c) What is the ratio of the length of the side of a square to the length of its diagonal? Is this ratio the same for all squares? Why or why not?

Similar documents
Georgia Department of Education Common Core Georgia Performance Standards Framework Student Edition Analytic Geometry Unit 1

Construction Junction, What s your Function?

Georgia Department of Education Common Core Georgia Performance Standards Framework Analytic Geometry Unit 1

One of the classes that I have taught over the past few years is a technology course for

Big Ideas Math: A Common Core Curriculum Geometry 2015 Correlated to Common Core State Standards for High School Geometry

Task: The Necklace Task 1 st Grade Etta, Lily, and Carmen were making necklaces with beads.

Course: Math Grade: 7. Unit Plan: Geometry. Length of Unit:

What role does the central angle play in helping us find lengths of arcs and areas of regions within the circle?

8.3 Prove It! A Practice Understanding Task

Unit 1 Foundations of Geometry: Vocabulary, Reasoning and Tools

Special Right Triangles and Right Triangle Trigonometry

6.1B Lesson: Building Triangles Given Three Measurements*

Project Maths Geometry Notes

4 th Grade Mathematics Instructional Week 30 Geometry Concepts Paced Standards: 4.G.1: Identify, describe, and draw parallelograms, rhombuses, and

Practice Task: Expression Puzzle

Grade 4. COMMON CORE STATE STANDARDS FOR MATHEMATICS Correlations

The Pythagorean Theorem

SMML MEET 3 ROUND 1

GAP CLOSING. Powers and Roots. Intermediate / Senior Student Book GAP CLOSING. Powers and Roots. Intermediate / Senior Student Book

Please bring a laptop or tablet next week! Upcoming Assignment Measurement Investigations Patterns & Algebraic Thinking Investigations Break A Few

Name. Ms. Nong. Due on: Per: Geometry 2 nd semester Math packet # 2 Standards: 8.0 and 16.0

Day 1: June 6, 2011 (Kristin, Shirley, Sheryle, Amber) 8:30 Norms, parking lot (Shirley) 8:40 Class builder (Sheryle) 8:50 PS 1 Materials: Rulers,

Step 2: Extend the compass from the chosen endpoint so that the width of the compass is more than half the distance between the two points.

Learning Experience: Angle Circles. When planning, include the following: Models (Concrete Semi-Concrete Semi-Abstract Abstract) Problems/Situations

8 th Grade Domain 3: Geometry (28%)

8-1 Similarity in Right Triangles

Contents TABLE OF CONTENTS Math Guide 6-72 Overview NTCM Standards (Grades 3-5) 4-5 Lessons and Terms Vocabulary Flash Cards 45-72

Grade: 4 Lesson Title: Equivalence and Comparison of Fractions

6-5 P R OV I N G R H O M B U S E S, R E C TA N G L E S, A N D S Q UA R E S

PRACTICE TASK: Tangram Challenge Approximately 1 day

* Transversals, Tape, And Stickies! Back to Task Table

PRACTICE TASK: Tangram Challenge

7 th Grade Math Third Quarter Unit 4: Percent and Proportional Relationships (3 weeks) Topic A: Proportional Reasoning with Percents

Measuring and Drawing Angles and Triangles

Squares and Square Roots Algebra 11.1

GAP CLOSING. Powers and Roots. Intermediate / Senior Facilitator Guide

8.2 Slippery Slopes. A Solidify Understanding Task

9.3 Properties of Chords

Geometry by Jurgensen, Brown and Jurgensen Postulates and Theorems from Chapter 1

Georgia Standards of Excellence Frameworks. Mathematics. Accelerated GSE Pre-Calculus Unit 4: Trigonometric Identities

Worksheet 10 Memorandum: Construction of Geometric Figures. Grade 9 Mathematics

The Pythagorean Theorem

CONSTRUCTING TASK: Line Symmetry

Indicate whether the statement is true or false.

In this section, you will learn the basic trigonometric identities and how to use them to prove other identities.

GREATER CLARK COUNTY SCHOOLS PACING GUIDE. Grade 4 Mathematics GREATER CLARK COUNTY SCHOOLS

Building Concepts: Ratios Within and Between Scaled Shapes

Problem of the Month What s Your Angle?

UNIT 6: CONJECTURE AND JUSTIFICATION WEEK 24: Student Packet

6-1. Angles of Polygons. Lesson 6-1. What You ll Learn. Active Vocabulary

Print n Play Collection. Of the 12 Geometrical Puzzles

TERRA Environmental Research Institute

Find the coordinates of the midpoint of a segment having the given endpoints.

Problem of the Month: Between the Lines

Pythagorean Theorem Unit

Standards for Mathematical Practice

Essential Question. Kindergarten Unit 9 Compare, Analyze, and Compose 2D and 3D Shapes

Understanding Similarity

You may use a calculator. Answer the following questions. (5 pts; partial credit at teacher discretion)

A Level. A Level Mathematics. Understand and use double angle formulae. AQA, Edexcel, OCR. Name: Total Marks:

Students apply the Pythagorean Theorem to real world and mathematical problems in two dimensions.

GRADE LEVEL: FOURTH GRADE SUBJECT: MATH DATE: Read (in standard form) whole numbers. whole numbers Equivalent Whole Numbers

*Unit 1 Constructions and Transformations

Constructing Task: Fraction Clues

Deriving the General Equation of a Circle

Catty Corner. Side Lengths in Two and. Three Dimensions

Unit 9: May/June Solid Shapes

How can we organize our data? What other combinations can we make? What do we expect will happen? CPM Materials modified by Mr.

5/6 Lesson: Angles, measurement, right triangle trig, and Pythagorean theorem

MATHEMATICS GEOMETRY HONORS. OPTIONS FOR NEXT COURSE Algebra II, Algebra II/Trigonometry, or Algebra, Functions, and Data Analysis

CYCLES. Which of the following figures are similar to figure A? Explain. A B. MALATI materials: Geometry, module 6 13

Standards for Mathematical Practice

Looking for Pythagoras An Investigation of the Pythagorean Theorem

CCGPS Frameworks Mathematics

10.3 Areas of Similar Polygons

Sample test questions All questions

Before How does the painting compare to the original figure? What do you expect will be true of the painted figure if it is painted to scale?

Title: Quadrilaterals Aren t Just Squares

Constructing Perpendiculars to a Line. Finding the Right Line. Draw a line and a point labeled P not on the line, as shown above.

5.3. Area of Polygons and Circles Play Area. My Notes ACTIVITY

Getting Triggy With It

Set 6: Understanding the Pythagorean Theorem Instruction

B. Examples: 1. At NVHS, there are 104 teachers and 2204 students. What is the approximate teacher to student ratio?

3.3. You wouldn t think that grasshoppers could be dangerous. But they can damage

Name: A Trigonometric Review June 2012

HANDS-ON TRANSFORMATIONS: DILATIONS AND SIMILARITY (Poll Code 44273)

Kenmore-Town of Tonawanda UFSD. We educate, prepare, and inspire all students to achieve their highest potential

1 Version 2.0. Related Below-Grade and Above-Grade Standards for Purposes of Planning for Vertical Scaling:

Create Your Own Triangles Learning Task

Mathematical Construction

Problem of the Month: Between the Lines

2005 Fryer Contest. Solutions

12th Bay Area Mathematical Olympiad

GEOMETRY, MODULE 1: SIMILARITY

ABE/ASE Standards Mathematics

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

2012 COMMON CORE STATE STANDARDS ALIGNED MODULES 2012 COMMON CORE STATE STANDARDS ALIGNED MODULES

E G 2 3. MATH 1012 Section 8.1 Basic Geometric Terms Bland

Lesson 27: Sine and Cosine of Complementary and Special Angles

Kansas City Area Teachers of Mathematics 2017 KCATM Contest

Transcription:

Tennessee Department of Education Task: Ratios, Proportions, and Similar Figures 1. a) Each of the following figures is a square. Calculate the length of each diagonal. Do not round your answer. Geometry/Core Math II b) What do you notice about the length of the diagonal for each of these squares? Write a general rule for finding the length of the diagonal of a square if you know the length of the side WITHOUT DOING ANY CALCULATIONS. c) What is the ratio of the length of the side of a square to the length of its diagonal? Is this ratio the same for all squares? Why or why not? 2. a) Calculate the length of the diagonal of the rectangle. Do not round your answer. b) What is the ratio of the length of the shortest side of this rectangle to the length of the diagonal? c) Find two other rectangles that have the same ratio of the length of the shortest side to the length of the diagonal. d) How are the rectangles you found in part (c) related to the rectangle in part (a)? Make a conjecture about all rectangles that have the same ratio of the length of the shortest side to the length of the diagonal. e) Prove your conjecture in part (d). 3. a) Construct a rectangle with diagonal length 2 such that the angle between the diagonal and the shortest side is 60⁰. What is the ratio of the length of the shortest side to the length of the diagonal? b) Draw two other rectangles with the same ratio of the length of the shortest side to the length of the diagonal as your answer in part (a).

What is the measure of the angle between the diagonal and the shortest side? c) Make a conjecture about the relationship between the 60⁰ angle between the diagonal and the shortest side and the ratio of the length of the shortest side to the length of the diagonal. d) Prove your conjecture in part (c). e) If you draw two different rectangles with the same angle between the diagonal and the shortest side, what can you say about the ratio of the length of the shortest side to the length of the diagonal? Why? Teacher Notes: This is a long task. Teachers may want to use problems 1, 2, and 3 on different days. Problem 1 may also be skipped in the interest of time the main purpose of problem 1 is to set up the student mindset of the ratio being the same regardless of the size of the square. Students will need to use the concept of similar figures and the Pythagorean Theorem to complete many of these problems. Students will also need a ruler and protractor to complete problem 3. Geometry software such as Geogebra (www.geogebra.org) would be helpful for some parts (but it is not necessary to have access to geometry software to complete the task). Common Core State Standards for Mathematical Content Define trigonometric ratios and solve problems involving right triangles G-SRT.C.6 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles. Common Core State Standards for Mathematical Practice Mathematical Practices 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with mathematics. 5. Use appropriate tools strategically. 6. Attend to precision. 7. Look for and make use of structure. 8. Look for and express regularity in repeated reasoning. Essential Understandings Geometry is about working with variance and invariance, despite appearing to be about theorems. Underlying any geometric theorem is an invariance something that does not change while something else does. Invariances are rare and can be appreciated only when they emerge out of much greater variation. Examining the possible variations of an invariant situation can lead to new conjectures and theorems.

Explore Phase Possible Solution Paths 1a) Students should use the Pythagorean Theorem to find the length of each diagonal. The calculation for the first square is given below; the calculations for the other squares are similar. For the first square, the diagonal will divide the square into two right triangles. The lengths of the legs of one of these right triangles is 3 cm. Thus, using a 2 + b 2 = c 2 : 3 2 + 3 2 = c 2 (where c is the length of the diagonal) 9 + 9 = c 2 18 = c 2 c = 18 = 3 2 cm Similarly, for the second square, c = 5 2cm and for the third square, c = 8 2units. Assessing and Advancing Questions Why did you use the Pythagorean Theorem? How did you know that you could use the Pythagorean Theorem to solve this problem? Draw one diagonal on the square. What does the diagonal do to the square? Do you see any shapes other than the square in your figure? What kind of triangle do you have? Assessing Question: 1b) The length of the diagonal of a square is equal to the length of the side times 2. 1c) The ratio of the length of the side of a square to the length of its diagonal is: length of side 1 =. ( length of side) 2 2 The ratio is the same for all squares because the length of the diagonal of a square is equal to the length of the side of the square times 2. How do you know this is true for ALL squares? Advancing Question: Look at the answers you got in part (a). Do you see any patterns? How do you know your ratio is true for ALL squares? Is your ratio true for rectangles that are not squares? Why or why not? What does ratio mean?

2a) Students should use the Pythagorean Theorem to find the length of the diagonal. The diagonal will divide the rectangle into two right triangles. The length of one of the legs is 3 cm and the length of the other leg is 5 cm for each triangle. Thus, using a 2 + b 2 = c 2 : 3 2 + 5 2 = c 2 9 + 25 = c 2 34 = c 2 c = 34 cm. How do you know which value to put in the numerator and which to put in the denominator of your ratio? Why did you use the Pythagorean Theorem? How did you know that you could use the Pythagorean Theorem to solve this problem? Draw one diagonal on the square. What does the diagonal do to the square? Do you see any shapes other than the square in your figure? What kind of triangle do you have? Assessing Question: 2b) The ratio of the length of the shortest side of the rectangle (3 3 cm) to the length of the diagonal ( 34 cm) is 34. 2c) Answers will vary. However, all answers should represent rectangles that are similar to the original rectangle given in part (a). (In other words, the sides of the rectangles drawn by the students should be scalar multiples of the sides of the original rectangle 3 cm by 5 cm. Units may vary.) Examples of rectangles that can be used are: 6 cm by 10 cm 30 cm by 50 cm 0.3 units by 0.5 units 15 units by 25 units How do you know which value to put in the numerator and which to put in the denominator of your ratio? Advancing Question: What does ratio mean? How did you decide the dimensions of your rectangles? How are the rectangles you have found related to the original rectangle and to each other? Are there other rectangles you could draw that would have the same ratio?

How are ratios related to fractions? Can you use your knowledge of fractions to help you find a rectangle with the ratio you need? 2d) All rectangles found in part (c) are similar to the original rectangle given in part (a). Conjecture: Given a rectangle with a fixed ratio of the length of the shortest side to the length of the diagonal, any other rectangle with the same fixed ratio must be similar to the original rectangle. 2e) Conjecture: Given a rectangle with a fixed ratio of the length of the shortest side to the length of the diagonal, any other rectangle with the same fixed ratio must be similar to the original rectangle. Proof: Suppose we are given a rectangle with the length of the short side represented by A and the length of the diagonal represented by C. Then the ratio of the length of the shortest side to the length of the diagonal is A. To find the length of the long C side, we can use the Pythagorean Theorem: A 2 + b 2 = C 2 b 2 = C 2 A 2 2 2 b = C A. So our original rectangle has the shortest side given by A and the longest side given by 2 2 C A, where C is the length of the diagonal. How did you decide what your conjecture should be? Do you see any relationships between the rectangles you found in part (c) and the original rectangle in part (a)? Can you generalize what you did in part (c)? How did you use the idea of similarity in your proof? How do you know the ratios are the same for all these rectangles? How does the ratio being the same force the rectangles to be similar? How do you know your conjecture is true? On what evidence did you base your theory? What is it that you need to demonstrate? Suppose we have a second rectangle whose ratio of the length of the shortest side to the length of the diagonal is A. Then the C

length of the shortest side must be a scalar multiple of A and the length of the diagonal must be the same scalar multiple of C, where the scalar is greater than 0. In symbols, let m > 0 represent the scalar. Then the length of the shortest side is ma and the length of the diagonal is mc. Using the Pythagorean Theorem we can find the length of the longest side of the rectangle: (ma) 2 + b 2 = (mc) 2 b 2 = (mc) 2 (ma) 2 b 2 = m 2 (C 2 A 2 ) 2 2 b = m C A. Our second rectangle has the shortest side given by ma and the longest side given by m C 2 A 2, where mc is the length of the diagonal. Thus our second rectangle s dimensions are a scalar multiple of the first rectangle s dimensions. Since all of the angles of a rectangle measure 90, the second rectangle must be similar to the first rectangle by the definition of similar figures. 3a) In the figure below, rectangle ADCE is constructed so that the length of the diagonal is 2 units and the angle between the diagonal and the shortest side is 60. The length of the shortest side is exactly half of the length of the diagonal, so the length of the shortest side is 1 unit. (Note: The diagram was constructed using Geogebra software, available at www.geogebra.org.) The ratio of the length of the shortest side to the length of the diagonal is 1 2. Assessing questions: How do you know that the figure you constructed is a rectangle? How did you determine the ratio? How did you draw your triangle? How did you determine the length of the shortest side of your rectangle?

3b) This question is analogous to question 2c. Answers will vary. However, all answers should represent rectangles that are similar to the original rectangle found in part (a). (In other words, the sides of the rectangles drawn by the students should be scalar multiples of the sides of the rectangle in part (a). Units may vary.) Examples of rectangles that can be used are: Length of Diagonal Length of Short Side 3 units 1.5 units 10 units 5 units Once students have these rectangles drawn, they should find that the angle between the shortest side and the diagonal is always 60 for this ratio. 3c) The ratio between the shortest side of a rectangle and its diagonal is 1 if and only if the angle between the shortest side of 2 the rectangle and its diagonal is 60. How did you decide the dimensions of your rectangles? How are the rectangles you have found related to the original rectangle and to each other? Are there other rectangles you could draw that would have the same ratio? Do you see any patterns in the measures of your angles? How are ratios related to fractions? Can you use your knowledge of fractions to help you find a rectangle with the ratio you need? How did you decide what your conjecture should be? Do you see any relationships between the rectangles you found in parts (a) and (b)?

Can you generalize what you did in part (b)? What is the relationship between the rectangles you have drawn and the measure of the angle between the short side of the rectangle and the diagonal? 3d) Suppose that in a rectangle, the ratio of the length of the short side to the length of the diagonal is 1. Then the length of the 2 short side of the rectangle is exactly one half of the length of the diagonal. In the drawing below, the right triangle formed by the diagonal (segment AD), one short side (segment AC), and one long side (segment CD) of the rectangle is shown. How do you know the ratios are the same for all these rectangles? How did you use equilateral triangles in your proof? (Note: The conjecture is an if and only if conjecture meaning that the proof should have two parts: (i) the ratio being ½ implies that the measure of the angle is 60 ; and (ii) the measure of the angle being 60 implies that the ratio is ½. Students may get one part of the conjecture without getting the other part. Teachers may want to spend some time working with the wording of the conjecture to bring out both directions of the proof.) How do you know your conjecture is true? On what evidence did you base your theory? Reflect this triangle over line segment CD (see below). What is it that you need to demonstrate? The right triangle you form inside the rectangle using the diagonal is special because of the measures of the angles. Do you know of any other triangles that have one or more of these special angles? Can you use those triangles in your proof?

Since triangle ECD is the reflection of triangle ACD, we know that triangle ECD is congruent to triangle ACD, so in particular segment AD is congruent to segment ED and segment AC is congruent to segment EC. We also know that segment AC represents the short side of the original rectangle, so the length of segment AC is one half of the length of segment AD (the diagonal of the original rectangle). That means: the length of segment AC + length of segment CE = 2 (length of segment AC) (because these lengths are equal) = 2 (one half of the length of segment AD) = the length of segment AD. Thus, the lengths of all three sides of the big triangle ADE are equal to each other, so triangle ADE is an equilateral triangle. That means that the measure of angle DAC is 60. Therefore the measure of the angle between the short side of the original rectangle and the diagonal is 60. Conversely, suppose the angle between the diagonal and the short side of the rectangle is 60. (Only the right triangle formed by the diagonal and one half of the rectangle is shown below.) Note that

the measure of angle ADC is now 30. Reflect the triangle over the long side given by segment DC. Since the measure of angle CAD is 60 and the measure of angle ADC is 30, when we reflect triangle ADC over line segment DC, we must have the measure of angle CED equal to 60 and the measure of angle EDC equal to 30. That means that the measure of angle ADE is also 60, making triangle ADE an equilateral triangle. Since triangle ADE is equilateral, we know that the measure of segment AD = the measure of segment DE = the measure of segment AE. We also know that the measure of segment AC = the measure of segment CE (since triangle ADC was reflected over line segment DC, making triangle ADC congruent to triangle EDC). Thus the measure

of segment AC is one half of the measure of segment AD. Since segment AC is the short side of our original rectangle and segment AD is the diagonal of our original rectangle, the ratio of the length of the short side to the length of the diagonal of our original rectangle is 1 2. 3e) If two different rectangles have the same angle between the diagonal and the shortest side, then the two rectangles must be similar figures. This in turn implies that ratios of the length of the shortest side to the length of the diagonal must be equal using arguments similar to those found in parts 2d and 2e. In the drawing below, rectangle ACED (in black) and rectangle AGFH (in red) have the same angle (shown in green) between the diagonal and the shortest side. In particular, triangle AGF and triangle ACE are both right triangles (each represents half of a rectangle, thus the right angle is inherited from the rectangle). By the angle-angle property of similar triangles, this means that triangle AGF and triangle ACE are similar triangles, implying that segment AG is a scalar multiple of segment AC and segment GF is the same scalar multiple of segment CE. This in turn implies that the rectangles are similar figures. Possible Student Misconceptions Students may mix up the shortest side and the longest side. Students may not be able to visualize the right triangle formed by two adjacent sides of the rectangle and the diagonal. Entry/Extensions If students can t get started. How did you decide what your conjecture should be? How do you know your conjecture is true? On what evidence did you base your theory? Can you generalize what you did in part (c)? What happens if you change the size of the angle in part (a)? Can you have two rectangles with the same angle between the diagonal and the short side such that the two rectangles are NOT similar? Why or why not? Ask students to point out the shortest side and the diagonal on their drawings. Use another sheet of paper to trace the triangle formed. Assessing and Advancing Questions Why did you use the Pythagorean Theorem? How did you know that you could use the Pythagorean Theorem to solve this problem?

Draw one diagonal on the square. What does the diagonal do to the square? Do you see any shapes other than the square in your figure? What kind of triangle do you have? Ask students to go back through problems 2 and 3 using the longest side instead of the shortest side of the rectangle. Do the same types of conjectures hold? Why or why not? If students finish early. Ask students to compute the ratio of the length of the shortest side to the length of the longest side for each rectangle they constructed in problems 2 and 3. Do the same types of conjectures hold for this ratio? Why or why not? Discuss/Analyze Whole Group Questions Understanding 1: In a rectangle, the angle between the diagonal and the short side (or the long side, for that matter) is always between 0 and 90. This angle does not change if the lengths of the short side and the long side are multiplied by a positive scalar (i.e., if the rectangles are similar). Questions: What patterns did you see in your rectangles in part 3b? Would these patterns hold if you changed the measure of the angle? Can you make a conjecture about what would happen in part 3b if you changed the angle to another measure? How would similar rectangles support your conjecture? Understanding 2: If an angle between 0 and 90 is fixed, and a rectangle is constructed so that the angle between the diagonal and the short side has the same measure as this fixed angle, then the ratio of the length of the short side to the length of the diagonal is invariant (i.e., since all rectangles that have this fixed angle are similar to each other, these ratios will always be the same). (This understanding leads to the definition of the sine of an angle and the cosine of an angle.) Questions: What conjectures did you make in part 3e? What patterns did you see? How can you prove your conjectures in part 3e?

Ratios, Proportions, and Similar Figures 1. a) Each of the following figures is a square. Calculate the length of each diagonal. Do not round your answer. b) What do you notice about the length of the diagonal for each of these squares? Write a general rule for finding the length of the diagonal of a square if you know the length of the side WITHOUT DOING ANY CALCULATIONS. c) What is the ratio of the length of the side of a square to the length of its diagonal? Is this ratio the same for all squares? Why or why not? 2. a) Calculate the length of the diagonal of the rectangle. Do not round your answer. b) What is the ratio of the length of the shortest side of this rectangle to the length of the diagonal? c) Find two other rectangles that have the same ratio of the length of the shortest side to the length of the diagonal. d) How are the rectangles you found in part (c) related to the rectangle in part (a)? Make a conjecture about all rectangles that have the same ratio of the length of the shortest side to the length of the diagonal. e) Prove your conjecture in part (d). 3. a) Construct a rectangle with diagonal length 2 such that the angle between the diagonal and the shortest side is 60⁰. What is the ratio of the length of the shortest side to the length of the diagonal? b) Find two other rectangles with the same ratio of the length of the shortest side to the length of the diagonal as your answer in part (a). What is the measure of the angle between the diagonal and the shortest side? c) Make a conjecture about the relationship between the 60⁰ angle between the diagonal and the shortest side and the ratio of the length of the shortest side to the length of the diagonal. d) Prove your conjecture in part (c). e) If you draw two different rectangles with the same angle between the diagonal and the shortest side, what can you say about the ratio of the length of the shortest side to the length of the diagonal? Why?