Introduction to oscilloscope. and time dependent circuits

Similar documents
ENGR 1110: Introduction to Engineering Lab 7 Pulse Width Modulation (PWM)

Purpose: 1) to investigate the electrical properties of a diode; and 2) to use a diode to construct an AC to DC converter.

The University of Jordan Mechatronics Engineering Department Electronics Lab.( ) Experiment 1: Lab Equipment Familiarization

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope.

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

Physics 310 Lab 2 Circuit Transients and Oscilloscopes

Lab 1: Basic Lab Equipment and Measurements

Experiment 5 The Oscilloscope

2 Oscilloscope Familiarization

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 4. Alternating Current Measurement

EC-3: Capacitors and RC-Decay

Exp. #2-6 : Measurement of the Characteristics of,, and Circuits by Using an Oscilloscope

EE 201 Function / Arbitrary Waveform Generator and Oscilloscope Tutorial

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17

Lab 8 - INTRODUCTION TO AC CURRENTS AND VOLTAGES

Physics 323. Experiment # 1 - Oscilloscope and Breadboard

total j = BA, [1] = j [2] total

PHYSICS 221 LAB #6: CAPACITORS AND AC CIRCUITS

Oscilloscope Measurements

AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE

Name: First-Order Response: RC Networks Objective: To gain experience with first-order response of RC circuits

LAB 7: THE OSCILLOSCOPE

Experiment 8: An AC Circuit

On-Line Students Analog Discovery 2: Arbitrary Waveform Generator (AWG). Two channel oscilloscope

University of Portland EE 271 Electrical Circuits Laboratory. Experiment: Inductors

CHAPTER 6. Motor Driver

Laboratory 3 (drawn from lab text by Alciatore)

Laboratory Equipment Instruction Manual 2011

Experiment 2. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

EC310 Security Exercise 20

ECE65 Introduction to the Function Generator and the Oscilloscope Created by: Eldridge Alcantara (Spring 2007)

ENG 100 Lab #2 Passive First-Order Filter Circuits

Experiment 3. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

University of Jordan School of Engineering Electrical Engineering Department. EE 204 Electrical Engineering Lab

ECE 2274 Lab 1 (Intro)

Lab E5: Filters and Complex Impedance

Lab 9 - INTRODUCTION TO AC CURRENTS AND VOLTAGES

EENG-201 Experiment # 4: Function Generator, Oscilloscope

Equipment and materials to be checked out from stockroom: ECE 2210 kit, optional, if available. Analog BK precision multimeter or similar.

PHY152 Experiment 4: Oscillations in the RC-Circuits (Measurements with an oscilloscope)

DC CIRCUITS AND OHM'S LAW

Lab #11 Rapid Relaxation Part I... RC and RL Circuits

INTRODUCTION TO AC FILTERS AND RESONANCE

Tektronix digital oscilloscope, BK Precision Function Generator, coaxial cables, breadboard, the crystal earpiece from your AM radio kit.

Oscilloscope Operation. Visualizing Signals and Making Measurements

EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment

UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Electrical and Computer Engineering. ECE 2A & 2B Laboratory Equipment Information

AC Measurements with the Agilent 54622D Oscilloscope

University of California, San Diego Department of Electrical and Computer Engineering

Waveform Generators and Oscilloscopes. Lab 6

Experiment #2: Introduction to Lab Equipment: Function Generator, Oscilloscope, and Multisim

LAB 1: Familiarity with Laboratory Equipment (_/10)

DC and AC Circuits. Objective. Theory. 1. Direct Current (DC) R-C Circuit

Press Cursors and use the appropriate X and Y functions to measure period and peak-peak voltage of the square wave.

CPE 310L EMBEDDED SYSTEM DESIGN LABORATORY

Introduction to Electronic Equipment

Oscilloscope How To.

University of Utah Electrical & Computer Engineering Department ECE 2210/2200 Lab 4 Oscilloscope

PHYS 235: Homework Problems

Group: Names: (1) In this step you will examine the effects of AC coupling of an oscilloscope.

Lab 3 DC CIRCUITS AND OHM'S LAW

Sonoma State University Department of Engineering Science Spring 2017

ECE 53A: Fundamentals of Electrical Engineering I

Exercise 1: AC Waveform Generator Familiarization

Name EET 1131 Lab #2 Oscilloscope and Multisim

Experiment # 1 Introduction to Lab Equipment

Department of Electrical & Computer Engineering Technology. EET 3086C Circuit Analysis Laboratory Experiments. Masood Ejaz

332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title: Function Generators and Oscilloscopes Suggested Equipment:

EECE208 INTRO To ELECTRICAL ENG LAB. LAB 2. Instrumentation

LAB I. INTRODUCTION TO LAB EQUIPMENT

Performance-based assessments for AC circuit competencies

Oscilloscope and Function Generators

Exercise 4 - THE OSCILLOSCOPE

Sirindhorn International Institute of Technology Thammasat University

Faculty of Engineering, Thammasat University

Ph 3455 The Franck-Hertz Experiment

The oscilloscope and RC filters

Lab 1 - Analogue and Digital Signals

10 Electromagnetic Interactions

Electric Circuit II Lab Manual Session #1

AME140 Lab #2 INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS

Name: (oscilloscope, function generator, and a bit more on voltage dividers) Monday, September 8 (section 401); Tuesday, September 9 (section 402)

2 AC and RMS. To pass this lab you must solve tasks 1-2. Tasks 3 and 4 are included in the grading of the course.

Laboratory Exercise 6 THE OSCILLOSCOPE

Notes on Experiment #1

Name Date: Course number: MAKE SURE TA & TI STAMPS EVERY PAGE BEFORE YOU START EXPERIMENT 10. Electronic Circuits

Lab 4 OHM S LAW AND KIRCHHOFF S CIRCUIT RULES

Experiment 9 AC Circuits

Lab 13 AC Circuit Measurements

Lab 6 Instrument Familiarization

Physics 334 Notes for Lab 2 Capacitors

General Construction & Operation of Oscilloscopes

Introduction to basic laboratory instruments

Oscilloscope. 1 Introduction

Introduction to Basic Laboratory Instruments

ENGR 210 Lab 6 Use of the Function Generator & Oscilloscope

Sirindhorn International Institute of Technology Thammasat University at Rangsit

Lab: INTRODUCTION TO THE WAVEFORM GENERATOR AND THE OSCILLOSCOPE

CPE 100L DIGITAL LOGIC DESIGN I DESIGN LABORATORY LABORATORY 1 LAB SAFETY QUIZ & LAB EQUIPMENT USE TUTORIAL UNIVERSITY OF NEVADA, LAS VEGAS GOALS:

Transcription:

Physics 9 Intro to oscilloscope, v.1.0 p. 1 NAME: SECTION DAY/TIME: TA: LAB PARTNER: Introduction to oscilloscope and time dependent circuits Introduction In this lab, you ll learn the basics of how to use an oscilloscope. Then you ll investigate time dependent circuits. When dealing with capacitors and inductors in DC circuits, it s easy to get lost in mathematics, without understanding what s going on conceptually. These questions and lab activities are designed to help you develop an understanding of these circuits, allowing you to address conceptual questions without plugging through unnecessary math. You ll also see what these circuit components look like in real life. Part I of this experiment, on the basics of the oscilloscope, should take approximately 30 minutes. The rest of your time in lab should be spent working on Part II, on the time dependent RC and LR circuits. (Don t worry if you aren t fully comfortable with the scope by the end of Part I. You ll get more practice in Part II.) Part I: Oscilloscope Basics Activity 1: Reset the oscilloscope Turn on the oscilloscope, and disconnect any probes plugged into the Channel 1 (CH 1) input connector. Set the scope to display Ch. 1 only. To display Ch. 1, press the CH 1 MENU button, and Ch. 1 will appear in yellow text at the bottom left of the screen. If you need to remove Ch. 2, press the CH 2 MENU button, and blue-text Ch. 2 will disappear from the screen. Set the CH 1 coupling mode switch to ground (GND), which will ground the Ch. 1 input.

Physics 9 Intro to oscilloscope, v.1.0 p. 2 (That is, the Ch. 1 input is connected directly to GND inside the unit). To do this, you must have the CH 1 menu displayed on the screen. If it is not displayed, press the CH 1 MENU button. The top menu item is Coupling : pushing the button to the right of that item cycles among DC, AC, and Ground. Choose Ground. Since channel 1 is now grounded to zero volts, the oscilloscope should display a trace that reads zero on the vertical axis. If it doesn t... Adjust the channel 1 vertical POSITION knob so that the oscilloscope trace displays reads 0 volts. What the oscilloscope does The oscilloscope graphs voltage vs. time. For most measurements, the trace sweeps rightward across the screen at a constant rate. As you can see, when the beam gets to the right-hand side of the screen, it jumps back to the left-hand side. In this way, the horizontal axis shows time. When a probe is plugged into the CH 1 input connector, the vertical axis shows the potential difference i.e., the voltage between the two wires coming out of that probe. Activity 2: Measuring DC voltages, and using the VOLTS/DIV setting The point of this brief activity is to practice measuring a voltage with the oscilloscope, and to get a feel for what the VOLTS/DIV control does. Make sure the probe magnification is set to 1X. To do this, use the Probe menu item (fourth from the top), which cycles through 1X, 10X, 100X, and 1000X. Make sure that the Volts/Div menu choice, third from the top, is set to Coarse. (It cycles between Coarse and Fine.) Set the vertical scale to 2 V/Div using the VOLTS/DIV knob. The current setting is displayed

Physics 9 Intro to oscilloscope, v.1.0 p. 3 in the bottom left of the screen. Set the CH 1 coupling mode to DC, again using the top menu item. Set the oscilloscope to trigger on Ch. 1. (We will discuss triggering in detail below. For now ) Press the TRIG MENU button. Source is the second menu item, and Coupling is the fifth menu item. Now use the oscilloscope and cables provided to measure the voltage across a 1.5-volt battery. Make sure you understand what the VOLTS/DIV setting is doing. Students often err in thinking in terms of DIV/VOLT instead of VOLT/DIV. 1. To get a more precise reading of the battery s voltage, should you turn the VOLTS/DIV knob clockwise or counterclockwise? Why? Try it, to get a feel for how much precision can be gained. Activity 3: Measuring AC voltages, and the SEC/DIV setting Now you ll practice using an AC power supply, and you ll examine how the SEC/DIV knob can be useful. The AC means Alternating Current that is, the voltage put out by the power supply oscillates (alternates) with a frequency that you set. Set SEC/DIV to 0.5 milliseconds. This value is displayed at the bottom middle of the screen in white letters.

Physics 9 Intro to oscilloscope, v.1.0 p. 4 Set the CH 1 VOLTS/DIV to 5. Set the CH 1 coupling mode to AC, again using the top menu item. Turn on the AC signal generator. Set it to sinusoidal wave, of frequency 1000 Hz (i.e., 1.0 khz). To do this, set the FREQ MULT to 100, and then set the FREQ to 10 to get 1000 Hz. Set the signal generator s output amplitude to 10 V. To do this, set the RANGE to 1V-10V, and then adjust the FINE knob all the way clockwise. Also make sure that the DC OFFSET is off. Don t yet connect the AC signal generator to the oscilloscope. First complete this question: 2. When you use the oscilloscope to measure the voltage produced by this AC signal generator, what will the screen look like? Sketch your detailed prediction below, paying attention to the amplitude and wavelength. Now connect the AC power supply output to the Ch. 1 input. If your prediction was wrong, see if you can figure out why, or get help from your TA. Sketch the actual screen display using a dashed line. 3. To get a more precise measurement of the period of the oscillating voltage, should you turn the SEC/DIV knob clockwise or counterclockwise? Try it, and explain.

Physics 9 Intro to oscilloscope, v.1.0 p. 5 Part II: Time dependent RC and LR circuits NOTE: The remainder of the lab is probably too long for the time you have left; your TA will direct you to which parts of the lab you must complete. Set SEC/DIV to 0.5 seconds. Set CH 1 VOLTS/DIV to 0.5 volts. Set the Ch. 1 coupling to DC. In all of the experiments that follow, you ll build a simple circuit, and then use the oscilloscope probe to measure the voltage (potential difference) across a circuit element as a function of time. For instance, this set-up shows how you d measure the voltage across the resistor in an RC circuit. Notice that the circuit starts out open ; current cannot yet flow around it. You ll close the circuit by touching wire 1 to wire 2. 1. Consider a simple RC circuit, with the battery, resistor, and capacitor connected in series. Suppose you want to use the oscilloscope to measure the current through this circuit as a function of time. How can you do it? (Remember, the oscilloscope can only be used to graph the voltage across one or more circuit elements.) We want the graph to have the right general shape; but it need not be scaled properly. In other words, it can be too tall or too short, as long as it has the right shape. 2. For this RC circuit, how can you get the oscilloscope to measure the charge on the capacitor as a function of time? 3. Suppose the capacitor is initially uncharged, and the circuit is closed at time t = 0. As your prediction, draw a rough sketch of the voltage across the resistor as a function of time, and explain your reasoning.

Physics 9 Intro to oscilloscope, v.1.0 p. 6 Now do the experiment, using a 1.2-volt rechargable battery, a microfarad (10 6 F) capacitor, and a megaohm (1 MΩ = 10 6 Ω) resistor. The 1 MΩ resistor is brown and labeled 1M. If the actual result differs from your prediction, sketch it on the graph as a dashed line, and explain what s going on below. Before closing the circuit, make sure the capacitor is discharged, as demonstrated by your TA. Each time you redo the experiment, discharge the capacitor again, so that it starts out with zero charge. TECHNICAL NOTE: because the oscilloscope has a 1 MΩ resistor at its input, which is in parallel with the 1 MΩ resistor in your circuit, the equivalent resistance of your circuit with the scope attached is (1/2)MΩ. Hence the time constant for your circuit will be half of what you were expecting. We are not concerned with this for the experiment. 4. Same as question 3, but now consider the voltage across the capacitor as a function of time. Graph and explain your prediction. Now run the experiment. Re-graph and re-explain, if the results differ from your prediction. How is the voltage across the capacitor related to the voltage across the resistor as a function of time? Explain.

Physics 9 Intro to oscilloscope, v.1.0 p. 7 5. Now consider an LR circuit, in which a battery, a resistor, and an inductor are hooked up in series. As you saw in question 1 above, graphing the voltage vs. time across the resistor tells you the current through the circuit as a function of time. That s because the voltage across the resistor is proportional to the current ( V = ir). If the circuit is closed at time t = 0, what does the voltage vs. time graph across the resistor look like? Sketch and explain your prediction. To do the experiment, replace the capacitors with a 4H inductor, and replace the mega-ohm resistor with a 10 Ω resistor. The 10-Ω resistor is marked with bands that are brown, black, and black, which encodes that this is a 10-Ω resistor. (There is also a gold band on the opposite end that shows the tolerance of the resistor how close it is guaranteed to be to its nominal value of 10.0 Ω.) Remember to put the oscilloscope probe across the resistor, not across the inductor. For best results, you may want to change the SEC/DIV setting to.1 seconds or even 50 milliseconds (ms). Also, lower the VOLTS/DIV setting to 50 millivolts. Does the graph come out as you expected? 6. Your inductor has an inductance of 4H and a resistance of about 300Ω. As you saw in question 5, the circuit s current eventually settles to some final value. If you replaced this inductor with a 300Ω resistor, how would the graph of current vs. time differ from the one in question 5? Specifically, (a) would the current shoot up to its final value more abruptly or less abruptly than it did in question 5? Explain.

Physics 9 Intro to oscilloscope, v.1.0 p. 8 (b) Would the current settle at the same final value as it did in question 5? Or would it settle at a higher or lower final value? Explain. You need not test your predictions.