Current status and future plans The LARIS Laboratory

Similar documents
bvparm2006.cif bvparm2006.cif Printed by Ram Seshadri

S1 TITAN Alloy LE Calibrations (P/N: )

Certificate of Analysis First issued: July 2000 Version: December 2007 MA-2c

CERTIFICATE SD SAMPLE PREPARATION ANALYTICAL PROCEDURES. Signature: Colin Ramshaw, Vancouver Laboratory Manager

CERTIFICATE OF ANALYSIS

combustion diagnostics

Features. Applications. Optional Features

First Pass Sampling on Vranje-South Project Defines Li-B Anomalies

DTU DANCHIP an open access micro/nanofabrication facility bridging academic research and small scale production

Bandpass Interference Filters

Red Laser for Monitoring Light Source

NIST EUVL Metrology Programs

A Diode-Pumped Solid State Blue Laser for Monitoring CMS Lead Tungstate Crystal Calorimeter at the LHC

A Diode-Pumped DP2-447 Blue Laser for Monitoring CMS Lead Tungstate Crystal Calorimeter at the LHC

High Power and Energy Femtosecond Lasers

High Average Power, High Repetition Rate Side-Pumped Nd:YVO 4 Slab Laser

taccor Optional features Overview Turn-key GHz femtosecond laser

High-Power Femtosecond Lasers

THE TUNABLE LASER LIGHT SOURCE C-WAVE. HÜBNER Photonics Coherence Matters.

picoemerald Tunable Two-Color ps Light Source Microscopy & Spectroscopy CARS SRS

A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator

Laser-Produced Sn-plasma for Highvolume Manufacturing EUV Lithography

This series of lasers are available with a choice of Nd:YAG, Nd:YLF, and Nd:YVO 4. System Reliability

Nd: YAG Laser Energy Levels 4 level laser Optical transitions from Ground to many upper levels Strong absorber in the yellow range None radiative to

Drive Beam Photo-injector Option for the CTF3 Nominal Phase

ModBox-FE-125ps-10mJ. Performance Highlights FEATURES APPLICATIONS. Electrical & Optical Pulse Diagrams

Aurora II Integra OPO Integrated Nd:YAG Pumped Type II BBO OPO

Gigashot TM FT High Energy DPSS Laser

improved stability (compared with

THE ORION PHOTOINJECTOR: STATUS and RESULTS

Fiber Coupled Semiconductor Laser

Applications Information

PGx11 series. Transform Limited Broadly Tunable Picosecond OPA APPLICATIONS. Available models

A novel High Average Power High Brightness Soft X-ray Source using a Thin Disk Laser System for optimized Laser Produced Plasma Generation

NL300 series. Compact Flash-Lamp Pumped Q-switched Nd:YAG Lasers FEATURES APPLICATIONS NANOSECOND LASERS

The extremely compact laser head is approximately 480 mm long and can

TIME-PRESERVING MONOCHROMATORS FOR ULTRASHORT EXTREME-ULTRAVIOLET PULSES

P-CUBE-Series High Sensitivity PIN Detector Modules

Stop Worrying About Interferences With These ICP-OES Solutions

Flash-lamp Pumped Q-switched

CRMs

LCLS-II-HE Instrumentation

COMPONENTS OF OPTICAL INSTRUMENTS. Chapter 7 UV, Visible and IR Instruments

COMPONENTS OF OPTICAL INSTRUMENTS. Topics

Multi-pass Slab CO 2 Amplifiers for Application in EUV Lithography

DEVELOPMENT OF CW AND Q-SWITCHED DIODE PUMPED ND: YVO 4 LASER

Q-switched resonantly diode-pumped Er:YAG laser

FPPO 1000 Fiber Laser Pumped Optical Parametric Oscillator: FPPO 1000 Product Manual

Lithium Triborate (LiB 3 O 5, LBO)

Next Generation Space Atomic Clock Space Communications and Navigation (SCaN) Technology

A new picosecond Laser pulse generation method.

Practical Applications of Laser Technology for Semiconductor Electronics

dnx/dt = -9.3x10-6 / C dny/dt = -13.6x10-6 / C dnz/dt = ( λ)x10-6 / C

Mira OPO-X. Fully Automated IR/Visible OPO for femtosecond and picosecond Ti:Sapphire Lasers. Superior Reliability & Performance. Mira OPO-X Features:

pulsecheck The Modular Autocorrelator

Quantum frequency standard Priority: Filing: Grant: Publication: Description

IntroOptical Filters. Windows

Instruction manual and data sheet ipca h

Progress in ultrafast Cr:ZnSe Lasers. Evgueni Slobodtchikov, Peter Moulton

Fiber Lasers for EUV Lithography

CONFIGURING. Your Spectroscopy System For PEAK PERFORMANCE. A guide to selecting the best Spectrometers, Sources, and Detectors for your application

WIDE ANGLE GEOMETRY EDXRF SPECTROMETERS WITH SECONDARY TARGET AND DIRECT EXCITATION MODES

Review of MPS Solid State Laser Systems

SNP High Performances IR Microchip Series

Advancing EDS Analysis in the SEM Quantitative XRF. International Microscopy Congress, September 5 th, Outline

5kW DIODE-PUMPED TEST AMPLIFIER

Polymer Comparisons for the Storage and Trace Metal Analysis of Ultrapure Water with the Agilent 7500cs ICP-MS Application

SNP High Performances IR Microchip Series

Development of Photocathode RF Gun No.

Single frequency MOPA system with near diffraction limited beam

External cavities for controling spatial and spectral properties of SC lasers. J.P. Huignard TH-TRT

S26 Basic research on 6.x nm EUV generation by laser produced plasma

sp1 sp2 sp3 sp4 sp5 TAP LPET LPET TAP LLIF Na Kα (albite) Ca Kα (anorthite) K Kα (orthoclase) Mg Kα (forsterite) Mn Kα (rhodonite)

Q-SWITCHED LASERS. Engineered Reliability. Rugged Design. No Water. Applications. Features

Development of High-peak Power Yb-doped Fiber Laser in Large Core Fiber

Development of a spectrometry system Using lock-in amplification technique

Status and Future Perspective of the HIE-ISOLDE Project

Lithium Triborate (LiB 3 O 5, LBO) Introductions

Powerful Single-Frequency Laser System based on a Cu-laser pumped Dye Laser

Reliable High Power EUV Source Technology for HVM: LPP or DPP? Vivek Bakshi, Ph.D. EUV Litho, Inc.

Status of MOLI development MOLI (Multi-footprint Observation Lidar and Imager)

High-Power, Passively Q-switched Microlaser - Power Amplifier System

Diode lasers for sensor applications. Bernd Sumpf Ferdinand-Braun-Institut Lichtenwalde, October 18, 2012

LUCX - THZ PROGRAM: OVERVIEW AND PROSPECTS

Multi-Wavelength, µm Tunable, Tandem OPO

Vitara. Automated, Hands-Free Ultrashort Pulse Ti:Sapphire Oscillator Family. Superior Reliability & Performance. Vitara Features:

Single pass scheme - simple

High Power Thin Disk Lasers. Dr. Adolf Giesen. German Aerospace Center. Institute of Technical Physics. Folie 1. Institute of Technical Physics

Random lasing in an Anderson localizing optical fiber

Power scaling of picosecond thin disc laser for LPP and FEL EUV sources

Progress on High Power Single Frequency Fiber Amplifiers at 1mm, 1.5mm and 2mm

High power VCSEL array pumped Q-switched Nd:YAG lasers

BRAMMER STANDARD ONLINE CATALOG - NICKEL SOLIDS. Cr/Al 4 Cr/Co 3 Cr/Fe 4, 5, 6 Cr/Fe/Mn/Nb ALLOY 9 Cr/Mn 8 Cr/Mo 7 Cr/Nb 8 Cr/W 8

The All New HarmoniXX Series. Wavelength Conversion for Ultrafast Lasers

Time and Frequency Activities at KRISS

Narrow line diode laser stacks for DPAL pumping

LM-QPSK-R. Lightwave Modulator for QPSK/ QAM. Features. Applications. Functional Diagram

Development of Mid-infrared Solid-State Lasers

Quantum-Well Semiconductor Saturable Absorber Mirror

J-KAREN-P Session 1, 10:00 10:

Transcription:

Current status and future plans The LARIS Laboratory

Production Ionization Mass separation

1) Applicable to a wide range of elements Use up to 3 tunable lasers 2) High peak power to ensure efficient excitation and ionization Storage of atoms Pulsed laser between pulses High repetition Hot Cavity rate laser (>10kHz) 3) Need to focus into 3 mm diameter tube, >15 m away. Good beam quality Beam shaping optics and telescopes HOT CAVITY TARGET

Copper vapour laser: High peak power (short pulse); high repetition rate, good beam quality Dye lasers: Wide tuning range, ionization schemes with up to 3 steps Beam transport and observation system: Beam focusing, overlap and optimization + continual observation with reflected reference beam

RILIS beams of 28 elements are available so far: elements available at ISOLDE LIS 1 2 H ionization scheme tested He 3 4 5 6 7 8 9 10 Li Be ionization scheme untested B C N O F Ne 11 12 13 14 15 16 17 18 Na Mg Al Si P S Cl Ar 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 87 88 89 104 105 106 107 108 109 110 111 112 Fr Ra Ac Rf Ha Sg Ns Hs Mt 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 4 types of ionization scheme: 2-step: (1 resonance) (2 resonance) 3-step: (2 resonance) (3 resonance)

Element Step 1 Step 2 Step 3 Setting up* Efficiency days 1, nm Dye P 1 typ, mw 2, nm Dye P 2 typ, 3, nm / 3, cm -1 Dye P 3 typ, mw off-line 234.861 Rhod 700 20 297.32 Pyrr 597 W 300 >7% 285.213 Rhod 6G 40 552.84 Rhod 110 80 510.554 & 578.213 CVL 5000 10% 2 309.271 Rhod B 50 510.554 & CVL 5000 308.215 Rhod B 30 578.213 20% 4Be 3 12Mg 2 13Al 20Ca 1 21Sc 2 25Mn 2 27Co 2 28Ni 3 29Cu 2 30Zn 3 31Ga 1 39Y 2 47Ag 2 48Cd 3 49In 1 50Sn 4 51Sb 3 65Tb 3 66Dy 2 70Yb 2 71Lu 3 79Au 3 80Hg 3 81Tl 2 82Pb 2 83Bi 2 84Po 4 3 272.164 Rhod 110 100 510.554 & 578.213 CVL 5000 327.363 Phenox 9 719.832 Rhod 700 510.554 & 578.213 CVL 279.827 Pyrr 567 50 628.27 Rhod 101 1200 510.554 / 19581.12 CVL 3000 304.4 Rhod B 180 544.458 Rhod 110 160 510.554 & 578.213 CVL 5000 305.082 Rhod B 60 611.106 Rhod B 250 748.219 / 13361.36 Rhod 700 1200 327.396 Phenox 9 50 287.894 Rhod 6G 250 213.857 Phenox 9 20 636.234 DCM 150 510.554 & 578.213 CVL 5000 287.423 Rhod 6G 70 510.554 & CVL 5000 578.213 414.284 Styr 9 110 662.37 Phenox 9 600 510.554 / 19581.12 CVL 3000 328.068 Phenox 9 70 546.55 Rhod 110 100 510.554 & 578.213 CVL 5000 228.802 Ox 170 20 643.847 DCM 300 510.554 / 19581.12 CVL 3000 303.936 Rhod B 50 510.554 & CVL 5000 578.213 300.914 Rhod B 50 811.399 Styr 9 100 823.49 / 12140.7 Styr 9 500 217.581 Phenox 9 20 560.21 Rhod 110 150 510.554 / 19581.12 CVL 3000 579.563 Rhod 6G 300 551.651 Rhod 110 200 618.25 / 16170 Rhod 101 1200 625.909 DCM 650 607.501 Rhod 101 800 510.554 / 19581.12 CVL 3000 555.648 Pyrr 567 200 581.027 Rhod 6G 1200 581.027 / 17204.97 Rhod 6G 1200 573.655 Rhod 6G 642.518 DCM 643.538 Phenox 9 267.59 Pyrr 546 30 306.54 Rhod B 100 673.9 / 14834.9 Phenox 9 320 253.651 LDS 759 20 313.184 DCM 100 626 DCM 1200 276.787 Rhod 110 70 510.554 & CVL 5000 578.213 283.305 Rhod 6G 70 600.186 Rhod B 500 510.554 & 578.213 CVL 5000 306.77 Rhod B 50 555.205 Rhod 110 500 510.554 & 578.213 CVL 5000 255.801 Rhod 700 20 843.38 Styr 9 500 510.554 CVL 3000 245.011 Rhod 700 30 532.339 Pyrr 546 1500 510.554 CVL 3000 0.50% 15% 19% >3.8% >6% >7% 4.90% 21% 14% 10.40% 9% 2.70% 20% 15% >3% 0.10% 27% >3% 6%

Increasing demand 2007 Operation limited to ~1600 hours in 2007 This is due to the limited manpower (and uncertain reliability of the CVL based system)

2-5 exp. Per element Exp. (one per RILIS setup) OFF-line work RILIS start Run start Date stop Sep. Estimate of Setup (hours) Valentin REX tuning / Stable runs Scheduled Physics shifts Element Cu Hg Po Counted LASER hours (Valentin) 120 Counted total "shifts" IS427 20-Apr 25-Apr 30-Apr GPS 20 16 11 Mg 79 9.9 IS358 4-May 10-May 11/12 MayGPS 20 3 Cu 62 7.8 IS413 12-May 12/13 May 16-May HRS 10 7 Ag 52 6.5 IS413 6-Jun 9-Jun GPS 20 5 Mn 170 21.3 IS368 GPS 3 Mn IS443 GPS 7 Mn IS432 GPS 3.5 Mn IS442 15-Jun GPS 1 Mn IS410 19-Jun 23-Jun GPS 20 16 14 Mg 206 25.8 IS412 11-Jul 17-Jul GPS 30 16 17 Zn 177 22.1 IS413 18-Jul 20-Jul HRS 20 6 Cd 193 24.1 IS434 9-Aug HRS 40 15 Sb 52 6.5 IS435 10-Aug 11-Aug GPS 20 16 17 Cu 184 23.0 IS431 4-Sep 4-Sep GPS 5 16 Cu 171 21.4 IS418 18-Sep 20-Sep 27-Sep GPS 40 16 21 Sn 179 22.4 IS411 2-Oct 4-Oct 11-Oct GPS 30 16 15 Cd 109 13.6 IS427 16-Oct 19-Oct 24-Oct GPS 20 12 Mg 126 15.8 LoI57 26-Oct 30-Oct 3-Nov GPS 40 16 3 Po 82 10.3 IS438 6-Nov 9-Nov HRS 30 16 18 Be 290 36.3 w/o MD FINAL 365 144 224.5 Total shifts 266.50 14 elements!

Advantages: Better beam quality Stability of operation Spectral coverage UV-NIR without gaps Questions: New ionization schemes Reliability Service Shift free RILIS operation and reduced maintenance/setup time = More RILIS runs

pulsed solid state lasers for ISOLDE RILIS providing visible and UV beams with total power up to 100 W at the pulse repetition rate of 10 khz and with a pulse duration of <20 ns - Extract from the abstract of the Invitation to Tender Beam A - 532 nm Beam B 532 nm Beam C 355 nm High quality beam for ionization Medium quality beam for dye laser pumping Medium quality beam for dye laser pumping Pulse repetition rate 8-15 khz 8-15 khz 8-15 khz Pulse duration 10-30 ns 10-20 ns 10-20 ns Output pulse timing jitter < 3 ns < 3 ns < 3 ns Average power 40 W 30-40 W 15-20 W Power stability +/- 5% over 24 hours +/- 5% over 24 hours +/- 5% over 24 hours Beam divergence or M 2 < 0.1 mrad after expanding to 20 mm diameter M 2 = 5-20 M 2 = 15-20 Beam pointing stability < 0.02 mrad after expanding to 20 mm diameter

Enquiries and contacts in 2003 2005: Coherent Inc. USA Lambda Physik AG Germany Spectra-Physics LAS GmbH Germany Lightwave Electronics USA Quantronix Corporation USA Positive Light, Inc USA - sent 16.01.2003 Spectron Laser GmbH Germany Groupe QUANTEL France LEE LASER, Inc USA THALES LASER S.A. France Photonics Industries International USA Powerlase Limited UK EdgeWave GmbH Germany General Atomics Photonics USA + Contacts with other companies at Laser exhibitions at Munich (2003, 2005) and CLEO Conference

DIODE Pumped Nd:YAG, Nd:YLF and Nd:YVO4 lasers 3 lasers: 2 x Green + 1 x UV - Short cavity : naturally shorter pulses - Specifications more or less satisfied in previously supplied lasers - CERN member state - Separate laser system - Small, relatively new company - Long term availability of parts/service? IS8II-E: Nd:YLF, pulse length 16ns at 10kHz, output average power 42W, M 2 = 1,7 IS8III-E: Nd:YLF, pulse length 17ns at 10kHz, output average power 20W, M 2 = 4,

DIODE Pumped Nd:YAG, Nd:YLF or Nd:YVO4 lasers 1 laser in a oscillator/amplifier configuration green and UV output beams - Possibly lower cost - Large, well established company - Close to required specifications allegedly already supplied to a defense company. - No convincing evidence of ability to produce required laser - Single laser system would mean no RILIS or complete setup of CVL in event of failure - Non CERN member state

Primary objectives: Investigate new ionization schemes (free from ISOLDE scheduling) Improve upon current schemes that rely on non-resonant ionization - search for auto-ionizing states Prepare for RILIS transition Solid State Laser system - different wavelength range (532 nm and 355 nm pumped dye lasers) Secondary objectives: Investigate RILIS selectivity improvements - HFS measurements (isomer selectivity) - Hot cavity optimization / material testing Tertiary objectives: Questions related to fundamental atomic spectroscopy, e.g. accurate determination of atomic ionization potentials. CERN/KTH collaboration FEDOSSEEV, Valentine (CERN) LINDROOS, Mats (CERN) LOSITO, Roberto (CERN) MARSH, Bruce (CERN) BERG, Lars-Erik (Royal Institute of Technology) LAUNILA, Olli (Royal Institute of Technology) PAUCHARD, Thomas (Royal Institute of Technology) TRANSTRÖMER, Göran (Royal Institute of Technology) VANNESJÖ, Johanna (Royal Institute of Technology) ÖSTERDAHL, Fabian (Royal Institute of Technology) Funding: Knut and Alice Wallenberg Foundation

Auto-ionizing state IP 1 2 Boxcar Integrator CEM 3 Wavelength Meter DC 3 kv (MS) Pulsed 32 V Nd:YAG 3 PDL Nd:YAG 2 OPO 2 2 generators Nd:YAG 1 OPO 1

Laser 1: (Continuum PowerLite 7010 + OPO Mirage) Tuning range: 720-920 nm (fund.), 360-460 nm (2w) 532 nm, 10 Hz

Laser 2 (Spectra Physics Quanta-Ray PRO 230-10 + MOPO HF) Tuning range: 450-690 nm (signal), 735-1680 nm (idler) 355 nm, 10 Hz MOPO-HF

Laser 3 - YAG pumped pulsed dye laser (532 nm Nd:YAG Dye tuning ranges: 390-850 nm (fund.), >200 nm(2w) Quantel YAG Pump laser 10-20 Hz Pulse energy: 350 mj (1064 nm) 160 mj (532 nm) 60 mj (355 nm) Pulse duration @1064 nm: 4.4 ns Lumonics Hyperdye Pulsed dye laser

Ablation chamber Ulf Sassenberg - Summer 2007

Ablation laser Optical spectrometer Fluorescence excitation laser Gate valve Skimmer Reflectron TOF-MS Extraction optics Carrier gas Rotating rod, pulsed valve assembly Pump Bellow Ionizing laser beams Electrodes Pump Optional laser beam Questions related to fundamental atomic spectroscopy, e.g. accurate determination of atomic ionization potentials. Olli Launila - 2008

2007 2008 2009+

Wider applicability LARIS Higher efficiency Greater selectivity New cavities/list Greater demand for RILIS beams RILIS upgrade Improved reliability Reduced setup time Thanks to: Knut and Alice Wallenberg Foundation