C. J. S. de Matos and J. R. Taylor. Femtosecond Optics Group, Imperial College, Prince Consort Road, London SW7 2BW, UK

Similar documents
Simultaneous pulse amplification and compression in all-fiber-integrated pre-chirped large-mode-area Er-doped fiber amplifier

Large-aperture chirped volume Bragg grating based fiber CPA system

Directly Chirped Laser Source for Chirped Pulse Amplification

STUDY OF CHIRPED PULSE COMPRESSION IN OPTICAL FIBER FOR ALL FIBER CPA SYSTEM

High Power Compact Fiber Chirped Pulse Amplifiers at 1558-nm using Er/Yb LMA Fibers and Chirped Volume Bragg Grating Compressors

Fiber Laser and Amplifier Simulations in FETI

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

High Power Femtosecond Fiber Chirped Pulse Amplification System for High Speed Micromachining

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

SUPPLEMENTARY INFORMATION DOI: /NPHOTON

Yb-doped Mode-locked fiber laser based on NLPR Yan YOU

GREAT interest has recently been shown for photonic

Fiber Laser Chirped Pulse Amplifier

Supplementary Figures

Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser

Optimization of supercontinuum generation in photonic crystal fibers for pulse compression

156 micro-j ultrafast Thulium-doped fiber laser

Integrated disruptive components for 2µm fibre Lasers ISLA. 2 µm Sub-Picosecond Fiber Lasers

Dispersion measurement in optical fibres over the entire spectral range from 1.1 mm to 1.7 mm

Testing with Femtosecond Pulses

Development of Nano Second Pulsed Lasers Using Polarization Maintaining Fibers

Optimisation of DSF and SOA based Phase Conjugators. by Incorporating Noise-Suppressing Fibre Gratings

Designing for Femtosecond Pulses

X-CAN. A coherent amplification network of femtosecond fiber amplifiers

10 Gb/s transmission over 5 km at 850 nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD

Widely Wavelength-tunable Soliton Generation and Few-cycle Pulse Compression with the Use of Dispersion-decreasing Fiber

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

A 100 W all-fiber linearly-polarized Yb-doped single-mode fiber laser at 1120 nm

Optical Amplifiers Photonics and Integrated Optics (ELEC-E3240) Zhipei Sun Photonics Group Department of Micro- and Nanosciences Aalto University

How to build an Er:fiber femtosecond laser

A new picosecond Laser pulse generation method.

All-fiber, all-normal dispersion ytterbium ring oscillator

Theoretical Approach. Why do we need ultra short technology?? INTRODUCTION:

Spatial distribution clamping of discrete spatial solitons due to three photon absorption in AlGaAs waveguide arrays

Photonics (OPTI 510R 2017) - Final exam. (May 8, 10:30am-12:30pm, R307)

Fiber lasers and their advanced optical technologies of Fujikura

TO meet the demand for high-speed and high-capacity

High Performance Dispersion and Dispersion Slope Compensating Fiber Modules for Non-zero Dispersion Shifted Fibers

PERFORMANCE OF PHOTODIGM S DBR SEMICONDUCTOR LASERS FOR PICOSECOND AND NANOSECOND PULSING APPLICATIONS

Development of high average power fiber lasers for advanced accelerators

Lasers à fibres ns et ps de forte puissance. Francois SALIN EOLITE systems

Power adjustable visible supercontinuum generation using amplified nanosecond gainswitched

Fiber Lasers for EUV Lithography

A 40 GHz, 770 fs regeneratively mode-locked erbium fiber laser operating

Enhanced bandwidth of supercontinuum generated in microstructured fibers

The Theta Laser A Low Noise Chirped Pulse Laser. Dimitrios Mandridis

Multiwatts narrow linewidth fiber Raman amplifiers

High-power fibre Raman lasers at the University of Southampton

Single-Walled Carbon Nanotubes for High-Energy Optical Pulse Formation

Study of Multiwavelength Fiber Laser in a Highly Nonlinear Fiber

Progress In Electromagnetics Research C, Vol. 15, 37 48, 2010 TEMPERATURE INSENSITIVE BROAD AND FLAT GAIN C-BAND EDFA BASED ON MACRO-BENDING

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

MULTI-STAGE YTTERBIUM FIBER-AMPLIFIER SEEDED BY A GAIN-SWITCHED LASER DIODE

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Generation of 110 W infrared and 65 W green power from a 1.3-GHz sub-picosecond fiber amplifier

Pulse stretching and compressing using grating pairs

Self-phase-modulation induced spectral broadening in silicon waveguides

Progress in ultrafast Cr:ZnSe Lasers. Evgueni Slobodtchikov, Peter Moulton

WDM Transmitter Based on Spectral Slicing of Similariton Spectrum

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise

Dr. Rüdiger Paschotta RP Photonics Consulting GmbH. Competence Area: Fiber Devices

High power femtosecond chirped pulse amplification in large mode area

Performance Analysis of dispersion compensation using Fiber Bragg Grating (FBG) in Optical Communication

2-R REGENERATION EXPLOITING SELF-PHASE MODULATION IN A SEMICONDUCTOR OPTICAL AMPLIFIER

Regenerative Amplification in Alexandrite of Pulses from Specialized Oscillators

Elements of Optical Networking

First published on: 22 February 2011 PLEASE SCROLL DOWN FOR ARTICLE

1 kw, 15!J linearly polarized fiber laser operating at 977 nm

High average power picosecond pulse generation from a thulium-doped all-fiber MOPA system

Simultaneous Amplification and Compression of Ultrashort Solitons in an Erbium-Doped Nonlinear Amplifying Fiber Loop Mirror

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

Gain-switched all-fiber laser with narrow bandwidth

The Report of Gain Performance Characteristics of the Erbium Doped Fiber Amplifier (EDFA)

Chirped Bragg Grating Dispersion Compensation in Dense Wavelength Division Multiplexing Optical Long-Haul Networks

Mitigation of Self-Pulsing in High Power Pulsed Fiber Lasers

A higher-order-mode fiber delivery for Ti:Sapphire femtosecond lasers

New generation of high average power industry grade ultrafast Ytterbium fiber lasers

Sub-100 fs pulses from an all-polarization maintaining Yb-fiber oscillator with an anomalous dispersion higher-order-mode fiber

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion

High-power All-Fiber components: The missing link for high power fiber lasers

The Development of a High Quality and a High Peak Power Pulsed Fiber Laser With a Flexible Tunability of the Pulse Width

Characterization of Chirped volume bragg grating (CVBG)

Development of a High Power Fibre Laser for Laser Based Electron Beam Diagnostics

Pulse Restoration by Filtering of Self-Phase Modulation Broadened Optical Spectrum

The absorption of the light may be intrinsic or extrinsic

All-Optical Signal Processing and Optical Regeneration

Time resolved spectral development of ultrashort pulse solitons in erbium fiber loop lasers

Optoelectronic Oscillator Topologies based on Resonant Tunneling Diode Fiber Optic Links

DESIGN AND CHARACTERIZATION OF HIGH PERFORMANCE C AND L BAND ERBIUM DOPED FIBER AMPLIFIERS (C,L-EDFAs)

PERFORMANCE ANALYSIS OF OPTICAL TRANSMISSION SYSTEM USING FBG AND BESSEL FILTERS

Phase Sensitive Amplifier Based on Ultrashort Pump Pulses

ADVANCED HIGH-POWER PULSED FIBRE LASER SYSTEMS AND THEIR APPLICATIONS

Optical Fibre Amplifiers Continued

Ultrafast pulse characterization using XPM in silicon

Spider Pulse Characterization

DBR based passively mode-locked 1.5m semiconductor laser with 9 nm tuning range Moskalenko, V.; Williams, K.A.; Bente, E.A.J.M.

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Novel High-Q Spectrum Sliced Photonic Microwave Transversal Filter Using Cascaded Fabry-Pérot Filters

Gain-clamping techniques in two-stage double-pass L-band EDFA

Transcription:

Multi-kilowatt, all-fiber integrated chirped-pulse amplification system yielding 4 pulse compression using air-core fiber and conventional erbium-doped fiber amplifier C. J. S. de Matos and J. R. Taylor Femtosecond Optics Group, Imperial College, Prince Consort Road, London SW7 2BW, UK c.de-matos@imperial.ac.uk Abstract: We present a totally fiber integrated chirped-pulse amplification system using air-core photonic bandgap fiber and a conventional erbiumdoped fiber amplifier. ~4-ps input pulses, generated in a Mach-Zehnder modulator, were stretched and spectrally broadened in a dispersion-shifted fiber before being amplified and subsequently compressed in 1 m of anomalously-dispersive photonic bandgap fiber to yield ~96 fs pulses. The system gives multi-kilowatt peak powers while the amplifier nonlinearity threshold is as low as ~15 W. Higher peak powers could be obtained by the use of an amplifier with higher nonlinearity threshold. 24 Optical Society of America OCIS codes: (6.231) Fiber optics; (32.159) Chirping; (32.552) Pulse compression References and links 1. D. Strickland and G. Mourou, Compression of amplified chirped optical pulses, Opt. Commun. 56, 219-221 (1985). 2. A. Galvanauskas, M. E. Fermann, and D. Harter, All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings, Appl. Phys. Lett. 66, 153-155 (1995). 3. A. Boskovic, M. J. Guy, S. V. Chernikov, J. R. Taylor, and R. Kashyap, All-fibre diode pumped, femtosecond chirped pulse amplification system, Electron. Lett. 31, 877-878 (1995). 4. G. Bouwmans, F. Luan, J. C. Knight, P. St. J. Russell, L. Farr, B. J. Mangan, and H. Sabert, Properties of hollow-core photonic bandgap fiber at 85 nm wavelength, Opt. Express 11, 1613-162 (23), http://www.opticsexpress.org/abstract.cfm?uri=opex-11-14-1613 5. T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, Air guidance over 345m large-core photonic bandgap fiber, Postdeadline paper PD4-1, OFC 23, (Optical Society of Amercia, Washington, D.C., 23). 6. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, Generation of Megawatt Optical Solitions in Hollow-Core Photonic Band-Gap Fibers, Science 31, 172-174 (23). 7. C. J. S. de Matos, J. R. Taylor, T. P. Hansen, K. P. Hansen, and J. Broeng, All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber, Opt. Express 11, 2832-2837 (23), http://www.opticsexpress.org/abstract.cfm?uri=opex-11-22-2832 8. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tünnermann, All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber, Opt. Express 11, 3332-3337 (23), http://www.opticsexpress.org/abstract.cfm?uri=opex-11-24-3332 9. G. P. Agrawal, Nonlinear fiber optics 2 nd Ed. (Academic Press, San Diego, 1995), Chap. 6 1. C. Webb, The early days of lasers, Optics and Photonics News 14, 14-17 (23). (C) 24 OSA 9 February 24 / Vol. 12, No. 3 / OPTICS EXPRESS 45

1. Introduction Chirped-pulse amplification (CPA) is a powerful techinique for escalating the peak powers achievable with an optical pulse source when distortion caused by amplifier nonlinearity is the limiting factor. It was first demonstrated by Strickland and Mourou [1] using a bulk solid-state laser and amplifier, an optical fiber as the stretcher, and diffraction gratings as the compressor. CPA is particularly attractive for use with fiber-based pulse sources, as the high confinement in a conventional fiber limits the achievable peak power-fiber length product to ~1 kw.m. As most devices are at least a few meters long, peak powers rarely exceed.5 kw. CPA systems designed for fiber pulse sources need to be equally built in all-fiber format not to negate assets such as compactness and alignment-free operation. All-fiber CPA was obtained with use of fiber Bragg gratings for stretching and compression, yielding sub-picosecond pulses with nanojoule energies [2,3]. However, as the fiber gratings are incorporated in conventional fibers, nonlinearity once again imposes peak-power limitations. Unlike conventional fibers, in the recently-developed air-core photonic bandgap fibers (PBFs) [4-6] most of the light travels through air, allowing for much higher peak powers to be achieved before nonlinearity-led pulse distortion is observed. In these fibers, guidance is obtained through diffraction off the several layers of holes present in the cladding rather than through Fresnel reflection. As a consequence, transmission occurs only within a limited wavelength range related to the hole distribution. Although the material chromatic dispersion in PBFs is negligible, strong waveguide dispersion wavelength dependence is observed and is a consequence of the bandgap nature of the transmission. Typically, high negative and positive dispersion values are obtained in the short- and long-wavelength transmission edges, respectively, with zero dispersion occurring somewhere in between. CPA using PBF for pulse compression was first demonstrated [7] using a totally fiber integrated system consisting of a femtosecond/picosecond tunable fiber source, a dispersion compensating fiber for linear pulse stretching, an erbium-doped fiber amplifier (EDFA), and 1 m of air-core PBF. In this system, 5 fs pulses were stretched to nearly 1 ps and recompressed to ~1.1 ps, with further compression hindered by the high dispersion slope of the PBF. As the pulse source operated at 1 GHz repetition rate, the achieved peak powers were moderate (~1 W) despite the relatively high (~1 W) average output powers. Much higher peak powers (~.82 MW) were achieved in a later CPA experiment [8] using a PBF. The high powers obtained resulted from the use of a specialty amplifier consisting of a photonic crystal large-mode-area Yb-doped fiber, which yielded ~3 kw peak powers even without the CPA system. However, in this configuration a bulk-coupled, solid-state pulse source and bulk optical elements were used. In fact, the very nature of the amplifier prevents complete fiber integration. In this paper, we present a CPA system that is totally fiber integrated and provides net pulse compression by a factor 4. Pulses of the order of 4 ps from a Mach-Zehnder modulator are stretched via dispersion and self-phase modulation in a dispersion-shifted fiber (DSF), amplified in a conventional EDFA and compressed down to ~96 fs in a PBF. Multikilowatt pulses are achieved at the PBF output despite an EDFA nonlinearity threshold of ~15 W. 2. Experimental configuration The experimental configuration of the all-fiber CPA system is shown in Fig. 1. Input pulses at 1547 nm were obtained by amplifying a cw, tunable, external cavity semiconductor laser in a 22-dBm output power EDFA and modulating it in a 2-GHz Mach-Zehnder modulator driven with 35-ps electrical pulses at 5-MHz repetition rate. The pulses were then amplified in a 2- dbm EDFA so that SPM could be observed in the subsequent 3.95-km DSF, which at 1547 nm had dispersion and dispersion slope of -1.71 ps nm -1 km -1 and.7 ps nm -2 km -1, respectively. This fiber also had a modal area of 46.2 µm 2 and a measured nonlinear refractive index of 2.29 1 m 2 /W. The stretched pulses were amplified in a third EDFA (EDFA3) yielding up to 2 W average output power. This EDFA is a commercial model from IPG Group (C) 24 OSA 9 February 24 / Vol. 12, No. 3 / OPTICS EXPRESS 46

and consists of a double-cladding, single-mode, solid silica Ytterbium-Erbium-doped fiber that has an experimentally-determined nonlinearity threshold of ~15 W. The amplified pulses were finally linearly compressed in the 1-m PBF (Crystal Fibre model AIR-1-155), the input of which was directly fusion spliced to a conventional fiber. The transmission bandgap of this fiber stretched from ~1.41 to ~1.6 µm, with a net loss (including that of the splice) of ~2.2 db around 1.55 µm. The PBF dispersion and dispersion slope at 1547 nm were ~94 ps nm -1 km -1 and ~25 ps nm -2 km -1, respectively. Further information about this fiber can be found in Ref. [7]. As the PBF was birefringent, a polarization controller was used to launch pulses in a single principal axis. Note that nearly all optical components used in the setup were in the fiber format. The few components that were not constructed with fiber, namely the modulator, the tunable laser, and pump diodes and isolators within the EDFAs, were pigtailed by their manufacturers. No bulk optical elements were needed and total fiber integration was achieved. Pulses were characterized using an optical spectrum analyzer, a streak camera and a second-harmonic generation autocorrelator. Fig. 1. Experimental configuration of the multi-kilowatt, all-fiber CPA system. 3. Results and discussion The launched power into the DSF was optimized by monitoring the PBF output pulses with the autocorrelator. Controlling this power adjusted the SPM-induced spectral broadening occuring in the DSF and, consequently, the amount of chirp in the stretched pulses. An average power of 65 mw was found to be optimum. Figure 2 shows streak camera traces and spectra for the pulses before and after the DSF. Pulses before this fiber had a ~38-ps duration and a spectral 3-dB width of.19 nm. SPM in the DSF broadens the pulse spectrum to ~7.5 nm and dispersion stretches the pulse duration to ~85 ps. Normalized spectrum (db/.1nm) 1545 155 1555 Wavelength (nm) Fig. 2. Streak camera trace (a) and spectrum (b) taken before (blue) and after (red) the DSF. From the pulse durations and repetition rate the peak power into the DSF can be calculated to be ~3 W. With such a power and with the DSF parameters quoted above, it can be estimated from equations derived from numerical methods [9] that the maximum achievable compression factor would be ~71, obtained with an optimum fiber length of 4.7 km. Note, however that this estimate neglects higher order dispersion and requires that the -4-4 (b) (C) 24 OSA 9 February 24 / Vol. 12, No. 3 / OPTICS EXPRESS 47

compressor length be adjustable. As the PBF dispersion slope is non negligible and its length was not optimized, one can expect a reduced compression factor in the present experiment. The blue traces in Fig. 3 show the optimized autocorrelation and spectrum of the compressed pulses obtained in the PBF output, with an amplifier average output power of ~1 W. The autocorrelation has a full-width at half maximum of ~1.5 ps, corresponding to 96 fs if a sech 2 profile is assumed. This corresponds to a high input-to-output net compression of 39.6. The pulse quality is good with a low pedestal, but low-amplitude sholders are observed and stretch for ~2 ps. These sholders and the inability to further compress the pulses are consequences both of the high PBF dispersion slope, that introduces a nonlinear chirp in the pulses, and of the use of unoptimized PBF and DSF lengths [9]. The latter problem can be solved with small changes to the configuration, while the former would require a different PBF. The output pulse spectrum is very similar to that taken in the DSF output (Fig. 2(b)) and identical to that obtained in the EDFA3 output, indicating that the minor spectral changes observed occur in the amplifier. The output pulses were observed to be linearly polarized. Operation in the other PBF principal axis was also achieved with very similar pulse characteristics, but with the pulse wavelength shifted to 1549.3 nm, due to the different PBF dispersion. Normalized amplitude 1..8.6.4.2 (a). -4 2 4 Autocorrelator delay (ps) 1544 1546 1548 155 1552 1554 Wavelength (nm) Fig. 3. Autocorrelation (a) and spectrum (b) of the PBF output pulses without (blue) and with (red) use of the bandpass filter. Improved pulse quality, with removal of the shoulders, could be obtained by introducing a pigtailed tunable bandpass filter between the DSF and EDFA3, as shown in red in Fig. 3. The filter had a 3-dB bandwidth of 3 nm and its optimum spectral position was found to be ~155 nm. It is possible that the nonlinear chirp induced in the PBF is partially compensated for by the nonlinear chirp induced by SPM towards the edge of the pulse spectrum, which would explain the optimum filter position being shifted relative to the pulse spectral center. With the filter, the EDFA3 average output power had to be reduced to 44 mw, as the use of the filter shortens the pulses in the amplifier input. The compressed pulses presented a duration of 1.96 ps (sech 2 profile assumed). In addition to the shaping induced by the filter, the pulse spectrum presents some distortion resulting from amplifier nonlinearity. The average output powers obtained without and with the bandpass filter were 6 and 27 mw, respectively, of which ~61 and ~97% correspond to power in the pulses (the remainder being accounted for by EDFA amplified spontaneous emission and unmodulated laser light). For the case in which the filter was used, the pulse peak power can be calculated by assuming a sech 2 profile and multiplying the average power by the ratio between pulse period and duration, times a factor.88 that accounts for the pulse profile. This procedure yields a peak power of ~2. kw. It is difficult to directly estimate the peak power in the case without the filter because of the presence of the pulse shoulder. We, therefore, estimated it by measuring in the autocorrelator the pulses with the filter and observing the trace amplitude increase when the Normalized spectrum (db/.1nm) -4-4 (b) (C) 24 OSA 9 February 24 / Vol. 12, No. 3 / OPTICS EXPRESS 48

filter is removed and the configuration re-optimized. We assume that the autocorrelation signal is proportional to the second-harmonic signal and, thus, bears a quadratic dependence with the pulses peak power. Note that this method may be somewhat inaccurate, as it has been shown that the response from a photomultiplier tube is not absolutely linear [1]. However, we believe the errors should be minimal for the small dynamic range required for this estimation. The highest peak power for the case in which the filter was not used is, therefore, ~3.3 kw. This represents an increase by a factor 22 relative to the maximum achievable power straight from EDFA3. The use of an EDFA with a higher nonlinearity threshold would instantly result in an increase in output peak power. 5. Conclusions A totally fiber integrated chirped pulse amplification system was demonstrated that utilizes an air-core photonic bandgap fiber and a conventional erbium-doped fiber amplifier. The result is a compact, simple and reliable configuration yielding 4 input-to-output pulse compression, pulses as short as 96 fs, and peak powers of up to ~3.3 kw. The achieved peak power was limited by the nonlinearity threshold power of the amplifier (~15 W). An increase in this threshold would result in even higher peak powers. Shorter pulses can be obtained through optimization of the fiber lengths or of the dispersion profile of the photonic bandgap fiber. The use of a bandpass filter resulted in improvement in the pulse profile with only a slight peak power reduction. Acknowledgments C. J. S. de Matos is supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - Brazil and an Overseas Research Student (ORS) award - U.K. We also express our gratitude to the EPSRC for overall financial support of this research program via award GR/S 55217. (C) 24 OSA 9 February 24 / Vol. 12, No. 3 / OPTICS EXPRESS 49