Key-Words: - NARX Neural Network; Nonlinear Loads; Shunt Active Power Filter; Instantaneous Reactive Power Algorithm

Similar documents
INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

Sinusoidal Current Control based Shunt Active Power Filter for Current Harmonics Reduction

Power Quality Improvement Using Hybrid Power Filter Based On Dual Instantaneous Reactive Power Theory With Hysteresis Current Controller

COMPENSATION OF POWER QUALITY PROBLEMS USING ACTIVE POWER FILTER

SIMULATION AND COMPARISON OF SPWM AND SVPWM CONTROL FOR TWO LEVEL UPQC

Harmonics Elimination Using Shunt Active Filter

PERFORMANCE ANALYSIS OF SVPWM AND FUZZY CONTROLLED HYBRID ACTIVE POWER FILTER

ISSN Vol.03,Issue.07, August-2015, Pages:

Power Quality Improvement using Shunt Passive Filter

HYBRID ACTIVE FILTER WITH VARIABLE CONDUCTANCE FOR HARMONIC RESONANCE SUPPRESSION USING ANN

Power Quality Improvement of Distribution Network for Non-Linear Loads using Inductive Active Filtering Method Suresh Reddy D 1 Chidananda G Yajaman 2

IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 12 June 2016 ISSN (online): X

Synchronous Reference Frame Control Algorithm Based Four -Leg Inverter DSTATCOM For Power Quality Improvement

5DESIGN PARAMETERS OF SHUNT ACTIVE FILTER FOR HARMONICS CURRENT MITIGATION

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE

Assessment of Different Compensation Strategies in Hybrid Active Power Filters

Shunt active filter algorithms for a three phase system fed to adjustable speed drive

HYSTERESIS CONTROL FOR CURRENT HARMONICS SUPPRESSION USING SHUNT ACTIVE FILTER. Rajesh Kr. Ahuja

HARMONIC ELIMINATION IN THREE PHASE SYSTEM BY MEANS OF A SHUNT ACTIVE FILTER

A Simple Control Algorithm for Three-Phase Shunt Active Power Filter for Reactive Power and Current Harmonic Compensation

Harmonics Reduction using 4-Leg Shunt Active Power Filters

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013

Shunt Active Power Filter for Compensation of System Harmonics

Three-Level Shunt Active Filter Compensating Harmonics and Reactive Power

Enhancement of Power Quality using active power filter in a Medium-Voltage Distribution Network switching loads

Comparison of Control Algorithms for Shunt Active Filter for Harmonic Mitigation

International Electrical Engineering Journal (IEEJ) Vol. 4 (2013) No. 3, pp ISSN

Power Quality improvement of a three phase four wire system using UPQC

Design and Simulation of Three Phase Shunt Active Power Filter Using SRF Theory

A Time Domain Reference-Algorithm for Shunt Active Power Filters

IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 06, 2014 ISSN (online):

A MATLAB-SIMULINK APPROACH TO SHUNT ACTIVE POWER FILTERS

Power Quality Improvement in Fourteen Bus System using UPQC

SCIENCE & TECHNOLOGY

Universal power quality conditioner

A THREE PHASE SHUNT ACTIVE POWER FILTER FOR HARMONICS REDUCTION

Shunt Active Power Filter based on SRF theory and Hysteresis Band Current Controller under different Load conditions

SHUNT COMPENSATOR USED FOR POWER QUALITY IMPROVEMENT

Selective Harmonic Elimination Using Three Phase Shunt Active Power Filter

Review on Shunt Active Power Filter for Three Phase Four Wire System

2020 P a g e. Figure.2: Line diagram of series active power filter.

MODELLING & SIMULATION OF ACTIVE SHUNT FILTER FOR COMPENSATION OF SYSTEM HARMONICS

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System

PI-VPI Based Current Control Strategy to Improve the Performance of Shunt Active Power Filter

This is a refereed journal and all articles are professionally screened and reviewed. Electromechanical Active Filter as a Novel Custom Power device

Kanuru; Krishna (Dt); A.P, India. DOI: / Page. 1 G. Aruna Jyothi, 2 DR. P. V. R. L.

Literature Review for Shunt Active Power Filters

The unified power quality conditioner: the integration of series and shunt-active filters

Improvement of Power Quality by using Active Filter based on Vectorial Power Theory Control Strategy on the MATLAB-Simulink Platform

Three Phase Active Shunt Power Filter with Simple Control in PSIM Simulation

DESIGN OF A HYBRID ACTIVE FILTER FOR HARMONICS SUPPRESSION WITH VARIABLE CONDUCTANCE IN INDUSTRIAL POWER SYSTEMS USING FUZZY

INSTANTANEOUS POWER CONTROL OF D-STATCOM FOR ENHANCEMENT OF THE STEADY-STATE PERFORMANCE

Modeling & Simulation of Micro Grid Distribution System to reduce Harmonics Using Active Power Filters and PI controllers

Unified Power Quality Conditioner Based on Neural-Network Controller for Mitigation of Voltage and Current Source Harmonics

Neural Network Controlled Hybrid Active Power Filter with Distorted Mains for PMSM Drive

Power Quality Analysis: A Study on Off-Line UPS Based System

HARMONIC REDUCTION IN HIGH FREQUENCY (400HZ) AIRCRAFT POWER SYSTEM APPLYING ARTIFICIAL INTELLIGENCE TECHNIQUES IN SHUNT ACTIVE POWER FILTER

INVESTIGATION OF HARMONIC DETECTION TECHNIQUES FOR SHUNT ACTIVE POWER FILTER

SHUNT ACTIVE POWER FILTER

Application of Fuzzy Logic Controller in Shunt Active Power Filter

Single Phase Shunt Active Filter Simulation Based On P-Q Technique Using PID and Fuzzy Logic Controllers for THD Reduction

Harmonics Reduction of 3 Phase Diode Bridge Rectifier by Implementing P-Q Theory with Active Filter

Analysis of Reference Current Generation for Shunt Active Power Filter Using SRF Algorithm to Compensate Harmonic Current

A Novel FPGA based PWM Active Power Filter for Harmonics Elimination in Power System

Improvement of Power Quality Using Hybrid Active Power Filter in Three- Phase Three- Wire System Applied to Induction Drive

Harmonic Analysis in Non-linear Load by using Hybrid UPQC

Three Phase PFC and Harmonic Mitigation Using Buck Boost Converter Topology

CHAPTER 5 POWER QUALITY IMPROVEMENT BY USING POWER ACTIVE FILTERS

Enhancement of Power Quality Using Advanced Series Active Power Filters

Power Control Scheme of D-Statcom

A New Control Method for Series Active Filter in Distribution System using Unit Vector Control

A Review on Simulation and Implementation of Thyristor controlled reactor and Shunt Hybrid Power Filter

Mitigation of Voltage Sag/Swell Using UPQC

Power Quality Improvement using Active shunt Power filter using PI Controller

Power Quality Improvement of Non-Linear Load by Using Instantaneous P-Q Theory

Control Of Shunt Active Filter Based On Instantaneous Power Theory

Application of Fuzzy Logic Controller in UPFC to Mitigate THD in Power System

Gradient Descent Learning for Utility Current Compensation using Active Regenerative PWM Filter

CHAPTER 4 PV-UPQC BASED HARMONICS REDUCTION IN POWER DISTRIBUTION SYSTEMS

Improvement of the Electric Power Quality Using Series Active and Shunt Passive Filters P. Salmerón and S. P. Litrán

A VOLTAGE SAG/SWELL ALONG WITH LOAD REACTIVE POWER COMPENSATION BY USING SERIES INVERTER of UPQC-S

A Novel Approach to Simultaneous Voltage Sag/Swell and Load Reactive Power Compensations Using UPQC

Downloaded from

Comparison of Shunt Active Power Filter Control Strategies for Harmonic Compensation in a Paper Industrial Factory

International Journal of Advance Research in Engineering, Science & Technology

Reactive Power Compensation of LC Coupling Hybrid Active Power Filters by DC Link Voltage Controls

LOAD REACTIVE POWER COMPENSATION BY USING SERIES INVERTER OF UPQC

Modeling and Simulation of SRF and P-Q based Control DSTATCOM

p. 1 p. 6 p. 22 p. 46 p. 58

IMPROVEMENT OF POWER QUALITY USING CUSTOM POWER DEVICES

DESIGN AND IMPLEMENTATION OF THREE PHASE SHUNT APF CURRENT CONTROLLER WITH ANN TECHNIQUE

Development of Multilevel Inverters for Control Applications

POWER QUALITY ASSESSMENT AND ENHANCEMENT IN A GRID CONNECTED RENEWABLE ENERGY SYSTEM USING DYNAMIC VOLTAGE RESTORER

REDUCTION OF THD IN POWER SYSTEMS USING STATCOM

Chapter 4. Hybrid series active filter. 4.1 Introduction

UPQC for Improvement Power Quality.

PI Controller Based Shunt Active Power Filter with Cascaded Multilevel Inverter

Svpwm Technique to Eliminate Harmonics and Power Factor Improvement Using Hybrid Power Filter and By Using Dsp Tms 320lf2407

ISSN: Page 20. International Journal of Engineering Trends and Technology- Volume2Issue3-2011

Improvement of Power Quality Using a Hybrid Interline UPQC

Transcription:

Parameter control scheme for active power filter based on NARX neural network A. Y. HATATA, M. ELADAWY, K. SHEBL Department of Electric Engineering Mansoura University Mansoura, EGYPT a_hatata@yahoo.com Abstract: - This paper presents a shunt active power filter control reference signal using Nonlinear Autoregressive with exogenous neural network (NARX) with back propagation training algorithm. The instantaneous reactive power algorithm is integrated within the neural network to extract the dominant harmonics. The proposed method is demonstrated on three phase thyristor controlled drive which is one of widely used loads in petroleum industry field. Key-Words: - NARX Neural Network; Nonlinear Loads; Shunt Active Power Filter; Instantaneous Reactive Power Algorithm Introduction The rapid increase in electronic device technology cause industrial loads to become nonlinear and consequently results in significant level of harmonic distortion. Harmonic current drawn from the supply by the nonlinear loads results in the distortion of the supply voltage waveform at the point of common coupling (PCC) due to the source impedance. Harmonics generally are affected badly on utility and customer equipments. They may cause protection devices malfunction, increase power losses and line temperature and create noise and resonance []. Active Power Filter (APF) provides a solution of the problems of power quality such as reactive power compensation, harmonic mitigation and harmonic damping []. According to their topology active filters can be divided to shunt, series and unified or hybrid Active power filters [3]. Shunt active power filter is considered as the most popular topology of APFs. The main purpose of shunt active power filters is to compensate harmonics of load current [4-5]. Series active power filter is more suitable for harmonic voltage sources loads, the main purpose of this type of active filters is to compensate negative sequence voltage and regulate voltage in three phase system [6]. Unified power quality conditioner is a combination of series and shunt active filters and its function is to isolate voltage harmonics and current harmonics. This type of active power filter is expensive and complex in control [7]. Hybrid active filter is raised up to reduce the initial cost of filtering, by using passive filter to tune up to the most dominant harmonic order and then connected with series or shunt active power filter. This will reduce active filter rating and cost in turn [8]. Many researchers interested in active power filters providing various types and classifications according to converter configuration, topology, application and control strategy. Ref [0] proposed systems that achieve isolation at the dominant harmonic frequencies for six pulses rectifier from ends using square wave inverters. The artificial neural network technique was used for the control of active power filter [9, ]. NARX is one of the RNN schemes with global feedback. It considered as a time series forecasting networks []. It gives a dynamic responsibility, fast and accurate training response. NARX has a flexible architecture combining between simplicity (since it is simple to learn using backpropagation algorithms) and time series forecasting. The NARX is a perfect tool in simulating the complicated nonlinear systems because of its long term-dependencies and its computational power [3]. In this paper shunt active power filter is proposed as a solution of harmonic distortion. The main issue for active power filter is to find a control method which quickly obtains the compensation reference current with minimal errors. The control has two steps; the first one is to generate the control reference signals and the second step carries out the control method []. E-ISSN: 4-350X 8 Volume 3, 08

The control reference signal of shunt active power filter is proposed using NARX neural network with backpropagation training algorithm. The instantaneous reactive power algorithm is integrated with the neural network to extract the dominant harmonics. This method is also named the p q method. It was introduced for active filter applications by Akagi in 984 []. The current and voltage of the system are converted into the αβ0 system using the following equations: () ii α ii β = 3 ii 0 3 0 3 3 3 vv α vv β = 3 0 3 vv 0 3 ii aa ii bb ii cc vv aa vv bbvvcc () Based on p-q theory pp = vv 0 ii 0 + vv aa ii aa + vv bb ii bb (3) qq = vv aa ii aa vv bb ii bb (4) When the system is a symmetric three-phase or there is no neutral point pp qq = vv α vv β vv β vv ii α α iiβ (5) The active and reactive power in Eq. 5 can be decomposed into two parts: AC and DC parts. The DC part resulted from the fundamental current and voltage and the AC part resulted from the harmonics. pp = pp + pp (6) qq = qq + qq (7) ii α ii = vv α vv β pp + pp β vv α + vv β vv β vv (8) α qq Where * denotes the reference value. These are reference values for the source currents. Therefore, the reference value for the active filter is as follows: ii αaaaa = ii α ii LLα (9) ii βaaaa = ii β ii LLβ (0) The abc reference values for the active filter is 0 ii aaaaaa ii bbbbbb = 3 ii α 3 ii cccccc 3 ii β () 3 NARX network architecture In this paper a series parallel architecture of NARX will be used. This form combines between the features of feed-forward network and dynamic networks, thus the input to the feed-forward network is more accurate and the static back-propagation can be used for training [4-6]. The static backpropagation learning algorithm is applied to train the series parallel NARX network to identify the load model. The final architecture of NARX network is achieved through a training procedure. Two hidden layers will be used in our proposed NARX neural network but the entire neurons will be changed according to the type of each load and the complexity of its waveforms. The training process will be tested for each load after changing the architecture of the NARX network from seriesparallel to parallel by applying the actual measured voltage. The field measured and simulated data are used to build the corresponding NARX network using the PCC supply voltage and the corresponding load currents. Each network will be tested with pure sinusoidal waveform and the resultant output will evaluate the true harmonics and nonlinearity of each load. The voltage waveforms will be used as a series-parallel NARX input, whereas the current waveforms will be used as the actual target, so that the training process can be applied faster and more accurate to each load. E-ISSN: 4-350X 9 Volume 3, 08

Measured V Measured I NARX Trained Output Measured V NARX Tested Output FFT FFT Measured THD = Tested THD Pure Sine Wave NARX Non-linearity Indication output Fig. NARX network architecture The Fast Fourier Transform (FFT) technique will be applied on the parallel NARX output and the results will be compared with the THD of actual measured current. If the THD of the parallel NARX output is the same as THD of the measured current, the training will be terminated as it gives a good result. The nonlinearity will appear for each load after making a good identification using parallel NARX architecture injected by mathematically generated sinusoidal waveform. The output will be tested again with FFT and the estimated THD will indicate the actual load nonlinearity after removing the PCC effects. The designed architecture is illustrated in Fig.. Fig. The block diagram of NARX harmonics extraction Fig. shows the block diagram of NARX harmonics extraction and Fig. 3 shows the evaluation of instantaneous P, Q using the pure sine waveform (V sine ) and NARX output waveform (I true ). 4 NARX control reference Based Method for shunt active power filter The NARX neural network based identifier is used to isolate the dominant harmonics from the rest of the current spectrum of a load. These isolated harmonics are then used with Instantaneous reactive power algorithm to mitigate the harmonics. The PCC voltage and the non-linear load current are used to train the series parallel NARX network as the input and the target respectively. Then the NARX network will be converted to parallel NARX network so it will be injected with mathematically produced pure sinusoidal waveform. The NARX output waveform and the pure sinusoidal voltage waveform will be used in p-q method to produce the true harmonics of the nonlinear load. Fig. 3 Block diagram of evaluation of instantaneous P, Q using pure sine wave and corresponding NARX output The instantaneous P, Q are used to evaluate I alpha, I beta which represent the final step before evaluating reference current as illustrated in Fig.4. E-ISSN: 4-350X 0 Volume 3, 08

distortion using NARX. The nonlinear load current is shown in Fig. 7. Fig. 4: Block diagram of reference current evaluation The reference current are used to switch pulses to the power electronic elements GTO/Diodes to force the power converter to act as a current source to follow the reference current changes. Fig. 6 MATLAB/SIMULINK model of the system 5 Result and discussion The tested system consists of 50 Hz, 00 V, voltage source connected to nonlinear load 6-pusle converter system through (Y-Δ) transformer and 400 V dc, 5 Ω active filter through 0 KVA (Y-Y) transformer. Fig. 5 illustrate the single line diagram of the tested system. Fig.7 Nonlinear Load current Fig. 5 single line diagram of tested system This case is applied using MATLAB /SIMULINK environment as shown in fig. 6. The purpose of this case is to study the harmonic extraction and controlled power electronic converter using PWM to mitigate a certain level of harmonic Fig. 8 FFT of nonlinear load current Fig. 8 illustrates the FFT analysis of the load current which shows that THD of 8.53%. The load voltage waveform and load current which are used to train the three NARX networks using 7 neurons in each hidden layers using 005 samples per cycle; the training data for the three phases are summarized in the fig. 9. E-ISSN: 4-350X Volume 3, 08

Fig. 0 Comparison between parallel NARX output and target waveforms (a) Phase a In the next step, the NARX network will inject by sinusoidal waveform which represent pure voltage source. The NARX output waveform and pure sinusoidal waveforms are used to evaluate the reference current using instantaneous reactive power technique as mentioned before. The instantaneous active and reactive power are illustrated in Fig. and. (b) Phase b Fig. Instantaneous Active Power Waveform (c) Phase c Fig. 9 Training performance for the three phases The training procedure is applied using backprobagation algorithm. The performance data illustrate the advantage of NARX series parallel network as the best validation achieved very fast and with mean square error less than 0-6. The fast performance of NARX series parallel network training procedure is suitable for the active power filter as it has a good response for the expected changes in waveforms. The comparison between the target waveform (nonlinear load current) and the NARX output using input voltage waveform is illustrated in Fig. 0. Fig. Instantaneous Reactive Active Power Waveform Fig. 3 illustrates the reference current for each phase, thus it will be used as an input to khz PWM which will be used to firing 3 arms 6 pulses GTO/Diode to inject the active filter current to the network. Fig. 3 reference current for each phase E-ISSN: 4-350X Volume 3, 08

Fig. 6 FFT of source current after using NARX based harmonic extraction APF Fig. 4 Active filter current for each phase Fig. 4 illustrates the active filter current for the three phases. The effect of the active filter on the current source is shown in Fig. 5. The APF circuit breaker is closed after 0. sec thus it mitigates the effect of harmonics source current. Fig. 5 Effect of Active Power filter on source current The source current waveform after using APF is analyzed using FFT. FFT analysis of the source current after using NARX based harmonic extraction APF are illustrated in fig. 6 and the effect of APF can be summarized in the following data. The THD of source current is decreased from 8.53 % to 4.03%. It is illustrate also the 5th harmonic is decreased from 7.35% to 0.76%, the 7th harmonic is decreased from 5.67% to 0.9% and the th harmonic is decreased from.4% to.%. 6 Conclusion This paper presents a novel shunt active power filter control reference signal using Nonlinear Autoregressive with exogenous neural network NARX with backpropagation training algorithm. A method for predicting the true harmonics of nonlinear load in distributed electric power system using artificial neural network. The test results demonstrate the effectiveness the proposed method and have a good performance for current harmonic cancellation, and thus justifying accuracy and reliability of the proposed NARX network. The proposed NARX have the possibility to be used for on-line harmonic prediction and in turn provide a good control tool for shunt active power filter. References: [] A. Baggini, Handbook of Power Quality, V. V. Thong, J. Driesen Ch. 6, Distributed Generation and Power Quality, John Wiley, 008. [] H. Akagi, Instantaneous Power Theory and Applications to Power Conditioning, Hoboken: John Wiley Sons, 007. [3] B. Singh, K. Al-Haddad and A. Chandra, A review of active filters for power quality improvement, Industrial Electronics, IEEE Transactions on, Vol. 46, pp. 960-97, 999. [4] A. Emadi, A. Nasiri, and S. B. Bekiarov, Uninterruptible Power Supplies and Active Filters, Boca Raton, FL: CRC Press, ISBN: 0-8493-3035-, Oct. 004. [5] H. Akagi, Trends in active power line conditioners, IEEE Industrial Electronics, Control, Instrumentation, and Automation, Vol., 99, pp. 9 4. [6] B. N. Singh, A. Chandra, and K. Al-Haddad, A new control scheme of series hybrid active filter, 30 th IEEE Power Electronics Specialists Conference, Vol., 999, pp. 49 54. [7] H. Fujita, and H. Akagi, The unified power quality conditioner: the integration of seriesand shunt-active filters, IEEE Transactions on Power Electronics, 3 (), 35 3, 998. [8] H. Akagi, Active and hybrid filters for power conditioning, IEEE Conference on Industrial Electronics, Vol., 000, pp. TU6 TU36. [9] P. Salmeron and J. R. Vazquez, Practical design of a three phase active power line conditioner controlled by artificial neural networks, IEEE E-ISSN: 4-350X 3 Volume 3, 08

Transactions on Power Delivery, Vol. 0,, pp.037-044, April 005. [0] P. Cheng, S. Bhattacharya and D. Divan, Experimental verification of dominant harmonic active filter for high power applications, IEEE Transactions on Industry Applications, Vol. 36, pp.567-577, March/April 000. [] J. Mazumdar, System and method for determining harmonic contributions from nonlinear loads in power systems, Georgia Institute of Technology Dec. 006. [] M. U. Hashmi, V. Arora, J. G. Priolkar, Hourly electric load forecasting using Nonlinear AutoRegressive with exogenous (NARX) based neural network for the state of Goa, India, Industrial Instrumentation and Control (ICIC), 05 International Conference on Year: 05, Pp. 48-43, IEEE Conference Publications. [3] Y. Liu, X. Wang, Y. Liu, Asynchronous harmonic analysis based on out-of-sequence measurement for large-scale residential power network, Instrumentation and Measurement Technology Conference (IMTC), 05, pp. 693 698, IEEE Conference Publications [4] H. T. Siegelmann, and E. D. Sontag, Turing Computability with Neural Nets, Applied Mathematics Letters, Vol. 4, 99, pp. 77-80. [5] M. T. Hagan, H. B. Demuth, M. H. Beale, Neural Network Design, Jan 00 [6] M. H. Beale, M. T. Hagan, H. B. Demuth, Neural Network Toolbox 7 User s Guide. E-ISSN: 4-350X 4 Volume 3, 08