a maximum variation the offset in the temperature range: I OT = I OE max - I OE min The Offset drift TCI OEAV is the I OT value divided by the temperature range. Reference straight line Max linearity error Linearity variation in I N % Sensitivity with temperature: The error of the sensitivity in the operating temperature is the relative variation of sensitivity with the temperature considered with the initial offset at 25 C. The sensitivity variation G T is the maximum variation (in ppm or %) of the sensitivity in the temperature range: G T = (Sensitivity max - Sensitivity min) / Sensitivity at 25 C. The sensitivity drift TCG AV is the G T value divided by the temperature range. Response time (delay time) t r : The time between the primary signal and the output signal reach at 90 % of its final value. 90 % I [A] t r I T I S Offset voltage @ = 0 A: Is the output voltage when the primary is null. The ideal value of V O is V C /2 at V C = 5 V. So, the difference of V O -V C /2 is called the total offset voltage error. This offset error can be attributed to the electrical offset (due to the resolution of the ASIC quiescent voltage trimming), the magnetic offset, the thermal drift and the thermal hysteresis. Environmental test specifications See PV test. t [µs] Typical: Theoretical value or usual accuracy recorded during the Design Validation tests. Page 5/5