FET, BJT, OpAmp Guide

Similar documents
Physics 481 Experiment 3

Chapter 3 Bipolar Junction Transistors (BJT)

Field Effect Transistors

UNIT 3: FIELD EFFECT TRANSISTORS

Lecture 3: Transistors

Chapter 8. Field Effect Transistor

Current Mirrors. Basic BJT Current Mirror. Current mirrors are basic building blocks of analog design. Figure shows the basic NPN current mirror.

UNIT I - TRANSISTOR BIAS STABILITY

Phy 335, Unit 4 Transistors and transistor circuits (part one)

Transistor Characteristics

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 6 FIELD-EFFECT TRANSISTORS

Chapter 6: Field-Effect Transistors

Improving Amplifier Voltage Gain

4 Transistors. 4.1 IV Relations

Electronics EECE2412 Spring 2017 Exam #2

(a) BJT-OPERATING MODES & CONFIGURATIONS

Field Effect Transistors (npn)

EXPERIMENT NO -9 TRANSITOR COMMON -BASE CONFIGURATION CHARACTERISTICS

ES 330 Electronics II Homework # 2 (Fall 2016 Due Wednesday, September 7, 2016)

BJT Amplifier. Superposition principle (linear amplifier)

UNIT 3 Transistors JFET

CHAPTER 3: BIPOLAR JUNCION TRANSISTOR DR. PHẠM NGUYỄN THANH LOAN

Chapter 3: TRANSISTORS. Dr. Gopika Sood PG Govt. College For Girls Sector -11, Chandigarh

Dr. Charles Kim ELECTRONICS I. Lab 5 Bipolar Junction Transistor (BJT) I TRADITIONAL LAB

SAMPLE FINAL EXAMINATION FALL TERM

4.2.2 Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

EE301 Electronics I , Fall

6. Field-Effect Transistor

Three Terminal Devices

Physics 364, Fall 2012, reading due your answers to by 11pm on Thursday

Chapter 8: Field Effect Transistors

IENGINEERS-CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU ELECTRONICS ENGINEERING EC 101 UNIT 3 (JFET AND MOSFET)

Field Effect Transistors

Analog Electronics. Electronic Devices, 9th edition Thomas L. Floyd Pearson Education. Upper Saddle River, NJ, All rights reserved.

Electronics Prof. D. C. Dube Department of Physics Indian Institute of Technology, Delhi

MTLE-6120: Advanced Electronic Properties of Materials. Semiconductor transistors for logic and memory. Reading: Kasap

Electronics I. Last Time

Başkent University Department of Electrical and Electronics Engineering EEM 214 Electronics I Experiment 8. Bipolar Junction Transistor

Student Lecture by: Giangiacomo Groppi Joel Cassell Pierre Berthelot September 28 th 2004

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

C H A P T E R 6 Bipolar Junction Transistors (BJTs)

Unit III FET and its Applications. 2 Marks Questions and Answers

EE301 Electronics I , Fall

55:041 Electronic Circuits The University of Iowa Fall Exam 3. Question 1 Unless stated otherwise, each question below is 1 point.

Chapter 5: Field Effect Transistors

BJT. Bipolar Junction Transistor BJT BJT 11/6/2018. Dr. Satish Chandra, Assistant Professor, P P N College, Kanpur 1

PHY405F 2009 EXPERIMENT 6 SIMPLE TRANSISTOR CIRCUITS

7. Bipolar Junction Transistor

Lecture 14. Field Effect Transistor (FET) Sunday 26/11/2017 FET 1-1

Field - Effect Transistor

EIE209 Basic Electronics. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: T ransistor devices

ME 4447 / 6405 Student Lecture. Transistors. Abiodun Otolorin Michael Abraham Waqas Majeed

F7 Transistor Amplifiers

Lab 1 - Revisited. Oscilloscope demo IAP Lecture 2 1

Objective: To study and verify the functionality of a) PN junction diode in forward bias. Sl.No. Name Quantity Name Quantity 1 Diode

THE METAL-SEMICONDUCTOR CONTACT

Chapter 3-2 Semiconductor devices Transistors and Amplifiers-BJT Department of Mechanical Engineering

Federal Urdu University of Arts, Science & Technology Islamabad Pakistan THIRD SEMESTER ELECTRONICS - II BASIC ELECTRICAL & ELECTRONICS LAB

Bipolar Junction Transistor (BJT)

Chapter 8: Field Effect Transistors

CHAPTER 8 FIELD EFFECT TRANSISTOR (FETs)

EECE2412 Final Exam. with Solutions

Field-Effect Transistor

Lecture 12. Bipolar Junction Transistor (BJT) BJT 1-1

I E I C since I B is very small

Transistor fundamentals Nafees Ahamad

Experiment 9- Single Stage Amplifiers with Passive Loads - MOS

COE/EE152: Basic Electronics. Lecture 5. Andrew Selasi Agbemenu. Outline

The Bipolar Junction Transistor- Small Signal Characteristics

THE JFET. Script. Discuss the JFET and how it differs from the BJT. Describe the basic structure of n-channel and p -channel JFETs

Hello, and welcome to the TI Precision Labs video series discussing comparator applications. The comparator s job is to compare two analog input

Homework Assignment 07

Bipolar Junction Transistors

Laboratory #5 BJT Basics and MOSFET Basics

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

EDC UNIT IV- Transistor and FET Characteristics EDC Lesson 9- ", Raj Kamal, 1

Lab 3: BJT Digital Switch

CHAPTER 8 DIFFERENTIAL AND MULTISTAGE AMPLIFIERS

The shape of the waveform will be the same, but its level is shifted either upward or downward. The values of the resistor R and capacitor C affect

Bipolar Junction Transistors (BJTs)

Component modeling. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

COLLECTOR DRAIN BASE GATE EMITTER. Applying a voltage to the Gate connection allows current to flow between the Drain and Source connections.

FIELD- EFFECT TRANSISTORS: MOSFETS

Difference between BJTs and FETs. Junction Field Effect Transistors (JFET)

EXPERIMENT 5 CURRENT AND VOLTAGE CHARACTERISTICS OF BJT

= V IN. and V CE. = the supply voltage 0.7 V, the transistor is on, V BE. = 0.7 V and V CE. until saturation is reached.

Chapter 6: Transistors and Gain

Multistage Amplifiers

Electronics 1 Lab (CME 2410) School of Informatics & Computing German Jordanian University Laboratory Experiment (10) Junction FETs

Linear electronic. Lecture No. 1

Homework Assignment 07

Basic Electronics Prof. Dr. Chitralekha Mahanta Department of Electronics and Communication Engineering Indian Institute of Technology, Guwahati

(a) Current-controlled and (b) voltage-controlled amplifiers.

PREVIEW COPY. Amplifiers. Table of Contents. Introduction to Amplifiers...3. Single-Stage Amplifiers...19

Roll No. B.Tech. SEM I (CS-11, 12; ME-11, 12, 13, & 14) MID SEMESTER EXAMINATION, ELECTRONICS ENGINEERING (EEC-101)

EE105 Fall 2015 Microelectronic Devices and Circuits

FIELD EFFECT TRANSISTORS

Lecture 17. Field Effect Transistor (FET) FET 1-1

Department of Electrical Engineering IIT Madras

EEE118: Electronic Devices and Circuits

Transcription:

FET, BJT, OpAmp Guide Alexandr Newberry UCSD PHYS 120 June 2018 1 FETs 1.1 What is a Field Effect Transistor? Figure 1: FET with all relevant values labelled. FET stands for Field Effect Transistor, it is an active electronic device (meaning it needs to be powered) that uses an electric field to regulate the conductivity of its terminals. Specifically the conductivity between the drain and source terminals is controlled by the electric field generated by the voltage difference between the body and the gate of the device. The inner workings of the device are interesting but will not be fully explored here, we are most interested in the constitutive equations of the device and how it is used experimentally. N-channel FETs will be the primary focus. 1

An FET is a voltage controlled current source. The voltages V GS and V DS determine the output current I DS as shown below. FETs are characterized by having an extremely high input impedance at the Gate terminal, so we can assume I G = 0. The drain and source terminal currents are equal, the current that flows into the Drain flows out of the Source and can be referred to as I DS. Additionally there are two important constants that are inherent to the FET itself, these constants are I DSS and V GS (off). I DSS is known as the saturation drain-source current, it is the maximum current that this device can output when being used as a current source. V GS (off) determines when the device enters its active region (the active region is when the FET is being used as a current source). So what is the Active region exactly and what other regions are there? The Active region, also known as the Saturation region, is when the device is acting as an optimal current source. The Active region is entered when V DS > V GS V GS (off), this is illustrated by the graph below. When this condition is not met (V DS not high enough) then the FET is in its Ohmic, or Linear, region. In the linear region the FET becomes a variable resistor. There are additional breakdown regions which will occur if V DS is very low or very high that are not shown. Figure 2: Five plots of I DS vs V DS for five different values of V GS. 2

Since these devices are meant to be used as current sources it is useful to look at just the active regions behavior. In this active region a single current will be outputted that will not change even if V DS has a slight change. When it is being used as a current source we can refer to the current I DS as the Quiescent Current, or I DSQ. Figure?? shows the relationship between this Quiescent Current (labeled without the Q ) and V GS, their relationship is governed by the equation I DS = I DSS (1 V GS V GS (off) )2. Figure 3: This plot only applies in the ACTIVE region. Plots of different I DS currents one can make with different values of V GS in the active region. 1.2 FET Constitutive Equations When in active region: I G = 0 (1) I D = I S = I DS (2) I DS = I DSS (1 V GS V GS (off) )2 (3) V DS > V GS V GS (off) (4) 3

2 BJTs 2.1 What is a Bipolar Junction Transistor? Figure 4: An npn BJT with relevant values labeled. BJT stands for Bipolar Junction Transistor, this is another active electronic device similar to an FET. The three terminals of this device are the Base, Collector (collects electrons), and Emitter (emits electrons). Bipolar refers to the fact that there are two charge carriers being implemented, holes and electrons. The BJT is a Current controlled Current source. It can be used as a switch for digital logic (On/Off), or as a current amplifier that is amplified by a constant amount referred to as β (common Emitter current gain). NPN BJTs will be the primary focus. The figure above show the base current, the collector current, and the emitter current flowing through the BJT. The first constitutive equation of this device is simple conservation of current, I E = I B + I C. BJTs are characterized as current amplifiers, while in the active region the purpose is to have a small current flow into the Base terminal and amplify it in the Collector and Emitter terminals. The common Emitter current gain, written as β (50 < β < 250), amplifies the Collector current linearly with the Base current I C = βi B. If you were to plug this relationship into the current conservation equation you would also find that I C = αi E = β I 1+β E where α is known as common Base current gain. 4

Figure 5: I C as a function of V CE for six different values of I B with all three major regions labeled. Similarly to an FET, a BJT has different properties depending on what region it is operating in. There are two major functions BJTs are used for that manifest in three major regions. Firstly, BJT can be used as a switch with an [ON] region and an [OFF] region. Secondly the BJT can be used as a Current controlled Current source in its Active region. The threshold from Saturation mode to Active mode can roughly be taken to be V CE (threshold) = 0.2V. The characteristics of each region are outlined below. 1. Active Region: Acts as a current Amplifier, this is the most important region. I C = βi B applies. I B > 0 V CE > 0.2V 5

2. Saturation Region [ON]: Transistor is fully-on. Barrier potentials of the junctions cancel each other out causing a virtual short. I C = I Saturation I B > 0 V CE <= 0.2V 3. Cut-Off Region [OFF]: Transistor is fully-off. Behaves like an open switch. I C = 0 I B = 0 2.2 BJT Constitutive Equations When in active region: 3 Op-Amps I E = I B + I C (5) V BE 0.7V (6) I C = βi B (7) I C = αi E = 3.1 What is an Operational Amplifier? β 1 + β I E (8) Operational Amplifiers are a widely used active electronic component that functions as a Differential Amplifier. Figure?? has 5 labeled terminals, the +V S and V S terminals are power sources for the OpAmp and are the upper and lower limits on V Out, they are often omitted in circuit diagrams. V + and V are the input terminals which control V Out. OpAmps function as voltagecontrolled voltage sources, the Input Voltage is the difference in voltage of the input terminals: (V + V ). The output voltage is also amplified from the input voltage, this is why it is considered a Differential Amplifier. As a voltage controlled voltage source, the OpAmp needs characteristics of an ideal voltage reader and an ideal voltage source. Just like a Voltmeter, an OpAmp has extremely high input resistances on the + and - terminals. If it did not then it would draw current and alter the circuit it is reading voltage from! Similarly, the output impedance is extremely low so that the output 6

Figure 6: Operational Amplifier with labeled terminals. current is determined by resistances after the output channel. Because of the high input impedance we assume they are infinite. For the real op amp the input currents are on the order of 10 7 amps, but in the ideal case we take I + = I = 0. As previousy discussed, the input impedance across the input port is infinity, and the output impedance is zero. The output voltage is characterized by V Out = A(V + V ) where A is known as the open loop gain. In an ideal OpAmp A, this also also implies that V + V. Both of these equations can be used in the case of an ideal OpAmp. For a real OpAmp, say model 741, A might be arround 300,000 with a maximum output current of 10mA. It is straightforward to see that the power required for the input signals is orders of magnitude less than the power that can be controlled at the output. This is possible because the op amp is a powered circuit component, it requires a seperate set of inputs that supply power to the device. 3.2 Op-Amp Constitutive Equations V 0 = A(V + V ) I + = I = 0 A V + V 7