CONTENTS. Chapter 1. Introduction to Power Conversion 1. Basso_FM.qxd 11/20/07 8:39 PM Page v. Foreword xiii Preface xv Nomenclature

Similar documents
Regulator 2.dwg: a simplified linear voltage regulator. This is a multi-sheet template:

Fundamentals of Power Electronics

Chapter 10 Switching DC Power Supplies

Pulse-Width Modulated DC-DC Power Converters Second Edition

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS

Conventional Single-Switch Forward Converter Design

Designing A Medium-Power Resonant LLC Converter Using The NCP1395

AN TEA1836XT GreenChip SMPS control IC. Document information

Constant-Frequency Soft-Switching Converters. Soft-switching converters with constant switching frequency

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

1. The current-doubler rectifier can be used to double the load capability of isolated dc dc converters with bipolar secondaryside

Chapter 3 : Closed Loop Current Mode DC\DC Boost Converter

POWER ELECTRONICS. Converters, Applications, and Design. NED MOHAN Department of Electrical Engineering University of Minnesota Minneapolis, Minnesota

Integrated Power Electronic Converters and Digital Control

High-Efficiency Forward Transformer Reset Scheme Utilizes Integrated DC-DC Switcher IC Function

Vishay Siliconix AN724 Designing A High-Frequency, Self-Resonant Reset Forward DC/DC For Telecom Using Si9118/9 PWM/PSM Controller.

CHAPTER 3. SINGLE-STAGE PFC TOPOLOGY GENERALIZATION AND VARIATIONS

A New Small-Signal Model for Current-Mode Control Raymond B. Ridley

Analog Filter and. Circuit Design Handbook. Arthur B. Williams. Singapore Sydney Toronto. Mc Graw Hill Education

DC/DC Converters for High Conversion Ratio Applications

In addition to the power circuit a commercial power supply will require:

FL7730 Single-Stage Primary-Side-Regulation PWM Controller for PFC and LED Dimmable Driving

FL7732 Single-Stage PFC Primary-Side-Regulation Offline LED Driver

Lecture 4 ECEN 4517/5517

Modeling The Effects of Leakage Inductance On Flyback Converters (Part 2): The Average Model

MAXREFDES116# ISOLATED 24V TO 5V 40W POWER SUPPLY

Keywords: No-opto flyback, synchronous flyback converter, peak current mode controller

Analyzing The Effect Of Voltage Drops On The DC Transfer Function Of The Buck Converter

A Novel Single-Stage Push Pull Electronic Ballast With High Input Power Factor

Chapter 6: Converter circuits

Power supplies are one of the last holdouts of true. The Purpose of Loop Gain DESIGNER SERIES

EUP3452A. 2A,30V,300KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

S. General Topological Properties of Switching Structures, IEEE Power Electronics Specialists Conference, 1979 Record, pp , June 1979.

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS

EUP A,40V,200KHz Step-Down Converter

Features MIC2193BM. Si9803 ( 2) 6.3V ( 2) VDD OUTP COMP OUTN. Si9804 ( 2) Adjustable Output Synchronous Buck Converter

A Merged Interleaved Flyback PFC Converter with Active Clamp and ZVZCS

GENERALLY, a single-inductor, single-switch boost

Analysis and Design of Multioutput Flyback Converter

A Control Scheme for an AC-DC Single-Stage Buck-Boost PFC Converter with Improved Output Ripple Reduction

LeMeniz Infotech. 36, 100 Feet Road, Natesan Nagar, Near Indira Gandhi Statue, Pondicherry Call: , ,

The First Step to Success Selecting the Optimal Topology Brian King

MIC2196. Features. General Description. Applications. Typical Application. 400kHz SO-8 Boost Control IC

AN726. Vishay Siliconix AN726 Design High Frequency, Higher Power Converters With Si9166

Single Switch Forward Converter

MAXREFDES121# Isolated 24V to 3.3V 33W Power Supply

466 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 13, NO. 3, MAY A Single-Switch Flyback-Current-Fed DC DC Converter

Single-Stage Power Electronic Converters with Combined Voltage Step-Up/Step-Down Capability

Simulation Comparison of Resonant Reset Forward Converter with Auxiliary Winding Reset Forward Converter

SINGLE-STAGE HIGH-POWER-FACTOR SELF-OSCILLATING ELECTRONIC BALLAST FOR FLUORESCENT LAMPS WITH SOFT START

(ESC) , 49 51, 53 54, 59, 155, 161 error amplifier (EA) 53, 56 59, , , 239, 262 ESR, see equivalent series

EVALUATION KIT AVAILABLE 28V, PWM, Step-Up DC-DC Converter PART V IN 3V TO 28V

EUP3410/ A,16V,380KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

Under the Hood of Flyback SMPS Designs

Using an automated Excel spreadsheet to compensate a flyback converter operated in current-mode. Christophe Basso, David Sabatié

Application Note, V1.1, Apr CoolMOS TM. AN-CoolMOS-08 SMPS Topologies Overview. Power Management & Supply. Never stop thinking.

EUP A,30V,500KHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

AC-DC SMPS: Up to 15W Application Solutions

Testing and Stabilizing Feedback Loops in Today s Power Supplies

FEATURES DESCRIPTION APPLICATIONS PACKAGE REFERENCE

Zero Voltage Switching in a Low Voltage High Current DC-DC Converter

INVERTING BUCK-BOOST DCDC CONVERTER DESIGN CHALLENGES

Meeting The Standby Power Specification In LED TVs With A Single Power Supply

EUP3484A. 3A, 30V, 340KHz Synchronous Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

Current-mode PWM controller

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Incorporating Active-Clamp Technology to Maximize Efficiency in Flyback and Forward Designs

Improvements of LLC Resonant Converter

A Novel Concept in Integrating PFC and DC/DC Converters *

PS7516. Description. Features. Applications. Pin Assignments. Functional Pin Description

Exclusive Technology Feature. Leakage Inductance (Part 2): Overcoming Power Losses And EMI. Leakage Inductance-Induced Ringing. ISSUE: November 2015

EUP V/12V Synchronous Buck PWM Controller DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit. 1

4.5V to 32V Input High Current LED Driver IC For Buck or Buck-Boost Topology CN5816. Features: SHDN COMP OVP CSP CSN

SRM TM A Synchronous Rectifier Module. Figure 1 Figure 2

Techcode. 1.6A 32V Synchronous Rectified Step-Down Converte TD1529. General Description. Features. Applications. Package Types DATASHEET

Chapter 4 SOFT SWITCHED PUSH-PULL CONVERTER WITH OUTPUT VOLTAGE DOUBLER

Contents. 1. Essential Electronics 1. Preface Acknowledgements

Lecture 6 ECEN 4517/5517

MIC2171. General Description. Features. Applications. Typical Application. 100kHz 2.5A Switching Regulator

Transformers for Offline Flyback Converters

How to Design Multi-kW Converters for Electric Vehicles

15 W HVDCP Quick Charge 3.0 Compatible CV/CC Charger

Exclusive Technology Feature. Loop Control: Hand Calculations or Automation? Stabilizing CCM Flyback Converters. ISSUE: December 2009

Handbook of Power Management Circuits

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

High Performance ZVS Buck Regulator Removes Barriers To Increased Power Throughput In Wide Input Range Point-Of-Load Applications

Features MIC2194BM VIN EN/ UVLO CS OUTP VDD FB. 2k COMP GND. Adjustable Output Buck Converter MIC2194BM UVLO

Power Management & Supply. Design Note. Version 2.3, August 2002 DN-EVALSF2-ICE2B765P-1. CoolSET 80W 24V Design Note for Adapter using ICE2B765P

DPA-Switch DC-DC Forward

POWER- SWITCHING CONVERTERS Medium and High Power

CHAPTER 3 DC-DC CONVERTER TOPOLOGIES

Load Transient Tool User Manual

Power Management & Supply. Application Note. Version 3.0, Oct AN-EVALSF2-ICE2B765P2-3. CoolSET 80W 24V Evaluation Board using ICE2B765P2

Introductory Electronics for Scientists and Engineers

idesyn id8802 2A, 23V, Synchronous Step-Down DC/DC

A Highly Versatile Laboratory Setup for Teaching Basics of Power Electronics in Industry Related Form

FL103 Primary-Side-Regulation PWM Controller for LED Illumination

LED Driver Specifications

EUP A,30V,1.2MHz Step-Down Converter DESCRIPTION FEATURES APPLICATIONS. Typical Application Circuit

Boundary Mode Offline LED Driver Using MP4000. Application Note

Transcription:

Basso_FM.qxd 11/20/07 8:39 PM Page v Foreword xiii Preface xv Nomenclature xvii Chapter 1. Introduction to Power Conversion 1 1.1. Do You Really Need to Simulate? / 1 1.2. What You Will Find in the Following Pages / 2 1.3. What You Will Not Find in this Book / 3 1.4. Converting Power with Resistors / 3 1.4.1. Associating Resistors / 3 1.4.2. A Closed-Loop System / 5 1.4.3. Deriving Useful Equations with the Linear Regulator / 7 1.4.4. A Practical Working Example / 10 1.4.5. Building a Simple Generic Linear Regulator / 14 1.4.6. Conclusion on Linear Regulators / 17 1.5. Converting Power with Switches / 18 1.5.1. A Filter Is Needed / 19 1.5.2. Current in the Inductance, Continuous or Discontinuous? / 21 1.5.3. Charge and Flux Balance / 25 1.5.4. Energy Storage / 27 1.6. The Duty Cycle Factory / 27 1.6.1. Voltage-Mode Operation / 27 1.6.2. Current-Mode Operation / 29 1.7. The Buck Converter / 30 1.7.1. On-Time Event / 30 1.7.2. Off-Time Event / 31 1.7.3. Buck Waveforms CCM / 31 1.7.4. Buck Waveforms DCM / 34 1.7.5. Buck Transition Point DCM CCM / 37 1.7.6. Buck CCM Output Ripple Voltage Calculation / 39 1.7.7. Now with the ESR / 41 1.7.8. Buck Ripple, the Numerical Application / 41 1.8. The Boost Converter / 42 1.8.1. On-Time Event / 43 1.8.2. Off-Time Event / 44 1.8.3. Boost Waveforms CCM / 44 1.8.4. Boost Waveforms DCM / 47 1.8.5. Boost Transition Point DCM CCM / 50 1.8.6. Boost CCM Output Ripple Voltage Calculations / 51 1.8.7. Now with the ESR / 54 1.8.9. Boost Ripple, the Numerical Application / 54 1.9. The Buck-Boost Converter / 55 1.9.1. On-Time Event / 56 1.9.2. Off-Time Event / 56 v

Basso_FM.qxd 11/20/07 8:39 PM Page vi vi 1.9.3. Buck-Boost Waveforms CCM / 57 1.9.4. Buck-Boost Waveforms DCM / 59 1.9.5. Buck-Boost Transition Point DCM CCM / 63 1.9.6. Buck-Boost CCM Output Ripple Voltage Calculation / 64 1.9.7. Now with the ESR / 65 1.9.8. Buck-Boost Ripple, the Numerical Application / 65 1.10. Input Filtering / 66 1.10.1. The RLC Filter / 67 1.10.2. A More Comprehensive Representation / 70 1.10.3. Creating a Simple Closed-Loop Current Source with SPICE / 71 1.10.4. Understanding Overlapping Impedances / 72 Chapter 2. Small-Signal Modeling 95 2.1. State-Space Averaging / 98 2.1.1. SSA at Work for the Buck Converter First Step / 100 2.1.2. The DC Transformer / 102 2.1.3. Large-Signal Simulations / 105 2.1.4. SSA at Work for the Buck Converter, the Linearization Second Step / 106 2.1.5. SSA at Work for the Buck Converter, the Small-Signal Model Final Step / 108 2.2. The PWM Switch Model the Voltage-Mode Case / 111 2.2.1. Back to the Good Old Bipolars / 112 2.2.2. An Invariant Internal Architecture / 113 2.2.3. Waveform Averaging / 114 2.2.4. Terminal Currents / 116 2.2.5. Terminal Voltages / 117 2.2.6. A Transformer Representation / 117 2.2.7. Large-Signal Simulations / 118 2.2.8. A More Complex Representation / 121 2.2.9. A Small-Signal Model / 123 2.2.10. Helping with Simulation / 128 2.2.11. Discontinuous Mode Model / 129 2.2.12. Deriving the d 2 Variable / 132 2.2.13. Clamping Sources / 132 2.2.14. Encapsulating the Model / 134 2.2.15. The PWM Modulator Gain / 138 2.2.16. Testing the Model / 142 2.2.17. Mode Transition / 143 2.3. The PWM Switch Model the Current-Mode Case / 145 2.3.1. Current-Mode Instabilities / 146 2.3.2. Preventing Instabilities / 151 2.3.3. The Current-Mode Model in CCM / 153 2.3.4. Upgrading the Model / 158 2.3.5. The Current-Mode Model in DCM / 161 2.3.6. Deriving the Duty Cycles d 1 and d 2 / 163 2.3.7. Building the DCM Model / 165 2.3.8. Testing the Model / 168 2.3.9. Buck DCM, Instability in DC / 172 2.3.10. Checking the Model in CCM / 172 2.4. The PWM Switch Model Parasitic Elements Effects / 175 2.4.1. A Variable Resistor / 179 2.4.2. Ohmic Losses, Voltage Drops: The VM Case / 180 2.4.3. Ohmic Losses, Voltage Drops: The CM Case / 182 2.4.4. Testing the Lossy Model in Current Mode / 183 2.4.5. Convergence Issues with the CM Model / 186 2.5. PWM Switch Model in Borderline Conduction / 187 2.5.1. Borderline Conduction the Voltage-Mode Case / 187 2.5.2. Testing the Voltage-Mode BCM Model / 191

Basso_FM.qxd 11/20/07 8:39 PM Page vii vii 2.5.3. Borderline Conduction the Current-Mode Case / 194 2.5.4. Testing the Current-Mode BCM Model / 198 2.6. The PWM Switch Model a Collection of Circuits / 202 2.6.1. The Buck / 203 2.6.2. The Tapped Buck / 204 2.6.3. The Forward / 205 2.6.4. The Buck-Boost / 206 2.6.5. The Flyback / 207 2.6.6. The Boost / 208 2.6.7. The Tapped Boost / 208 2.6.8. The Nonisolated SEPIC / 209 2.6.9. The Isolated SEPIC / 210 2.6.10. The Nonisolated C uk Converter / 211 2.6.11. The Isolated C uk Converter / 212 2.7. Other Averaged Models / 213 2.7.1. Ridley Models / 213 2.7.2. Small-Signal Current-Mode Models / 213 2.7.3. Ridley Models at Work / 214 2.7.4. CoPEC Models / 216 2.7.5. CoPEC Models at Work / 218 2.7.6. Ben-Yaakov Models / 220 What I Should Retain from Chap. 2 / 224 References / 224 Appendix 2A Basic Transfer Functions for Converters / 225 2A.1. Buck / 226 2A.2. Boost / 229 2A.3. Buck-Boost / 231 References / 235 Appendix 2B Poles, Zeros, and Complex Plane a Simple Introduction / 235 References / 240 Chapter 3. Feedback and Control Loops 241 3.1. Observation Points / 243 3.2. Stability Criteria / 247 3.3. Phase Margin and Transient Response / 248 3.4. Choosing the Crossover Frequency / 249 3.5. Shaping the Compensation Loop / 250 3.5.1. The Passive Pole / 250 3.5.2. The Passive Zero / 251 3.5.3. Right Half-Plane Zero / 253 3.5.4. Type 1 Amplifier Active Integrator / 255 3.5.5. Type 2 Amplifier Zero-Pole Pair / 256 3.5.6. Type 2A Origin Pole Plus a Zero / 258 3.5.7. Type 2B Proportional Plus a Pole / 259 3.5.8. Type 3 Origin Pole Plus Two Coincident Zero-Pole Pairs / 261 3.5.9. Selecting the Right Amplifier Type / 262 3.6. An Easy Stabilization Tool the k Factor / 263 3.6.1. Type 1 Derivation / 264 3.6.2. Type 2 Derivation / 264 3.6.3. Type 3 Derivation / 266 3.6.4. Stabilizing a Voltage-Mode Buck Converter with the k Factor / 267 3.6.5. Conditional Stability / 270 3.6.6. Independent Pole-Zero Placement / 272 3.6.7. Crossing Over Right at the Selected Frequency / 273 3.6.8. The k Factor versus Manual Pole-Zero Placement / 275 3.6.9. Stabilizing a Current-Mode Buck Converter with the k Factor / 280 3.6.10. The Current-Mode Model and Transient Steps / 286

Basso_FM.qxd 11/20/07 8:39 PM Page viii viii 3.7. Feedback with the TL431 / 286 3.7.1. A Type 2 Amplifier Design Example with the TL431 / 291 3.7.2. A Type 3 Amplifier with the TL431 / 292 3.7.3. Biasing the TL431 / 298 3.7.4. The Resistive Divider / 303 3.8. The Optocoupler / 304 3.8.1. A Simplified Model / 305 3.8.2. Extracting the Pole / 306 3.8.3. Accounting for the Pole / 308 3.9. Shunt Regulators / 312 3.9.1. SPICE Model of the Shunt Regulator / 313 3.9.2. Quickly Stabilizing a Converter Using the Shunt Regulator / 314 3.10. Small-Signal Responses with PSIM and SIMPLIS / 316 What I Should Retain from Chap. 3 / 322 References / 322 Appendix 3A Automated Pole-Zero Placement / 323 Appendix 3B A TL431 Spice Model / 326 3B.1. A Behavioral TL431 Spice Model / 326 3B.2. Cathode Current versus Cathode Voltage / 328 3B.3. Output Impedance / 329 3B.4. Open-Loop Gain / 330 3B.5. Transient Test / 331 3B.6. Model Netlist / 331 Appendix 3C Type 2 Manual Pole-Zero Placement / 332 Appendix 3D Understanding the Virtual Ground in Closed-Loop Systems / 335 3D.1. Numerical Example / 336 3D.2. Loop Gain Is Unchanged / 337 Chapter 4. Basic Blocks and Generic Switched Models 341 4.1. Generic Models for Faster Simulations / 341 4.1.1. In-Line Equations / 341 4.2. Operational Amplifiers / 343 4.2.1. A More Realistic Model / 344 4.2.2. A UC384X Error Amplifier / 345 4.3. Sources with a Given Fan-Out / 348 4.4. Voltage-Adjustable Passive Elements / 349 4.4.1. The Resistor / 350 4.4.2. The Capacitor / 351 4.4.3. The Inductor / 353 4.5. A Hysteresis Switch / 355 4.6. An Undervoltage Lockout Block / 358 4.7. Leading Edge Blanking / 359 4.8. Comparator with Hysteresis / 361 4.9. Logic Gates / 362 4.10. Transformers / 364 4.10.1. A Simple Saturable Core Model / 366 4.10.2. Multioutput Transformers / 372 4.11. Astable Generator / 372 4.11.1. A Voltage-Controlled Oscillator / 374 4.11.2. A Voltage-Controlled Oscillator Featuring Dead Time Control / 377 4.12. Generic Controllers / 377 4.12.1. Current-Mode Controllers / 378 4.12.2. Current-Mode Model with a Buck / 380 4.12.3. Current-Mode Instabilities / 381 4.12.4. The Voltage-Mode Model / 382 4.12.5. The Duty Cycle Generation / 382 4.12.6. A Quick Example with a Forward Converter / 384

Basso_FM.qxd 11/20/07 8:39 PM Page ix ix 4.13. Dead Time Generation / 387 4.14. List of Generic Models / 387 4.15. Convergence Options / 388 What I Should Retain from Chap. 4 / 391 References / 392 Appendix 4A An Incomplete Review of the Terminology Used in Magnetic Designs / 392 4A.1. Introduction / 392 4A.2. Field Definition / 393 4A.3. Permeability / 393 4A.4. Founding Laws / 396 4A.5. Inductance / 396 4A.6. Avoiding Saturation / 397 References / 398 Appendix 4B Feeding Transformer Models with Physical Values / 398 4B.1. Understanding the Equivalent Inductor Model / 398 4B.2. Determining the Physical Values of the Two-Winding T Model / 400 4B.3. The Three-Winding T Model / 401 References / 405 Chapter 5. Simulations and Practical Designs of Nonisolated Converters 407 5.1. The Buck Converter / 407 5.1.1. A 12 V, 4 A Voltage-Mode Buck from a 28 V Source / 407 5.1.2. AC Analysis / 410 5.1.3. Transient Analysis / 413 5.1.4. The Power Switch / 417 5.1.5. The Diode / 418 5.1.6. Output Ripple and Transient Response / 419 5.1.7. Input Ripple / 421 5.1.8. A 5 V, 10 A Current-Mode Buck from a Car Battery / 425 5.1.9. AC Analysis / 426 5.1.10. Transient Analysis / 429 5.1.11. A Synchronous Buck Converter / 433 5.1.12. A Low-Cost Floating Buck Converter / 434 5.1.13. Component Constraints for the Buck Converter / 439 5.2. The Boost Converter / 441 5.2.1. A Voltage-Mode 48 V, 2 A Boost from a Car Battery / 441 5.2.2. AC Analysis / 444 5.2.3. Transient Analysis / 449 5.2.4. A Current-Mode 5 V, 1 A Boost from a Li-Ion Battery / 452 5.2.5. AC Analysis / 454 5.2.6. Transient Analysis / 459 5.2.7. Input Filter / 460 5.2.8. Component Constraints for the Boost Converter / 465 5.3. The Buck-Boost Converter / 465 5.3.1. A Voltage-Mode 12 V, 2 A Buck-Boost Converter Powered from a Car Battery / 465 5.3.2. AC Analysis / 468 5.3.3. Transient Analysis / 474 5.3.4. A Discontinuous Current-Mode 12 V, 2 A Buck-Boost Converter Operating from a Car Battery / 476 5.3.5. AC Analysis / 479 5.3.6. Transient Analysis / 483 5.3.7. Component Constraints for the Buck-Boost Converter / 486 References / 486 Appendix 5A The Boost in Discontinuous Mode, Design Equations / 487 5A.1. Input Current / 487 5A.2. Output Ripple Voltage / 489

Basso_FM.qxd 11/20/07 8:39 PM Page x x Chapter 6. Simulations and Practical Designs of Off-Line Converters The Front End 491 6.1. The Rectifier Bridge / 491 6.1.1. Capacitor Selection / 493 6.1.2. Diode Conduction Time / 495 6.1.3. RMS Current in the Capacitor / 496 6.1.4. Current in the Diodes / 498 6.1.5. Input Power Factor / 498 6.1.6. A 100-W Rectifier Operated on Universal Mains / 499 6.1.7. Hold-Up Time / 501 6.1.8. Waveforms and Line Impedance / 502 6.1.9. In-Rush Current / 506 6.1.10. Voltage Doubler / 508 6.2. Power Factor Correction / 510 6.2.1. Definition of Power Factor / 512 6.2.2. Nonsinusoidal Signals / 512 6.2.3. A Link to the Distortion / 514 6.2.4. Why Power Factor Correction? / 515 6.2.5. Harmonic Limits / 517 6.2.6. A Need for Storage / 518 6.2.7. Passive PFC / 520 6.2.8. Improving the Harmonic Content / 524 6.2.9. The Valley-Fill Passive Corrector / 526 6.2.10. Active Power Factor Correction / 527 6.2.11. Different Techniques / 528 6.2.12. Constant On-Time Borderline Operation / 529 6.2.13. Frequency Variations in BCM / 531 6.2.14. Averaged Modeling of the BCM Boost / 532 6.2.15. Fixed-Frequency Average Current-Mode Control / 535 6.2.16. Shaping the Current / 540 6.2.17. Fixed-Frequency Peak Current-Mode Control / 543 6.2.18. Compensating the Peak Current-Mode Control PFC / 544 6.2.19. Average Modeling of the Peak Current-Mode PFC / 546 6.2.20. Hysteretic Power Factor Correction / 549 6.2.21. Fixed-Frequency DCM Boost / 550 6.2.22. Flyback Converter / 555 6.2.23. Testing the Flyback PFC / 559 6.3. Designing a BCM Boost PFC / 559 6.3.1. Average Simulations / 567 6.3.2. Reducing the Simulation Time / 570 6.3.3. Cycle-by-Cycle Simulation / 571 6.3.4. The Follow-Boost Technique / 574 What I Should Retain from Chap. 6 / 575 References / 576 Chapter 7. Simulations and Practical Designs of Flyback Converters 579 7.1. An Isolated Buck-Boost / 579 7.2. Flyback Waveforms, No Parasitic Elements / 583 7.3. Flyback Waveforms with Parasitic Elements / 586 7.4. Observing the Drain Signal, No Clamping Action / 588 7.5. Clamping the Drain Excursion / 591 7.6. DCM, Looking for Valleys / 597 7.7. Designing the Clamping Network / 599 7.7.1. The RCD Configuration / 601 7.7.2. Selecting k c / 604 7.7.3. Curing the Leakage Ringing / 605

Basso_FM.qxd 11/20/07 8:39 PM Page xi xi 7.7.4. Which Diode to Select? / 609 7.7.5. Beware of Voltage Variations / 610 7.7.6. TVS Clamp / 612 7.8. Two-Switch Flyback / 614 7.9. Active Clamp / 616 7.9.1. Design Example / 622 7.9.2. Simulation Circuit / 625 7.10. Small-Signal Response of the Flyback Topology / 628 7.10.1. DCM Voltage Mode / 628 7.10.2. CCM Voltage Mode / 635 7.10.3. DCM Current Mode / 636 7.10.4. CCM Current Mode / 638 7.11. Practical Considerations about the Flyback / 642 7.11.1. Start-Up of the Controller / 642 7.11.2. Start-Up Resistor Design Example / 644 7.11.3. Half-Wave Connection / 646 7.11.4. Good Riddance, Start-up Resistor! / 648 7.11.5. High-Voltage Current Source / 649 7.11.6. The Auxiliary Winding / 651 7.11.7. Short-Circuit Protection / 653 7.11.8. Observing the Feedback Pin / 654 7.11.9. Compensating the Propagation Delay / 655 7.11.10. Sensing the Secondary Side Current / 660 7.11.11. Improving the Drive Capability / 662 7.11.12. Overvoltage Protection / 663 7.12. Standby Power of Converters / 665 7.12.1. What Is Standby Power? / 666 7.12.2. The Origins of Losses / 666 7.12.3. Skipping Unwanted Cycles / 667 7.12.4. Skipping Cycles with a UC384X / 669 7.12.5. Frequency Foldback / 670 7.13. A 20-W, Single-Output Power Supply / 670 7.14. A 90-W, Single-Output Power Supply / 687 7.15. A 35-W, Multioutput Power Supply / 706 7.16. Component Constraints for the Flyback Converter / 725 What I Should Retain from Chap. 7 / 726 References / 727 Appendix 7A Reading the Waveforms to Extract the Transformer Parameters / 727 Appendix 7B The Stress / 729 7B.1. Voltage / 730 7B.2. Current / 731 Appendix 7C Transformer Design for the 90 W Adapter / 732 7C.1. Core Selection / 732 7C.2. Determining the Primary and Secondary Turns / 733 7C.3. Choosing the Primary and Secondary Wire Sizes / 734 7C.4. Choosing the Material, Based on the Desired Inductance, or Gapping the Core If Necessary / 735 7C.5. Designs Using Intusoft Magnetic Designer / 735 Chapter 8. Simulations and Practical Designs of Forward Converters 739 8.1. An Isolated Buck Converter / 739 8.1.1. Need for a Complete Core Reset / 742 8.2. Reset Solution 1, a Third Winding / 746 8.2.1. Leakage Inductance and Overlap / 752 8.3. Reset Solution 2, a Two-Switch Configuration / 756 8.3.1. Two-Switch Forward and Half-Bridge Driver / 760 8.4. Reset Solution 3, the Resonant Demagnetization / 762

Basso_FM.qxd 11/20/07 8:39 PM Page xii xii 8.5. Reset Solution 4, the RCD Clamp / 767 8.6. Reset Solution 5, the Active Clamp / 778 8.7. Synchronous Rectification / 796 8.8. Multioutput Forward Converters / 799 8.8.1. Magnetic Amplifiers / 799 8.8.2. Synchronous Postregulation / 804 8.8.3. Coupled Inductors / 806 8.9. Small-Signal Response of the Forward Converter / 817 8.9.1. Voltage Mode / 817 8.9.2. Current Mode / 821 8.9.3. Multioutput Forward / 825 8.10. A Single-Output 12-V, 250-W Forward Design Example / 828 8.10.1. MOSFET Selection / 833 8.10.2. Installing a Snubber / 835 8.10.3. Diode Selection / 838 8.10.4. Small-Signal Analysis / 839 8.10.5. Transient Results / 841 8.10.6. Short-Circuit Protection / 846 8.11. Component Constraints for the Forward Converter / 849 What I Should Retain from Chap. 8 / 849 References / 850 Appendix 8A Half-Bridge Drivers Using the Bootstrap Technique / 851 Appendix 8B Impedance Reflections / 855 Appendix 8C Transformer and Inductor Designs for the 250-W Adapter / 859 8C.1. Transformer Variables / 859 8C.2. Transformer Core Selection / 859 8C.3. Determining the Primary and Secondary Turns / 860 8C.4. Choosing the Primary and Secondary Wire Sizes / 861 8C.5. Gapping the Core / 861 8C.6. Designs Using Intusoft Magnetic Designer / 862 8C.7. Inductor Design / 865 8C.8. Core Selection / 866 8C.9. Choosing the Wire Size and Checking the DC Resistive Loss / 867 8C.10. Checking the Core Loss / 867 8C.11. Estimating the Temperature Rise / 867 Appendix 8D CD-ROM Content / 868 Conclusion 869 Index 871