NRZ DPLL CMOS Frequency Synthesizer Using Active PI Filter

Similar documents
ISSN:

Design of an Efficient Phase Frequency Detector for a Digital Phase Locked Loop

Analysis and Design of a 1GHz PLL for Fast Phase and Frequency Acquisition

DESIGN AND ANALYSIS OF PHASE-LOCKED LOOP AND PERFORMANCE PARAMETERS

Sudatta Mohanty, Madhusmita Panda, Dr Ashis kumar Mal

Study and Implementation of Phase Frequency Detector and Frequency Divider 45nm using CMOS Technology

FFT Analysis, Simulation of Computational Model and Netlist Model of Digital Phase Locked Loop

Simulation technique for noise and timing jitter in phase locked loop

Phase Locked Loop Design for Fast Phase and Frequency Acquisition

Analysis of phase Locked Loop using Ring Voltage Controlled Oscillator

American International Journal of Research in Science, Technology, Engineering & Mathematics

A 2.2GHZ-2.9V CHARGE PUMP PHASE LOCKED LOOP DESIGN AND ANALYSIS

Design of CMOS Phase Locked Loop

Designing of Charge Pump for Fast-Locking and Low-Power PLL

ECEN620: Network Theory Broadband Circuit Design Fall 2014

Phase Locked Loop using VLSI Technology for Wireless Communication

Low Power Phase Locked Loop Design with Minimum Jitter

Lecture 160 Examples of CDR Circuits in CMOS (09/04/03) Page 160-1

A Low Noise, Voltage Control Ring Oscillator Based on Pass Transistor Delay Cell

Design of Phase Locked Loop as a Frequency Synthesizer Muttappa 1 Akalpita L Kulkarni 2

Design and Implementation of Phase Locked Loop using Current Starved Voltage Controlled Oscillator in GPDK 90nM

INF4420 Phase locked loops

This chapter discusses the design issues related to the CDR architectures. The

ECEN620: Network Theory Broadband Circuit Design Fall 2014

Ultrahigh Speed Phase/Frequency Discriminator AD9901

CHAPTER 6 PHASE LOCKED LOOP ARCHITECTURE FOR ADC

Highly Reliable Frequency Multiplier with DLL-Based Clock Generator for System-On-Chip

DESIGN AND VERIFICATION OF ANALOG PHASE LOCKED LOOP CIRCUIT

Design of a 3.3-V 1-GHz CMOS Phase Locked Loop with a Two-Stage Self-Feedback Ring Oscillator

Optimization of Digitally Controlled Oscillator with Low Power

A Performance Comparision of OTA Based VCO and Telescopic OTA Based VCO for PLL in 0.18um CMOS Process

A CMOS Phase Locked Loop based PWM Generator using 90nm Technology Rajeev Pankaj Nelapati 1 B.K.Arun Teja 2 K.Sai Ravi Teja 3

DESIGN OF MULTIPLYING DELAY LOCKED LOOP FOR DIFFERENT MULTIPLYING FACTORS

Digital Communication

A New Phase-Locked Loop with High Speed Phase Frequency Detector and Enhanced Lock-in

ECEN720: High-Speed Links Circuits and Systems Spring 2017

VLSI Broadband Communication Circuits

ECEN620: Network Theory Broadband Circuit Design Fall 2012

EE290C - Spring 2004 Advanced Topics in Circuit Design High-Speed Electrical Interfaces. Announcements

Taheri: A 4-4.8GHz Adaptive Bandwidth, Adaptive Jitter Phase Locked Loop

Delay-Locked Loop Using 4 Cell Delay Line with Extended Inverters

320MHz Digital Phase Lock Loop. Patrick Spinney Department of Electrical Engineering University of Maine

Self Biased PLL/DLL. ECG 721 Memory Circuit Design (Spring 2017) Dane Gentry 4/17/17

Lecture 7: Components of Phase Locked Loop (PLL)

During most of the race, each car is on its own and free to pass the other and lap the other. This is analogous to the PLL in an unlocked state.

ECEN620: Network Theory Broadband Circuit Design Fall 2014

/$ IEEE

Case5:08-cv PSG Document Filed09/17/13 Page1 of 11 EXHIBIT

Energy Efficient and High Speed Charge-Pump Phase Locked Loop

Synchronization. EE442 Lecture 17. All digital receivers must be synchronized to the incoming signal s(t).

[Prajapati, 3(3): March, 2014] ISSN: Impact Factor: 1.852

RESEARCH AND DESIGN OF LOW JITTER, WIDE LOCKING-RANGE ALL-DIGITAL PHASE-LOCKED AND DELAY-LOCKED LOOPS. A Dissertation

A Flying-Adder Architecture of Frequency and Phase Synthesis With Scalability

LOW DATA RATE BPSK DEMODULATION IN PRESENCE OF DOPPLER

A CMOS Clock and Data Recovery Circuit with a Half-Rate Three-State Phase Detector

ECE 658 Project - Delay Locked Loop Design. Y. Sinan Hanay

Design and Analysis of a Second Order Phase Locked Loops (PLLs)

ECEN689: Special Topics in High-Speed Links Circuits and Systems Spring 2010

Integrated Circuit Design for High-Speed Frequency Synthesis

Introduction to CMOS RF Integrated Circuits Design

CMOS Design of Wideband Inductor-Less LNA

74VHC4046 CMOS Phase Lock Loop

Research on Self-biased PLL Technique for High Speed SERDES Chips

Synchronous Oscillator Using High Speed Emitter Couple Logic (ECL) Inverters

All Digital Phase Locked Loop Architecture Design Using Vernier Delay Time-to- Digital Converter

High-speed Serial Interface

A Low Power VLSI Design of an All Digital Phase Locked Loop

A Fast Locking Digital Phase-Locked Loop using Frequency Difference Stage

The Use and Design of Synchronous Mirror Delays. Vince DiPuccio ECG 721 Spring 2017

A 5Gbit/s CMOS Clock and Data Recovery Circuit

International Journal of Modern Trends in Engineering and Research e-issn No.: , Date: 2-4 July, 2015

Design of Low Power CMOS Startup Charge Pump Based on Body Biasing Technique

ECEN620: Network Theory Broadband Circuit Design Fall 2012

Synchronous Mirror Delays. ECG 721 Memory Circuit Design Kevin Buck

THE SELF-BIAS PLL IN STANDARD CMOS

Accomplishment and Timing Presentation: Clock Generation of CMOS in VLSI

Lecture 11. Phase Locked Loop (PLL): Appendix C. EE4900/EE6720 Digital Communications

A Fully Integrated CMOS Phase-Locked Loop With 30MHz to 2GHz Locking Range and ±35 ps Jitter

DESIGN OF A MODULAR FEEDFORWARD PHASE/FREQUENCY DETECTOR FOR HIGH SPEED PLL

LETTER A 1.25-Gb/s Burst-Mode Half-Rate Clock and Data Recovery Circuit Using Realigned Oscillation

Digital Dual Mixer Time Difference for Sub-Nanosecond Time Synchronization in Ethernet

Implementation of Low Power All Digital Phase Locked Loop

Noise Analysis of Phase Locked Loops

ECEN 720 High-Speed Links: Circuits and Systems

ICS PLL BUILDING BLOCK

ICS663 PLL BUILDING BLOCK

INTEGRATED CIRCUITS. AN177 An overview of the phase-locked loop (PLL) 1988 Dec

ISSN: International Journal of Engineering and Innovative Technology (IJEIT) Volume 1, Issue 2, February 2012

ECE1352. Term Paper Low Voltage Phase-Locked Loop Design Technique

A CMOS Analog Front-End Circuit for MEMS Based Temperature Sensor

Lecture 23: PLLs. Office hour on Monday moved to 1-2pm and 3:30-4pm Final exam next Wednesday, in class

Department of Electronics & Telecommunication Engg. LAB MANUAL. B.Tech V Semester [ ] (Branch: ETE)

Digital Transceiver using H-Ternary Line Coding Technique

ECEN 720 High-Speed Links Circuits and Systems

ICS663 PLL BUILDING BLOCK. Description. Features. Block Diagram DATASHEET

A Comparative review and analysis of different phase frequency detectors for Phase Locked Loops

Choosing Loop Bandwidth for PLLs

Clock and Data Recovery With Coded Data Streams Author: Leonard Dieguez

THE reference spur for a phase-locked loop (PLL) is generated

FPGA IMPLEMENTATION OF POWER EFFICIENT ALL DIGITAL PHASE LOCKED LOOP

Transcription:

NRZ DPLL CMOS Frequency Synthesizer Using Active PI Filter Krishna Kant Singh 1, Akansha Mehrotra 2 Associate Professor, Electronics & Computer Engineering, Dronacharya College of Engineering, Gurgaon, India 1 Research Scholar, Earthquake Engineering, Indian Institute of Technology, Roorkee, India 2 ABSTRACT: This paper demonstrates a CMOS frequency synthesizer design, whose primary purpose is to test the designer s high speed, mixed-signal CMOS circuit design skill. Line codes are the techniques for representing digital sequences by pulse waveforms suitable for baseband transmission. NRZ or non return to zero is an important Line coding method. NRZ pulses are of full bit duration. We do not get square waveform in conventional current starved VCO. So, the conventional current starved VCO cannot be used for generating NRZ line coding as it is necessary that the output waveform of VCO should be square wave for NRZ coding. This new current starved CMOS VCO is used to design a DPLL. Furthermore, this DPLL design is used to generate a clock for a 8.33Mbits/second with NRZ data format for center frequency at VCO. The DPLL presented here uses XOR phase detector for reducing jitter noise and divide by two stage is used in the feedback loop for frequency synthesis. The DPLL is designed uses active PI filter. Keywords: DPLL, VCO, Active PI Filter, jitter noise. I.INTRODUCTION The digital phase locked loop, DPLL, is a circuit that is used frequently in modern integrated circuit design. driver channel Input amp Shift Shift data System clock Data out of shift register Digital PLL Clock out of DPLL Fig. 1 block diagram of a communication system using a DPLL for the generation of a clock signal Consider the waveform and block diagram of a communication system is shown in figure.1. Digital data is loaded into the shift register at the transmitting end. The data is shifted out sequentially to the transmitter output driver. At the receiving end, where the data may be analog after passing through the communication channel, the receiver amplifies and changes the data back into digital logic levels[1]. The DPLL performs the function of generating a clock signal which is locked or in synchronization with the incoming signal. The generated clock signal is used in the receiver to clock the shift register and thus recover the data. This application of a DPLL is often termed a clock recovery circuit or bit synchronization[2,3].this paper aims at VLSI implementation of DPLL frequency synthesizer for NRZ-line coding.in this paper, a XOR DPLL is designed using active Proportional Integral filter which has center frequency Copyright to IJAREEIE www.ijareeie.com 7524

8.33 MHz, lock time 8.8μs and 1MHz lock in range. The significance of this DPLL is to generate a clock for a 8.33 Mbits/s data stream with data format non return to zero level or simply NRZ level. This is the major advantage of using NRZ code; that is, the data rate can be twice the channel bandwidth.the objective is to design a DPLL for a signal whose output frequency is 8.33 MHz and has a lock range of 1 MHz. This PLL is designed for being used in some specific circuit design, for e.g. Carrier-Recovery, Data synchronization, demodulator, and so on. II. DESIGN SPECIFICATION OF DPLL Design specification of DPLL is shown in Table 1 Test specification of DPLL is shown in table 2 Table 1.Design specification of DPLL Name Specification The frequency of data 3.17 MHz-5.17 MHz The voltage of input signal to XOR-PD 5V The center voltage of VCO 2.5V Range of frequency of the output of DPLL when the 6.34 MHz-10.33 frequency of data lies MHz between 3.17MHz- 5.17MHz VSS GND VDD 5V III. TEST SPECIFICATION Table 2.Test specification of DPLL Name The input Voltage to PLL The reference frequency of DPLL Lock Time Specification 5V 3.17-5.17 MHz 8.8 μs IV.DESIGN OF XOR DPLL USING ACTIVE FILTER For designing XOR DPLL using active PI filter, we have used a current starved VCO cascaded with Schmitt trigger this generates square waveform which is used as the input for frequency divider circuit which consist of D flip flop and the output of this frequency divider goes in the loop filter. Next we select the loop filter values in order to keep the DPLL from oscillating. Design of XOR DPLL using active filter is shown in fig. 2 Copyright to IJAREEIE www.ijareeie.com 7525

Fig 2. VLSI DESIGN OF XOR DPLL USING ACTIVE FILTER A. Design of Active Loop Filter The clock misalignment encountered in a DPLL XOR PD and passive filter using an XOR PD and passive filter can be minimized by using the active proportional integral(active PI) loop filter shown in fig 3. Fig 3 Active PI loop filter Transfer function of this filter is given by: K 1 sr2c F sr 1 (1) C Copyright to IJAREEIE www.ijareeie.com 7526

The natural frequency of the resulting second-order system is given by And the damping ratio is given by : K PD KVCO n (2) NR C 1 The lock range is given by R n 2 C (3) 2 L 4 n (4) The pull in range, using the active PI loop filter, is limited by the VCO oscillating frequency. Calculation of R 1, R2 and C of active filter: The gain of the VCO is 6 (12.5 10.5) 10 6 K VCO 2 2 10 rad / sec 2 The gain of phase detector is K PD =5/π Now, we calculate the natural frequency using equation.. and assuming ζ=0.7, f L =1 MHz so 6 2 10 3 n 71310 radian/sec 4 0.7 Using equations 2 and 3 with N=2, we can solve them for R 1 C and R 2 C as approximately 9.835μs and 1.9635μs.respectively. Now,the lock lock time of DPLL is : 2 T 8.8 s L n Now the designed DPLL has the following specifications : The VCO has center frequency 8.33MHz The lock range between DATA and DCLOCK is set to f L =1 MHz The lock time T L =8.8 μs[4,5]. B. Simulation Result of XOR DPLL Using Active Filter Simulation of XOR DPLL using active filter is shown in fig 4 [6,8]. It can be seen from the simulation results shown in figure 4 that the desired results are achieved. The first waveform represents VCOIN, this is the input voltage of VCO, the middle one represents DCLOCK, this is the input voltage of XOR PD and the last waveform represents CLOCK, which is the input of active filter. A square wave as required by NRZ coding is received and the lock range of the DPLL is increased to 1 MHz. This means that the loop will lock up on an input frequency from 3.17 MHz to 5.17 MHz and generate an output frequency two times the input frequency in lock time T L =8.8μs. In the fig 4, the width of one bit data is 120 ns(=1/8.33 MHz).The frequency of the DPLL output clock is 8.33 MHz. Copyright to IJAREEIE www.ijareeie.com 7527

3. 5 3. 0 2. 5 2. 0 1. 5 1. 0 0. 5 0. 0 5. 0 4. 5 4. 0 3. 5 3. 0 2. 5 2. 0 1. 5 1. 0 0. 5 0. 0 5. 0 4. 5 4. 0 3. 5 3. 0 2. 5 2. 0 1. 5 1. 0 0. 5 0. 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 v (VCOIN) 2.8 4 v (DCLOCK) 8.7 5 n v (CLOCK) 5.0 0 ISSN (Print) : 2320 3765 x1= x2= dx= 1.52u 1.64u 118.39n plldesignopamp V oltag e (V ) Time (us) x1= x2= dx= 1.52u 1.64u 118.39n plldesignopamp Volta ge (V ) Time (us) x1= x2= dx= 1.52u 1.64u 118.39n plldesignopamp V olta ge ( V ) Time (us) Fig4.Simulation Result A divide by two stage is used in the feedback loop to make dclock=4.17 MHz. If the data input is an alternating series of ones and zeros then the frequency of the resulting square wave is 4.17 MHz,or one half of the data rate. This is the major advantage of using NRZ code; that is,the data rate can be twice the channel bandwidth[7,8]. V.CONCLUSION Based upon this study and simulation, these components are selected for DPLL which is used for NRZ line coding.cmos VCOs are designed using Schmitt trigger. Primarily there are two methods to design VCO.One uses ring oscillator and other uses Schmitt trigger. In recent years, ring oscillators have become an essential building block in VCO s[4]. They can provide a wide operating range, a small layout area and ease of integration. In this paper, VCOs are designed using current starved VCO and schmitt trigger and then transient analysis is carried out to observe the NRZ waveform of each VCO.Here DPLL is designed using XOR PD which has good noise rejection. XOR DPLL having current starved CMOS VCO using Schmitt trigger which has center frequency of 8.33 MHz.This CMOS VCO has direct relationship between voltage and frequency and is linear in frequency range 5.7MHz-12.5MHz. Active PI loop filter is used in XOR DPLL for reducing the clock misalignment which encountered in a DPLL. In this paper, We have designed a XOR DPLL using active PI filter which have center frequency 8.33 MHz,lock time 8.8μs and 1MHz lock in range. Finally,The significance of this DPLL is to generate a clock for a 8.33 Mbits/s data stream with data format non return to zero level or simply NRZ level.the width of one bit data is 120 ns(=1/8.33 MHz).The frequency of the DPLL output clock is 8.33 MHz.A divide by two stage is used in the feedback loop to make dclock=4.17 MHz. If the data input is an alternating series of ones and zeros then the frequency of the resulting square wave is 4.17 MHz,or one half of the data rate This is the major advantage of using NRZ code ;that is,the data rate can be twice the channel bandwidth. Copyright to IJAREEIE www.ijareeie.com 7528

REFERENCES [1] R. E. Best, Phase-Locked Loops: Design, Simulation, and Applications. New York: McGraw-Hill, third ed.,1997. [2] B. Razavi, A study of Phase Noise in CMOS Oscillators, IEEE J. Solid-State Circuits, vol.31,pp.331343,1996. [3] B. Razavi, Monolithic phase locked loops and clock recovery circuits theory and design,ieee Press,pp.283377and381483,1996. [4] B.Keeth, R.J.Baker, and H.W.Li CMOS Transconductor VCO with adjustable operating and center frequencies, Electronics Lettes,Vol.31 [5] F. M. Gardner, Phaselock Techniques. New York, NY: John Wiley & Sons, second ed., 1979. ISBN 0-471-04294-3. [6] Tanner EDA User Guide [7] J. Maneatis, Low-jitter process-independent DLL and PLL based on self-biased techniques, in ISSCC 1996 Dig. Tech. Papers, Feb. 1996. [8] R.Jacob Baker, Harry W.Li, David E.Boyce, CMOS- Circuit,layout and Simulation, PHI,1998. Copyright to IJAREEIE www.ijareeie.com 7529