Optical Parametrical Chirped Pulse Amplification

Similar documents
Introduction Compact 0.56 PW laser system Scalability to multi-petawatt power Conclusion

Recent Progress on the 10PW laser Project at SIOM

Noncollinear Optical Parametric Amplifiers for Ultra-Intense Lasers

J-KAREN-P Session 1, 10:00 10:

Controlling the phase matching conditions of optical parametric chirped-pulse amplification using partially deuterated KDP

Adaptive Optics for. High Peak Power Lasers

Romania and High Power Lasers Towards Extreme Light Infrastructure in Romania

Extreme Light Infrastucture (ELI) Science and Technology at the ultra-intense Frontier. Bruno Le Garrec

ASE Suppression in a Diode-Pumped Nd:YLF Regenerative Amplifier Using a Volume Bragg Grating

High-Conversion-Efficiency Optical Parametric Chirped-Pulse Amplification System Using Spatiotemporally Shaped Pump Pulses

dnx/dt = -9.3x10-6 / C dny/dt = -13.6x10-6 / C dnz/dt = ( λ)x10-6 / C

Nonlinear Optics (WiSe 2015/16) Lecture 9: December 11, 2015

Lithium Triborate (LiB 3 O 5, LBO)

High Energy Non - Collinear OPA

Laser Science and Technology at LLE

High-Power Femtosecond Lasers

1.2. Optical parametric chirped pulse

High Rep-Rate KrF Laser Development and Intense Pulse Interaction Experiments for IFE*

Lithium Triborate (LiB 3 O 5, LBO) Introductions

TIME-PRESERVING MONOCHROMATORS FOR ULTRASHORT EXTREME-ULTRAVIOLET PULSES

HIGH POWER HYBRID FEMTOSECOND LASER SYSTEMS

Chirped Pulse Amplification

High Power and Energy Femtosecond Lasers

A CW seeded femtosecond optical parametric amplifier

Overview of Project Orion

High Energy Laser Systems

The Realization of Ultra-Short Laser Sources. with Very High Intensity

MEC Laser Systems. Bill White LCLS Laser Group Leader April 13, Bill White. MEC Laser Systems. MEC Workshop.

PGx11 series. Transform Limited Broadly Tunable Picosecond OPA APPLICATIONS. Available models

The Proposed MIT X-ray Laser Facility: Laser Seeding to Achieve the Transform Limit

The KrF alternative for fast ignition inertial fusion

Progress in ultrafast Cr:ZnSe Lasers. Evgueni Slobodtchikov, Peter Moulton

Sub-300 fs, 0.5 mj pulse at 1kHz from Ho:YLF amplifier and Kagome pulse compression

Development of scalable laser technology for EUVL applications

New generation Laser amplifier system for FEL applications at DESY.

Pulse energy vs. Repetition rate

Development of near and mid-ir ultrashort pulse laser systems at Q-Peak. Evgueni Slobodtchikov Q-Peak, Inc.

Thin-Disc-Based Driver

Gigashot TM FT High Energy DPSS Laser

Power scaling of picosecond thin disc laser for LPP and FEL EUV sources

Comprehensive Numerical Modelling of a Low-Gain Optical Parametric Amplifier as a Front-End Contrast Enhancement Unit

Research Article Design Considerations for Dispersion Control with a Compact Bonded Grism Stretcher for Broadband Pulse Amplification

Laser systems for science instruments

DEVELOPMENT OF A PHOTO CATHODE LASER SYSTEM FOR QUASI ELLIPSOIDAL BUNCHES AT PITZ*

OMEGA EP: High-Energy Petawatt Capability for the OMEGA Laser Facility

Atlantic. Industrial High Power Picosecond Lasers. features

Regenerative Amplification in Alexandrite of Pulses from Specialized Oscillators

TEPZZ 9 45ZZA_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION

High Average Power Frequency Conversion on the Mercury Laser

80 khz repetition rate high power fiber amplifier flat-top pulse pumped OPCPA based on BIB 3 O 6

Broadband amplification by picosecond OPCPA in DKDP pumped at 515 nm

Development of high average power fiber lasers for advanced accelerators

VELA PHOTOINJECTOR LASER. E.W. Snedden, Lasers and Diagnostics Group

Generation of narrow-bandwidth tunable picosecond pulses by differencefrequency mixing of stretched pulses

High Power Compact Fiber Chirped Pulse Amplifiers at 1558-nm using Er/Yb LMA Fibers and Chirped Volume Bragg Grating Compressors

LCLS-II-HE Instrumentation

Atlantic. Industrial High Power Picosecond Lasers. features

Spectral Phase Modulation and chirped pulse amplification in High Gain Harmonic Generation

5kW DIODE-PUMPED TEST AMPLIFIER

A 243mJ, Eye-Safe, Injection-Seeded, KTA Ring- Cavity Optical Parametric Oscillator

Improving efficiency of CO 2

PETAL : a multi-pw beam on LMJ facility

Atlantic. Industrial High Power Picosecond Lasers. features

REVIEW ARTICLE. High power ultrafast lasers

STUDIES OF INTERACTION OF PARTIALLY COHERENT LASER RADIATION WITH PLASMA

Large-aperture chirped volume Bragg grating based fiber CPA system

CO 2 Remote Detection Using a 2-µm DIAL Instrument

FA Noncollinear Optical Parametric Amplifier

How to build an Er:fiber femtosecond laser

Sept 24-30, 2017 LLNL-PRES

Beam Shaping in High-Power Laser Systems with Using Refractive Beam Shapers

An ultrahigh intensity laser at high repetition rate. PACS numbers: Re, Fr, Jf, Ny, r, La

ALPHA 5/XS 200 TW Ultrafast Ti:Sa Series

High Power Thin Disk Lasers. Dr. Adolf Giesen. German Aerospace Center. Institute of Technical Physics. Folie 1. Institute of Technical Physics

X-CAN. A coherent amplification network of femtosecond fiber amplifiers

How far are we today from its availability?

Designing for Femtosecond Pulses

Directly Chirped Laser Source for Chirped Pulse Amplification

Ultrafast amplifiers

Vitara. Automated, Hands-Free Ultrashort Pulse Ti:Sapphire Oscillator Family. Superior Reliability & Performance. Vitara Features:

High energy femtosecond OPA pumped by 1030 nm Nd:KGW laser.

arxiv:physics/ v1 [physics.acc-ph] 18 Jul 2003

Laser Induced Damage Threshold of Optical Coatings

High Average Power, High Repetition Rate Side-Pumped Nd:YVO 4 Slab Laser

DCS laser for Thomson scattering diagnostic applications

Compression grating alignment by far-field monitoring

Atlantic. series. Industrial High Power Picosecond DPSS Lasers

Outline of the proposed JLAMP VUV/soft X-ray FEL and the challenges for the photon beamlines and optics

Simulation of Grating-Compressor Misalignment Tolerances and Mitigation Strategies

Femtosecond Laser Simulation Facility for SEE IC Testing

High power VCSEL array pumped Q-switched Nd:YAG lasers

Femtosecond to millisecond transient absorption spectroscopy: two lasers one experiment

High Power CO 2 Laser, EUVA

Fiber Laser Chirped Pulse Amplifier

Lecture 08. Fundamentals of Lidar Remote Sensing (6)

GRENOUILLE.

Spider Pulse Characterization

Basic Concepts and Current Status of the Petawatt Field Synthesizer A New Approach to Ultrahigh Field Generation

Ultrafast laser and amplifier sources

101 W of average green beam from diode-side-pumped Nd:YAG/LBO-based system in a relay imaged cavity

Transcription:

Optical Parametrical Chirped Pulse Amplification for Petawatt Lasers Efim Khazanov Institute of Applied Physics of Russian Academy of Science Introduction Physics of OPCPA Compact 0.56 PW laser system - PEARL Scalability to multi-petawatt power Conclusion 1

Introduction. CPA invention D. Strickland and G. Mourou, "Compression of Amplified Chirped Optical Pulses," Opt. Commun. 56, 219 (1985). CPA 2

Introduction. OPCPA invention A. Piskarskas, A. Stabinis, and A. Yankauskas, "Phase effects in optical parametric amplifiers and oscillators of ultrashort optical pulses," Sov. Phys. Ups, 29, 969 (1986). A.Dubietis, G.Jonusauskas, A.Piskarskas, Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal Opt. Commun. 88, 437 (1992) A.Piskarskas Vilnius University OPCPA 3

Optical Parametrical Chirped Pulse Amplification for Petawatt Lasers Introduction Physics of OPCPA Compact 0.56 PW laser system - PEARL Scalability to multi-petawatt power Conclusion 4

Physics of OPCPA. Wideband phase-matching ω ω + ω = ω 1 2 3 = ω1 ω2 = ω 10 20 + Ω Ω () t () t k 10 v v 1 ϕ 12 2 Z k Δk 2x ( ω 2 ) = k 3x ( Ω ) = Δk( Ω ) z 0 k ϕ 12 2 ( ) Ω k 20 ϕ 13 k 3 Δk ( Ω) Δk(0) 0= phase-matching k 3 = k 0) + k 1 ( 2 (0) 2 Рис 1 2 dk1 dk 1 2z d k1 d k2z 2 + Ω 0( Ω 2 2 2 + dω dω Ω dω dω V 1g =0 wideband phase-matching = V 2g cos ϕ 12 =0 super-wideband phase-matching 3 ) 5

Physics of OPCPA. KD*P vs KDP. superbroadband 1800 phasematching FWHM of gain spectra, cm -1 (lines) 1500 1200 900 600 300 0 generated phase matching λ signal =2λ pump =1053nm KD*P bandwidth KD P bandwidth KD*P absorption KDP absorption 750 850 950 1050 1150 1250 1350 signal wavelength, nm KD*P DKDP V.V.Lozhkarev, G.I.Freidman, V.N.Ginzburg, E.A.Khazanov, О.V.Palashov, A.M.Sergeev, I.V.Yakovlev. Laser Physics, 15, 1319 (2005). 0,35 0,3 0,25 1 1 10,2 = + 527nm 911nm 1250nm 0,15 0,1 0,05 0 ordinary wave absorbtion, cm -1 (dots) 6

Physics of OPCPA. Monochromatic case. Pump beam aberration are transferred to new wave pump beam (with aberration) amplified beam (no aberration!) new injected beam no aberration beam (with aberration) OPCPA pump beam (with aberration) OPCPA injected beam no aberration new beam (with aberration) amplified beam (no aberration!) Injected beam keeps its (plane) wavefront at any pump wavefront 7

Physics of OPCPA. Defenition of signal and idler waves. Wide-band case. Signal beam is injected Idler beam is injected OPCPA pump beam (monochromatic) amplified beam wide-band! no angular chirp! injected beam no angular chirp new beam with angular chirp! narrow-band! injected beam no angular chirp new beam with angular chirp! wide-band! pump beam (monochromatic) OPCPA amplified beam narrow-band! Signal beam must be injected. Not idler. Idler may be injected with angular chirp. 8

Physics of OPCPA. Wideband phase-matching ω ω + ω = ω 1 2 3 = ω1 ω2 = ω 10 20 + Ω Ω () t () t k 10 v v 1 ϕ 12 2 Z k Δk 2x ( ω 2 ) = k 3x ( Ω ) = Δk( Ω ) z 0 k ϕ 12 2 ( ) Ω k 20 ϕ 13 k 3 Δk ( Ω) Δk(0) 0= phase-matching k 3 = k 0) + k 1 ( 2 (0) 2 Рис 1 2 dk1 dk 1 2z d k1 d k2z 2 + Ω 0( Ω 2 2 2 + dω dω Ω dω dω V 1g =0 wideband phase-matching = V 2g cos ϕ 12 =0 super-wideband phase-matching 3 ) 9

Non-degenerated broadband phase-matching in KD*P. Experiments with injection of idler angular-chirped wave. Injected (idler) divergence 4mrad 4mrad Output (signal) divergence 10 mrad 10 mrad 100nm Injected (idler) wavelength Output (signal) wavelength 10

OPCPA vs CPA Advantages of OPCPA: + broad gain bandwidth + high aperture + considerable decrease in thermal loading + significantly lower level of ASE + very high gain + no self-lasing + no backscattering from a target Disadvantages of OPCPA: high precision synchronization high quality of a pump beam short (1ns) pump pulse duration 11

Optical Parametrical Chirped Pulse Amplification for Petawatt Lasers Introduction Physics of OPCPA Compact 0.56 PW laser system - PEARL Scalability to multi-petawatt power Conclusion 12

PEtawatt parametric Architecture Laser (PEARL). Synchronization system Nd:YLF Q-switch laser λ=1053nm 10mJ 12nc Pulse shaper Cr:Forsterite fs-laser λ=1250nm 2nJ 40 fs 1nJ 0.5 ns Stretcher 40 fs 0.5 ns 1mJ 1.5ns 1 J 1.5ns Two-stage Nd:YLF amplifier 2J 1.5 ns OPA I KD*P CW Yb:fiber pump 10W λ=1050 1080nm 2ω λ=911nm 0.8mJ 0.5ns OPA II KD*P λ=1250nm First λ=911 nm 50 mj 0.5 ns phase (TW Compressor 0.5 ns 50 fs level) 50 mj 50 fs 2 Hz Nd:glass amplifier 300J 1ns 2ω 170J 1ns OPA III KD*P 10cm dia 38J 0.5ns Compressor 0.5ns 50fs 24J 43fs Second phase (PW level) Freidman G., Andreev N., Ginzburg V., Katin E., Khazanov E., Lozhkarev V., Palashov Sergeev Institute A., Yakovlev of Applied I. Proc. Physics, SPIE, Russia v.4630, p.135-146, 2002. khazanov@appl.sci-nnov.ru O., 13

PEtawatt parametric Laser (PEARL). Nd:glass laser output beam 300J, 1ns 10 2.44λ/D=21μrad 50 μrad 1 0.9 0.8 20 0.7 30 0.6 40 0.5 50 0.4 0.3 60 0.2 70 0.1 0 10 20 30 40 50 60 70 0 90мм 14

PEtawatt parametric 110mm clear aperture ОPA Laser (PEARL). OPA 120 mm clear aperture SHG From front-end system (911nm) 300 J 1054 nm pump pulse OPA 3 38J to compressor (911nm) To diagnostic 300 J 1054 nm 180 J 527 nm SHG 910 nm Institute of Applied Physics, To compressor Russia From OPA 2 khazanov@appl.sci-nnov.ru 15

0.2 0.1 PEtawatt parametric Laser (PEARL). Energy characteristics of final OPCPA Efficiency, % 40 35 30 25 20 15 10 Efficiency, % Pulse energy. J 38 J 40 35 30 25 20 15 10 Output pulse energy, J 2.44λ/D=21μrad 25μrad 1 0.9 5 5 0.8 0.7 0 0 30 60 90 120 150 180 Pump pulse energy, J 0 0.6 0.5 0.4 0.3 16

PEtawatt parametric Laser (PEARL). Compressed 0.56 PW pulse 1 0.75 ACF experiment ACF of 33fs FTL pulse ACF, a.u. 0.5 0.25 0-200 -150-100 -50 0 50 100 150 200 time, fs 24 J/43fs=0.56PW Contrast: 10 8 (0.5ns window) 10 4 (1ps window) Lozhkarev V.V., Freidman G.I., Ginzburg V.N., Katin E.V., Khazanov E.A., Kirsanov A.V., Luchinin G.A., Mal'shakov A.N., Martyanov M.A., Palashov O.V., Poteomkin A.K., Sergeev A.M., Shaykin A.A., Yakovlev I.V. Laser Physics Letters, 4, 421-427 (2007). 17

18

Optical Parametrical Chirped Pulse Amplification for Petawatt Lasers Introduction Physics of OPCPA Compact 0.56 PW laser system - PEARL Scalability to multi-petawatt power Conclusion 19

Scalability to multi-petawatt power. Sarov N.Novgorod. Synchronization system Nd:YLF Q-switch laser λ=1053nm 10mJ 12nc Pulse shaper Cr:Forsterite fs-laser λ=1250nm 2nJ 40 fs 1nJ 0.5 ns Stretcher 40 fs 0.5 ns 1mJ 1.5ns 1 J 1.5ns Two-stage Nd:YLF amplifier 2J 1.5 ns OPA I KD*P CW Yb:fiber pump 10W λ=1050 1080nm 2ω λ=911nm 0.8mJ 0.5ns OPA II KD*P λ=1250nm First phase ( λ=911 nm 70 mj 0.5 ns Compressor 0.5 ns 70 fs TW level) 32 mj 70 fs 2 Hz Nd:YLF Q-switch laser λ=1053nm 10mJ 12nc Pulse shaper Nd:YLF amplifier Nd:glass amplifier Nd:glass amplifier 300J 1ns 2kJ 1.5ns 2ω 2ω 180J 1ns 1kJ 1.5ns OPA III KD*P 10cm dia OPA IV KD*P 20cm dia 38J 0.5ns 150J 0.5ns Second phase (PW Compressor 0.5ns 50fs Third Compressor 0.5ns 50fs level) 24J 43fs phase ( 2 PW) 100J 50fs 20

Scalability to multi-petawatt Projects overview. 100 70fs 1PW December, 2008 power. 2.44 λ/d = 12.2 μrad chirped pulse energy, J 75 50 25 0 55fs 600TW October,2008 0 200 400 600 800 1000 1200 Pump energy, J I.A. Belov, O.A. et al. Petawatt laser system of the "Luch" facility International Institute Conference of Applied X Physics, Khariton's Russia Scientific Reading. p.145 khazanov@appl.sci-nnov.ru (2008). 21

Scalability to multi-petawatt State of the art. power. laser power, TW 10000 1000 100 10 1 0.1 0.01 0.001 CPA 0.56 PW 1 PW 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 year Vilnius U., Lithuania Rutherford Lab, UK SIOM, China Rochester, USA LLNL, USA IAP, Russia LLNL, USA Rutherford Lab, UK ILE, Japan JAEA, Japan SIOM, China Texas U., USA Sarov 22

Scalability to multi-petawatt Projects overview. power. PEARL-10, IAP, Russia, 2008-2013, 10PW Rutherford Lab, UK, 2007-2014, 10PW ELI, pan-european, 2008-2020 200PW (may be CPA or OPCPA) International Center for Extreme Light Study, Russia, 2012-2018, 200PW (under consideration in the Russian Government) 23

Scalability to multi-petawatt power. Rutherford Lab, UK, 2007-2013, 10PW Seed laser 300nmbandwidth High rep rate mj Pump 10PW Project Schematic Two Phases Phase I Joule level Hz repetition rate Phase II >300J; <30fs 1 shot every hour LBO Seed λ=900нм Phase I Stand alone ~3ns shaped pulse Few Hz rate Long stretch ~3 ns LBO LBO Diagnostic compressor Expanded Target Area East Interaction Chamber 300 J, 30 fs 10 PW, 10 23 Wcm -2 KD*P DKDP KD*P DKDP >500 J Compress SHG Additional Vulcan 2 x 1.2 kj 3 ns 208 beamlines SHG 600 J 527 nm 600 J 527 nm Phase II 2 24

OPCPA scalability to multi-petawatt power. Estimation for laboratory scale option + Pulse duration: x2.5 (18fs instead of 45fs) + OPCPA efficiency: x2 (40% instead of 20%) + Pump power x3.3: (600J instead of 180J) + Compressor efficiency x1.2 (76% instead of 66%) TOTAL: x20 ( 10PW instead of 0.56PW ) 25

OPCPA scalability to multi-petawatt power. PEARL-10, IAP, Russia, 2008-2013, 10PW Synchronization system Nd:YLF Q-switch laser λ=1053nm 10mJ 12nc Pulse shaper Cr:Forsterite fs-laser λ=1250nm 2nJ 40 fs 1nJ 0.5 ns Stretcher 40 fs 0.5 ns 1mJ 1.5ns 1 J 1.5ns Two-stage Nd:YLF amplifier 2J 1.5 ns OPA I KD*P CW Yb:fiber pump 10W λ=1050 1080nm 2ω λ=911nm 0.8mJ 0.5ns OPA II KD*P λ=1250nm First phase ( λ=911 nm 70 mj 0.5 ns Compressor 0.5 ns 70 fs TW level) 32 mj 70 fs 2 Hz Nd:glass amplifier 300J 2ns 2ω Nd:glass amplifier 200J 2ns 300J 2ns OPA III KD*P 10cm dia 2ω 80J 2ns 200J 2ns Nd:glass amplifier OPA IV KD*P 15cm dia 2ω 300J 2ns OPA V KD*P 20cm dia Second Compressor 2ns 15fs phase (10 PW 160J 2ns 200J 2ns 240J 2ns 180J 18fs 10PW level) 26

OPCPA scalability to multi-petawatt power. PEARL-10, IAP, Russia, 2008-2013, 10PW 2008 2009 27

OPCPA scalability to multi-petawatt power. PEARL-10, IAP, Russia, 2008-2013, 10PW 2010 28

OPCPA scalability to multi-petawatt power. PEARL-10, IAP, Russia, 2008-2013, 10PW 2010 29

OPCPA scalability to multi-petawatt power. PEARL-10, IAP, Russia, 2008-2013, 10PW 2010 30

OPCPA scalability to multi-petawatt power. PEARL-10, IAP, Russia, 2008-2013, 10PW 2011 31

Before conclusion. Another mission of OPCPA The CPA technique compresses 5ns, 20kJ into a ~20ps pulse. This pulse is used after frequency doubling, to pump an OPCPA. A strong idler wave is produced at 1250nm. The latter seeds, the plasma compression cell where by interfering with the 20ps pump pulse at 1050nm converts and transfers the pump into the seed pulse at 1250 nm. To preserve the pulse shortness, a prism in the OPCPA is used to produce the necessary angular chirp. G. A. Mourou, N. J. Fisch, V.M.Malkin, Z.Toroker, E.A.Khazanov, A.M.Sergeev, T.Tajima Exawatt-Zettawatt Pulse Generation and Applications submitted Institute of to Applied Optics Communications Physics, Russia khazanov@appl.sci-nnov.ru 32

Before conclusion. Another mission of OPCPA Diagram displaying the concept of Multiple-Beam-Pumping showing that the energy from several beams can be transferred to one signal seed pulse. 33

Before conclusion. Another mission of OPCPA Chirped Pulse Amplification + Optical Parametric Chirped Pulse Amplification + Plasma Compression by Raman Amplification = Cascaded Conversion Compression = C 3 34

Conclusion OPCPA will keep a major role on the route(s) to 10+ PW laser. Let s keep going. 35

V. Ginzburg E. Katin E. Khazanov A. Kirsanov V. Lozhkarev G. Luchinin S. Mironov M. Martyanov O. Palashov A. Poteomkin A. Sergeev A.Shaykin A. Soloviev M. Starodubtsev I. Yakovlev V. Zelenogorsky 36

Instead of Conclusion #1. OPCPA at 910 nm in DKDP is the best. No question. #2. There is only one question. Q.: The best or one of the best? A1: See message #1. 25μrad A2: Will live and see. 37

Physics of OPCPA. Wavefront distortions. Pump beam aberration transfers to new wave Pump beam deviation transfers to new wave pump (with aberration) Injected beam (no aberration!) OPCPA Injected beam New beam (with aberration) Injected beam keeps its wavefront at any pump wavefront 38

Introduction. Petawatt laser systems type I type II type III Gain medium Nd:glass Ti:sapphire KD*P Energy source Nd:glass Nd:glass Nd:glass Pump no 2ω Nd 2ω Nd Pump duration, ns no <30 1 Amplifier aperture, cm 40х40 15 40х40 Minimum duration, fs 250 20 20 Efficiency (1ω Nd фс), % 80 15 10 Number of PWs from 1 kj 1ω Nd 4(3) 8 ( 5 ) 4 First PW-level power 1.3 PW LLNL, 1997 0.85 PW JAEA 2004 0.56 PW IAP 2006 Diffraction grating damage threshold Ti:sapphire damage threshold 39