Each question is worth 2 points, except for problem 3, where each question is worth 5 points.

Similar documents
Each question is worth 4 points. ST07 One-hour Quiz #2 1 3/20/2007

Electronics I ELEC 311/1 BB. Final August 14, hours 6

ITT Technical Institute. ET215 Devices 1. Chapter

ANALOG FUNDAMENTALS C. Topic 4 BASIC FET AMPLIFIER CONFIGURATIONS

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

Homework Assignment 12

Lab 1 - Revisited. Oscilloscope demo IAP Lecture 2 1


SAMPLE FINAL EXAMINATION FALL TERM

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

WINTER 14 EXAMINATION. Model Answer. 1) The answers should be examined by key words and not as word-to-word as given in the

Paper-1 (Circuit Analysis) UNIT-I

Phy 335, Unit 4 Transistors and transistor circuits (part one)

Code No: R Set No. 1

Subject Code: Model Answer Page No: / N

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

Field Effect Transistors

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) MODEL ANSWER

Figure 1: JFET common-source amplifier. A v = V ds V gs

Concepts to be Covered

Course Number Section. Electronics I ELEC 311 BB Examination Date Time # of pages. Final August 12, 2005 Three hours 3 Instructor

Experiment No. 9 DESIGN AND CHARACTERISTICS OF COMMON BASE AND COMMON COLLECTOR AMPLIFIERS

BIPOLAR JUNCTION TRANSISTOR (BJT) NOISE MEASUREMENTS 1

Roll No. B.Tech. SEM I (CS-11, 12; ME-11, 12, 13, & 14) MID SEMESTER EXAMINATION, ELECTRONICS ENGINEERING (EEC-101)

EXPERIMENT 10: SINGLE-TRANSISTOR AMPLIFIERS 11/11/10

R a) Draw and explain VI characteristics of Si & Ge diode. (8M) b) Explain the operation of SCR & its characteristics (8M)

Electronics EECE2412 Spring 2016 Exam #1

MODEL ANSWER SUMMER 17 EXAMINATION 17319

Code: 9A Answer any FIVE questions All questions carry equal marks *****

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

Homework No. 2 Diodes Electronics I. Reading Assignment: Chapters 1 through 4 in Microelectronic Circuits, by Adel S. Sedra and Kenneth C. Smith.

Final Exam: Electronics 323 December 14, 2010

University of Michigan EECS 311: Electronic Circuits Fall 2008 LAB 4 SINGLE STAGE AMPLIFIER

Scheme I Sample. : Second : Basic. Electronics : 70. Marks. Time: 3 Hrs. 2] b) State any. e) State any. Figure Definition.

ITT Technical Institute. ET215 Devices 1. Unit 7 Chapter 4, Sections

Midterm 2 Exam. Max: 90 Points

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

E84 Lab 3: Transistor

Scheme Q.1 Attempt any SIX of following: 12-Total Marks a) Draw symbol NPN and PNP transistor. 2 M Ans: Symbol Of NPN and PNP BJT (1M each)

Lecture 2 Analog circuits...or How to detect the Alarm beacon

Electronic PRINCIPLES

Document Name: Electronic Circuits Lab. Facebook: Twitter:

Homework Assignment 01

Homework Assignment 05

Homework Assignment 06

Electronics EECE2412 Spring 2017 Exam #2

Lab 2: Linear and Nonlinear Circuit Elements and Networks

Lecture 2 Analog circuits. Seeing the light..

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139


EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT

6. Explain control characteristics of GTO, MCT, SITH with the help of waveforms and circuit diagrams.

Physics 481 Experiment 3

PartIIILectures. Multistage Amplifiers

SIR PADAMPAT SINGHANIA UNIVERSITY

LM79XX Series 3-Terminal Negative Regulators

ECE 310L : LAB 9. Fall 2012 (Hay)

OBJECTIVE TYPE QUESTIONS

Homework Assignment 07

Performance-based assessments for semiconductor circuit competencies

ELC224 Final Review (12/10/2009) Name:

LM117HV/LM317HV 3-Terminal Adjustable Regulator

4 Transistors. 4.1 IV Relations

School of Sciences. ELECTRONICS II ECE212A 2 nd Assignment

ECE 3455: Electronics Section Spring Final Exam

LM150/LM350A/LM350 3-Amp Adjustable Regulators

Summary. Electronics II Lecture 5(b): Metal-Oxide Si FET MOSFET. A/Lectr. Khalid Shakir Dept. Of Electrical Engineering

ELC 4396 RF/Microwave Circuits I Fall 2011 Final Exam December 9, 2011 Open Book/Open Notes 2 hours

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

VALLIAMMAI ENGINEERING COLLEGE

Name: Date: Score: / (75)

Experiment #7: Designing and Measuring a Common-Emitter Amplifier

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

UNIT I - TRANSISTOR BIAS STABILITY

Physics 116A Fall 2000: Final Exam

LABORATORY #3 QUARTZ CRYSTAL OSCILLATOR DESIGN

LM723/LM723C Voltage Regulator

Electronics and Instrumentation Name ENGR-4220 Fall 1998 Section Quiz 2

Analog Electronics. Electronic Devices, 9th edition Thomas L. Floyd Pearson Education. Upper Saddle River, NJ, All rights reserved.

Chapter 31 Alternating Current

Experiment #8: Designing and Measuring a Common-Collector Amplifier

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road QUESTION BANK

EE105 Fall 2015 Microelectronic Devices and Circuits

BJT Amplifier. Superposition principle (linear amplifier)

LM138/LM238 LM338 THREE-TERMINAL 5 A ADJUSTABLE VOLTAGE REGULATORS

University of North Carolina, Charlotte Department of Electrical and Computer Engineering ECGR 3157 EE Design II Fall 2009

Homework Assignment 01

ENGR4300 Test 3A Fall 2002

Supertex inc. AN-D30. Off-Line 5.0V Output Non-Isolated Linear Regulator. Application Note

Calhoon MEBA Engineering School. Study Guide for Proficiency Testing Industrial Electronics

LM117/LM317A/LM317 3-Terminal Adjustable Regulator

CHAPTER 6: ALTERNATING CURRENT

Chapter 6: Field-Effect Transistors

Electronics EECE2412 Spring 2018 Exam #2

(a) BJT-OPERATING MODES & CONFIGURATIONS

EE 330 Laboratory 8 Discrete Semiconductor Amplifiers

Chapter 6. BJT Amplifiers

Unit/Standard Number. LEA Task # Alignment

Homework Assignment 07

Industrial Electricity. Answer questions and/or record measurements in the spaces provided.

Transcription:

Name: Date: DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 Spring Term 2007 Quiz 1 6.101 Introductory Analog Electronics Laboratory NOTE: USE CLOSEST 5% TOLERANCE RESISTOR VALUES FOR ALL RESISTORS. NOTE: SHOW ALL CALCULATIONS FOR ALL ANSWERS BUT THE MOST OBVIOUS! [If you want credit for work based on wrong answers!] Please look through the whole quiz before beginning. There are lots of questions, but most of them are very easy. Some even involve just copying information given right here in the quiz! It s always good test-taking procedure to look over the whole quiz before deciding where to start, and so you can plan your time. Each question is worth 2 points, except for problem 3, where each question is worth 5 points. Problem 1: / 24 Problem 2: / 16 Problem 3: / 15 Problem 4: / 22 Problem 5: / 24 Total: /101 Grade in %:

C=1000 pf; L = 100 μh; R= 10 Ω R C L Z = R + j 1 ωl ωc 1a. For the series circuit above, what kind of source should be used to drive it? 1b. Draw such a source on the schematic above and label it. 1c. What kind of response do we expect from this type of circuit; i.e. what will change as we vary the frequency of the source from below resonance through resonance to above resonance? 1d. Under what conditions will the impedance expression above be at a minimum? [Use math symbols, not numbers, to answer this!] 1e. Write an expression for the current in this circuit using Ohm s law and the impedance expression above. 1f. What are Ohm s first and middle names? 1g. Under what conditions will the expression you wrote in 1e above be a maximum? [Use math, not numbers.] 1h. Under what conditions will the expression you wrote in 1e above be 3 db down from the maximum in 1g? [Math] 1i. What is the resonant frequency of the circuit above? [in Hz, not radians] 1j. What is the bandwidth of the circuit above? [Hz] 1k. What are the upper and lower 3dB frequencies for this circuit? [Hz] 1l. What is the Q of this resonant circuit?

2a. Draw a schematic for a full-wave rectifier using two real diodes with a V F = 0.7 volt, a power transformer whose primary is designed for 120 V RMS 60 Hz input and whose secondary is designed to put out 18 VCT under any load conditions [zero source resistance]. Use a 1000 μf polarized electrolytic filter capacitor on the output, in parallel with a load resistor of value R L. 2b. To what value of voltage will the capacitor charge when there is no load current? 2c. How much load current can we draw from this power supply [through R L ] without exceeding an output ripple current of 1 volt peak-to-peak? 2d. What is the average value of the DC output voltage of this power supply when the current in 2c is being drawn from the supply? 2e. What should be the voltage rating of the electrolytic capacitor? 2f. Now remove the load resistor and substitute a Zener regulator with a series current-limiting resistor and a 6.2 Volt Zener diode with a 5Ω dynamic internal resistance to ground. Choose a series resistor that is large enough to limit the output current to the value you found in question 2c. Draw a schematic below. In your schematic, replace the transformers, diodes, and filter capacitor with a DC voltage source in series with a ripple source [AC] and the series current limiting resistor; and use these to drive the Zener. Replace the Zener with a DC source in series with the Zener s 5Ω dynamic impedance. 2g. What is the value of the series current limiting resistor? 2h. Assuming that the load current plus the Zener current equals the value you found in 2c, and using your schematic from 2f, calculate the value of ripple voltage that will appear across the load.

NOTE: Each question for problem 3 is worth 5 points. + 50 V DC R 100 Ω C C D 1 V IN = 100 mv, 1000 Hz D 2 D 3 V OUT D 4 3a. In the figure above, assume that each diode has a V F of 0.6 volts. If R is adjusted to 47.6 kω, then what is the small-signal [incremental] diode resistance for each diode? [The temperature is 25 o C.] 3b. Assuming that the reactance of both capacitors is 0 Ω at 1000 Hz, then what will be the AC output voltage of this circuit? 3c. What value will the rheostat have to be if we want to reduce the output voltage to 20 mv?

+20V 10 ma R 2 C 1+ 2N3904 + V in R 1 R E + V out - - 4a. What is the configuration of the transistor amplifier above? 4b. Given that β F = 200 and β o = 150, what is the DC base current I B of the transistor? 4c. What value is required for R E to make V RE = V CE? 4d. If the current through R 2 is 100 μa, what is the value required for R 1, assuming that V BE = 0.7 V? 4e. What is the value of R 2? 4f. What is the input impedance to this transistor amplifier, ignoring the effects of R 1 and R 2? 4g. Now find the input impedance including the effects of R 1 and R 2. 4h. What value of C is required for a 3dB point at 10 Hz? 4i. What is the output impedance of this amplifier? 4j. What is the approximate voltage gain of this amplifier? 4k. Draw the load line for this amplifier on the transistor output characteristics on the next page. Label the value of the quiescent base current curve, I B, and mark the Q-point.

I c (ma) 25 20 15 10 5 0 0 5 10 15 20 25 V CE Figure by MIT OpenCourseWare.

+25 V I D = 4.2 ma R D D + 0.1 μf G S 2N5459 + v in - 1.5 MΩ R S = 470 Ω v out - [NOTE: Essential characteristics for this JFET are shown on the next page.] 5a. What is I DSS for this JFET at V DS = 10 volts? 5b. What is V GS[OFF} for this JFET? 5c. What is the quiescent value of V GS for this amplifier? 5d. Find a standard value for R D that makes V RD equal to V DS. 5e. What is the output impedance of this amplifier? 5f. What is the input impedance of this amplifier? 5g. What is the configuration of this amplifier? 5h. What is f LO, the low frequency 3dB point for this amplifier? 5i. What is the voltage gain for this amplifier? 5j. What would be the voltage gain for this amplifier if R S were bypassed by a BFC? 5k. Draw the load line for this amplifier on the JFET characteristics on the next page. Label the Q- point, and mark the I D and V DS Q-point values on the appropriate axes. 5l. Name three reasons for preferring a JFET over a BJT.

~ V GS(off) = -5.8 Volts 10 V GS = 0 8 I D, Drain current (ma) 6 4-1V -2V 2-3V -4V 0 0-5V 5 10 15 20 25 V DS, Drain-source voltage (volts) Typical drain characteristics. Figure by MIT OpenCourseWare.