Reference Distribution

Similar documents
Chapter 10 WDM concepts and components

ModBox - Spectral Broadening Unit

Femtosecond Synchronization of Laser Systems for the LCLS

Optical Digital Transmission Systems. Xavier Fernando ADROIT Lab Ryerson University

Agilent 71400C Lightwave Signal Analyzer Product Overview. Calibrated measurements of high-speed modulation, RIN, and laser linewidth

WDM Concept and Components. EE 8114 Course Notes

SHF Communication Technologies AG

OPTICAL COMMUNICATIONS S

56:/)'2 :+9: 3+'9;8+3+4:

Headend Optics Platform (CH3000)

Wavelength Multiplexing. The Target

Product Specification. 10Gb/s DWDM 80km XFP Optical Transceiver FTRX xx

SHF Communication Technologies AG

Optical networking. Emilie CAMISARD GIP RENATER Optical technologies engineer Advanced IP Services

Lecture 2. Introduction to Optical. Ivan Avrutsky, ECE 5870 Optical Communication Networks, Lecture 2. Slide 1

Time & Frequency Transfer

DATASHEET 4.1. XFP, 10GBase-ZR, Multirate Gbps, DWDM 50GHz, SM, DDM, 24dB, 80km

ModBox-FE-125ps-10mJ. Performance Highlights FEATURES APPLICATIONS. Electrical & Optical Pulse Diagrams

Datasheet SHF D Synthesized Clock Generator

Thursday, April 17, 2008, 6:28:40

Dr. Monir Hossen ECE, KUET

TIME AND FREQUENCY ACTIVITIES AT THE CSIR NATIONAL METROLOGY LABORATORY

OM2210 Coherent Receiver Calibration Source OM2210 Datasheet

Long-Haul DWDM RF Fiber Optic Link System

Rogério Nogueira Instituto de Telecomunicações Pólo de Aveiro Departamento de Física Universidade de Aveiro

Status on Pulsed Timing Distribution Systems and Implementations at DESY, FERMI and XFEL

Data Communication. Chapter 3 Data Transmission

DWDM SFP 4.25Gb/s Transceiver 30Km Hot Pluggable, Duplex LC, 3.3v C Band 100-GHz DWDM DFB-LD PDSFP-96-1XX12-22F

Testing with Femtosecond Pulses

SUPPLEMENTARY INFORMATION DOI: /NPHOTON

PMD compensation in a 2 40Gbit/s, 212km, CS-RZ polarization multiplexed transmission experiment

Digital Dual Mixer Time Difference for Sub-Nanosecond Time Synchronization in Ethernet

External Cavity Diode Laser Tuned with Silicon MEMS

GFT1012 2/4 Channel Precise Slave Generator

REFERENCE SIGNAL GENERATION WITH DIRECT DIGITAL SYNTHESIS FOR FAIR

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers

Narrow Linewidth Micro- Integrable Tunable Laser Assembly u ITLA

CXE880 FIBRE OPTIC NODE

Q8384 Q8384. Optical Spectrum Analyzer

Setup of the four-wavelength Doppler lidar system with feedback controlled pulse shaping

TELESTE AC NODE SPECIFIC MODULES

Testing of DWDM + CWDM high speed systems. Christian Till Technical Sales Engineer, EXFO

CWDM self-referencing sensor network based on ring resonators in reflective configuration

Comment Supporting materials: The Reuse of 10GbE SRS Test for SR4/10, 40G-LR4. Frank Chang Vitesse

1550nm external modulated optical transmitter operating manual

CXE880 FIBRE OPTIC NODE

Optiva OTS-2 18 GHz Amplified Microwave Band Fiber Optic Links

Narrow- and wideband channels

Supplementary Figures

Performance of the Prototype NLC RF Phase and Timing Distribution System *

Miniature, Ruggedized, 20 GHz RF over Fiber Transmitter

Agilent 83430A Lightwave Digital Source Product Overview

1752A 1550 nm DOCSIS 3.1 DWDM DFB Laser Module

WIRELESS COMMUNICATIONS PRELIMINARIES

SHF Communication Technologies AG. Wilhelm-von-Siemens-Str. 23D Berlin Germany. Phone Fax

Optiva OTS-2 40 GHz Amplified Microwave Band Fiber Optic Links

Analysis of Self-Pulsation in Distributed Bragg Reflector Laser based on Four-Wave Mixing

Timing Noise Measurement of High-Repetition-Rate Optical Pulses

Optiva OTS-2 40 GHz Amplified Microwave Band Fiber Optic Links

Mm- Wave Propaga-on: Fundamentals and Models

Externally Modulated Optical Transmitter (47~862MHz,CNR1 53dB,SBS:13~18dBm adj.)

Analysis of four channel CWDM Transceiver Modules based on Extinction Ratio and with the use of EDFA

NOW WITH BROADER TUNING RANGE

Measuring Photonic, Optoelectronic and Electro optic S parameters using an advanced photonic module

400G CWDM8 10 km Optical Interface Technical Specifications Revision 1.0

PXIe Contents. Required Software CALIBRATION PROCEDURE

ModBox-CBand-DPSK series C-Band, 12 Gb/s Reference Transmitters

Radio over Fiber technology for 5G Cloud Radio Access Network Fronthaul

Amplifier Characterization in the millimeter wave range. Tera Hertz : New opportunities for industry 3-5 February 2015

Terminology (1) Chapter 3. Terminology (3) Terminology (2) Transmitter Receiver Medium. Data Transmission. Simplex. Direct link.

UNIT - 7 WDM CONCEPTS AND COMPONENTS

F i n i s a r. Product Specification. Long-Reach DWDM SFP Transceiver FWLF1631Rxx PRODUCT FEATURES

Spectrally Compact Optical Subcarrier Multiplexing with 42.6 Gbit/s AM-PSK Payload and 2.5Gbit/s NRZ Labels

Phase Noise measurements using Fiber Optic Delay Lines

All-Optical Signal Processing. Technologies for Network. Applications. Prof. Paul Prucnal. Department of Electrical Engineering PRINCETON UNIVERSITY

SHF Communication Technologies AG

Optical Single Sideband Modulation and Optical Carrier Power Reduction and CATV Networks

NOW WITH UP TO 40 GHz BANDWIDTH

CXE880 FIBRE OPTIC NODE

Supplementary Information. All-fibre photonic signal generator for attosecond timing. and ultralow-noise microwave

ModBox-CBand-NRZ series C-Band, 28 Gb/s, 44 Gb/s, 50 Gb/s Reference Transmitters

Agilent 83440B/C/D High-Speed Lightwave Converters

Lecture 7 Fiber Optical Communication Lecture 7, Slide 1

DATASHEET 4.1. SFP+, 10GBase-ZR, Multirate Gbps, C Tunable, DWDM, C-Band, 50GHz, 22dB, 80km, ind. temp.

Directly Chirped Laser Source for Chirped Pulse Amplification

ModBox-OBand-56GBaud-PAM4 O-Band, 56 Gbaud PAM-4 Reference Transmitter

taccor Optional features Overview Turn-key GHz femtosecond laser

Proposal for 400GE Optical PMDs for SMF Objectives based on 4 x 100G DMT David Lewis, Sacha Corbeil, Beck Mason

Extending the Offset Frequency Range of the D2-135 Offset Phase Lock Servo by Indirect Locking

ROHS Compliant MM SFP Transceiver 1.25Gb Gigabit Ethernet

WaveSmart Wave Division Multiplexing (WDM)

ModBox 1550 nm 12 Gb/s DPSK C, L bands ; 12 Gb/s Reference Transmitter & Receiver

Optical Phase Lock Loop (OPLL) with Tunable Frequency Offset for Distributed Optical Sensing Applications

Sentinel 3: Speed, flexibility, certainty

PR-12-B-M. 12 GHz PhotoReceiver, Module. Features. Applications. Functional Diagram

Introduction to BER testing of WDM systems

Optical Transport Tutorial

High-Fidelity RF over Fiber Links

Bandwidth Radar Receivers

Using GNSS for optical frequency and wavelength measurements

Transcription:

EPAC 08, Genoa, Italy RF Reference Signal Distribution System for FAIR M. Bousonville, GSI, Darmstadt, Germany P. Meissner, Technical University Darmstadt, Germany Dipl.-Ing. Michael Bousonville Page 1

Overview Introduction Goal Phase synchronisation Reference Signal System Basic Principle Optical Network Delay Measurement Reference Generation Performance Summary Page 2

Goal 500 m Cavity synchronisation signal generator (DDS) synchronisation central clock Ref Ref signal generator f, ϕ cavity CC Ref Ref Ref Therefore necessary: Distribution of phase synchronous reference signals Ref Ref Problems: Different distances different time delays Time delays not constant τ = f( L,T,... )= f( t) Ref Ref reference generator Page 3

Phase Synchronisation tolerance central clock φ Clock transmission unit reference generator 1 reference generator 2 φ Ref,1 µ 2.5σ j φ Ref,2 φ Crucial: Accuracy between the reference phases Accuracy requirement: 1 at 5.4 MHz Optimisation Parameter: µ and σ Page 4 µ + 5σ j < 514 ps j

Reference Signal Reference 1 T = 20 ns Reference 2 T = 10.24 µs t 0 + n T Ref,2 t f f Clock,1 Clock,2 = 200MHz 97.7kHz f f Ref,1 Ref,2 = 50MHz 97.7kHz Page 5

Basic Principle Assembly of one system branch transmission unit φ Clock φ Clock + φ(τ) φ Ref transmission system reference generator signal generator cavity τ delay measurement unit Any delay variation can be compensated absolute delay drift irrelevant ϕ Ref = f ( ϕ Clock ) f ( τ) Page 6

Basic Principle Star-shaped distribution transmission unit φ Clock φ Clock + φ(τ 1 ) φ Ref transmission reference generator signal generator cavity φ Clock + φ(τ 2 ) φ Ref transmission reference generator signal generator cavity φ Clock + φ(τ N ) φ Ref transmission reference generator signal generator cavity τ n delay measurement unit One instead of N transmission units One instead of N measurement units Page 7 no different time drifts systematic error irrelevant much less effort

Optical Network Configuration of one transmission branch transmission λ Tx 1 1 λ Clock 1 Add/Drop fiber 1 multiplexer FBG λ 1, λ λ Rx 1 1, λ 2, λ M λ M Clock 1 2 λ1, λ 2 demultiplexer λ 2 IN Tx 2 OUT λ Clock 2 2 Rx 2 Clock 2 ADD transmission unit circulator receiver unit λ M λ M Tx Rx I1 measurement unit I2 Page 8

Optical Network Star-shaped distribution transmission unit optical amplifier Gain = M x 3dB splitter 1 x 2 M Add/Drop receiver unit 1 Add/Drop receiver unit 2 distribution Add/Drop receiver unit N optical switch I1 measurement unit reflector (calibration) I2 Page 9

Reference Distribution Optical Network - Prototype laser multiplexer mirrors splitter modulator network analyser switch Page 10

Optical Network - Performance 1. Transmission Channels bandwidth = 1.2 GHz more channels possible 0 dbm opt receiver input dbcele noise < 143 Hz σ jtrans, < 305 fs crosstalk < 70dBele 2. Measurement Channel bandwidth = 10 GHz 0 dbm opt receiver input crosstalk < 130 db total decoupling ele 3. Low Costs only standard components only one transmission unit only one measurement unit Page 11

Delay Measurement Delay determination via phase measurement λ 1, λ 2 IN ADD/ DROP ADD OUT λ 1, λ 2, λ M opt. fibre λ M FBG F M = { } f M 1, f M 2,..., f MN Φ M = { ϕ M 1,ϕ M 2,...,ϕ MN } τ = f ( Φ M ) circulator 1 boundary condition : > 2τ f M,min λ M Tx λ M Rx 1 ϕaccuracy τ accuracy = 2360 f M,max phase measurement f M ϕ accuracy < 0.4 F M = { 50kHz,500kHz,50MHz,6GHz} τ accuracy < 1 6GHz 0.4 = 92,6 fs 2 360 Page 12

Reference Generation delay measurement τ phase correction ϕ cor = f(τ) command data central clock ϕ clock,1 ϕ clock,2 fibre ϕ clock,1 + ϕ(τ) ϕ clock,2 + ϕ(τ) ϕ cor,1 DDS 1 Update ϕ ref,1 signal generator ϕ cavity ϕ cor,2 ϕ ref,2 DDS 2 Update reference generator I1 I2 I3 Page 13

Reference Generation Reference Signal Generation via DDS 1. No phase adjustment limit 2. Resolution of phase adjustment 1.22 ps (Reference Signal 1) 3. Jitter 7.6 ps RMS (Reference Signal 1) 4. Standard components Page 14

Performance - Two reference points - Distance from center clock 1 km each - Average interval 1 s Phase deviation [ps] 20 10 0-10 -20 +0.03 @ 5.4 MHz -0.03 @ 5.4 MHz 0 2 4 6 8 10 12 14 16 Time [h] Current performance µ < 15 ps σ j 7.6 ps ϕ Stability < 1 ps change of DDS-model temperature stabilisation Rx Anticipated performance µ << 15 ps σ j < 250 fs ϕ Stability << 1 ps Page 15

Summary 1. Transmission of two clocks with DWDM noise < 143 dbc ele Hz crosstalk < 70dB σ j,trans < 305 fs more transmission channels possible 2. Separate measurement channel crosstalk < 130dB ele total decoupling measurement accuracy better than 100 fs 3. Reference generation via DDS σ j 7.6ps 4. Phase deviation between two reference points < 0.03 of cavity frequency 5. Only standard components are used Page 16

M.Bousonville@gsi.de Page 17

Additional Slides Page 18

Interfaces Interface 1 ϕ ϕ Clock,1 Clock,2 ϕ ϕ Interface 2 Clock,1 Clock,2 + ϕτ ( ) + ϕτ ( ) τ Interface 3 ϕ = f( ϕ ) f( τ) Ref,1 Clock,1 ϕ = f( ϕ ) f( τ) Ref,2 Clock,2 multiplex central reference source transmission demultiplex delay measurement phase correction RF-DDS asynchronous synchronous Page 19

System Design 1. WDM (Wavelength Division Multiplex) 2. Optimal input power at the optical receiver (0 dbm) This is possible for two reasons a) Low insertion loss of the passive WDM-components b) High transmitter power maximum SNR 3. Crosstalk attenuation >> SNR a) No effect on jitter jitter 1 SNR b) Measurement do not influence the reference signals minimum jitter Page 20

System Design 1. One instead of N transmission units No different time dirfts in different branches 2. One instead of N measurement units Systematic error irrelevant Much less effort Page 21

Realisation WDM-Laser 13 dbm output power RIN < -145 db/hz channel (ITU-norm) opt. frequency ν [THz] opt. wavelength λ [nm] λ 1 32 193,2 1551,72 λ 2 34 193,4 1550,12 λ M 36 193,6 1548,51 Page 22

Realisation External Modulator Page 23

Realisation External Modulator 10 GHz bandwidth under proper conditions no jitter will be added Page 24

Realisation Passive optical components Page 25

Realisation Passive optical components Page 26

Realisation fibre optic cable Low drift velocity dτ ps < 6 L T dt km K min S (calculation: analytical and finite element method) Virtually strain proof dτ L df G ps = 0 km N for F < 4500N G Page 27

Realisation Optical receiver The biggest noise source other than RIN (Relative Intensive Noise) Page 28

Realisation Results Reference Signal Transmission 1. Bandwidth transmitter: 10 GHz 2. Bandwidth receiver: 1.2 GHz System bandwidth: 1.2 GHz 3. Noise dbc ρ N < 143.2 Hz SNR > 52.4dB 4. Crosstalk < -70 db << Noise σ jtrans, s N SNR db 20 9 1 10 5.56 10 305 = < s s 2 N fs Optimisation Parameter J tter: ( σ, ) i σ j f j trans = ok * Sine wave Standard deviation Page 29

Delay Measurement General 1. One separate measurement channel 2. Bandwidth = 10 GHz 3. Measurement channel totally decoupled form the reference channels 4. Nearly all measurement methods are applicable Page 30

Delay Measurement Noise of the measurement channel - Amorphous structure of glass Rayleigh Scattering optical fibre - Noise due Rayleigh Scattering dominates - Spectrum (calculated analytical/numerical) S Norm [dbc/hz] -100-110 -120-130 -140-150 carrier RIN receiver noise shot noise rayleigh backscattering calculation rayleigh backscattering measurement measurement signal -160 0 5 10 15 20 25 f [MHz] 2 2 m 4 2a f 2b f SNorm( f 0) δ ( f ) δ ( f fm ) 1,2 10 = + + + 2 2 2 2 2 π f + f π f + ( f fm ) ( ) SNR B = 10Hz 95dB ϕ < 1 τ < 1ps Optimisation Parameter Mean: Page 31 accuracy ( accuracy ) accuracy µ = f τ ok

Verification Delay Measurement frequency standard 10 MHz 6 GHz 0 dbm switch fiber 1 km network analyser 2 laser CH34 modulator ADD/ DROP 3 db FBG Rx Agilent E8357A 100 m laser CH36 modulator Rx network analyser 1 10 MHz control analysis PC Agilent 8753ES Page 32

Verification of Delay Measurement 60 40 accuracy < 100 ( optical domain) fs 20 deviation [fs] 0-20 Prediction correct! -40-60 0 2 4 6 8 10 12 14 16 18 time [h] Page 33

Test under extreme conditions Fiber length > 1 km; temperature change: -26,5 C 24,5 C Delay [s] Branch 1 5.384E-06 5.382E-06 5.380E-06 5.378E-06 τ > 8 ns 5.376E-06 5.374E-06 5.372E-06 0 5 10 15 Time [h] Branch 2 4.67826E-06 - = Delay [s] 4.67824E-06 4.67822E-06 4.67820E-06 4.67818E-06 4.67816E-06 τ < 0.1 ns 4.67814E-06 0 5 10 15 Time [h] Phase deviation [s] Uncorrected 8.0E-09 6.0E-09 4.0E-09 2.0E-09 φ > 8 ns 0.0E+00-2.0E-09-4.0E-09 0 5 10 15 Time [h] correction Phase deviation [s] Corrected 6E-11 4E-11 2E-11 0-2E-11 φ = 20 ps -4E-11-6E-11 0 5 10 15 Time [h] Page 34