HMC6590. transimpedance amplifiers - chip. 43 Gbps Transimpedance Amplifier. Typical Applications. Features. Functional Diagram. General Description

Similar documents
Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Customised Pack Sizes / Qtys. Support for all industry recognised supply formats: o o o. Waffle Pack Gel Pak Tape & Reel

Features. = +25 C, 50 Ohm System. Return Loss (Input and Output) 5-18 GHz 8 db

Features. = +25 C, Vdd= +8V *

Features. DC - 2 GHz GHz Supply Current (Idd) 400 ma

HMC-AUH232 MICROWAVE & OPTICAL DRIVER AMPLIFIERS - CHIP. GaAs HEMT MMIC MODULATOR DRIVER AMPLIFIER, DC - 43 GHz. Typical Applications.

Features OBSOLETE. Output Third Order Intercept (IP3) [2] dbm Total Supply Current ma

Features. = +25 C, Vdd = Vdd1 = Vdd2 = Vdd3 = Vdd4 = Vdd5 = +7V, Idd = 1200mA [1]

HMC985A. attenuators - analog - Chip. GaAs MMIC VOLTAGE - VARIABLE ATTENUATOR, GHz. Features. Typical Applications. General Description

HMC561 FREQUENCY MULTIPLIER - ACTIVE - CHIP. Electrical Specifications, T A. Features. Typical Applications. General Description. Functional Diagram

Features OUT E S T CODE. = +25 C, Vdd= 8V, Idd= 60 ma*

Features. = +25 C, Vdd1, Vdd2 = +5V

Features. = +25 C, Vdd= 2V [1], Idd = 55mA [2]

Features. = +25 C, Vdd = 5V, Idd = 85mA*

Features. = +25 C, Vdd = +5V, Idd = 63 ma

HMC465 AMPLIFIERS- DRIVERS & GAIN BLOCKS - CHIP. GaAs phemt MMIC MODULATOR DRIVER AMPLIFIER, DC - 20 GHz. Electrical Specifications, T A.

Features. = +25 C, Vdd 1, 2, 3 = +3V

Features OBSOLETE. = +25 C, With 0/-5V Control, 50 Ohm System. DC - 10 GHz DC - 6 GHz DC - 15 GHz. DC - 6 GHz DC - 15 GHz

Features. Noise Figure db Supply Current (Idd) ma Supply Voltage (Vdd) V

Features. = +25 C, Vdd 1, 2, 3 = +3V

Features. Gain: 15.5 db. = +25 C, Vdd = 5V

Features. = +25 C Vdd = Vdd1, Vdd2, Vdd3, Vdd4, Vdd5, Vdd6, Vdd7, Vdd8 = +6V, Idd = 1400 ma [1]

HMC998. Amplifiers - Linear & Power - Chip. GaAs phemt MMIC 2 WATT POWER AMPLIFIER, GHz. Electrical Specifications, T A.

Features. = +25 C, Vdd = +6V, Idd = 375mA [1]

Features. = +25 C, Vdd= 5V, Idd= 60 ma*

Features. = +25 C, Vdd 1, 2, 3 = +3V

Features. = +25 C, Vdd = 5V, Idd = 200 ma*

Features. Parameter Min. Typ. Max. Units. Frequency Range 8 12 GHz Insertion Loss* 5 7 db. Input Return Loss* 10 db

Features. = +25 C, 50 Ohm System

Customised Pack Sizes / Qtys. Support for all industry recognised supply formats: o o o. Waffle Pack Gel Pak Tape & Reel

Features. = +25 C, Vdd = 5V

Features. The HMC985 is ideal for: = +25 C, See Test Conditions. Parameter Condition Min. Typ. Max. Units db. Output Return Loss 13 db

HMC397 DRIVER & GAIN BLOCK AMPLIFIERS - CHIP. InGaP HBT GAIN BLOCK MMIC AMPLIFIER, DC - 10 GHz. Features. Typical Applications. General Description

Features. = +25 C, Vdd = +3V

Features. Gain: 12 db. 50 Ohm I/O s

HMC-APH596 LINEAR & POWER AMPLIFIERS - CHIP. GaAs HEMT MMIC MEDIUM POWER AMPLIFIER, GHz. Typical Applications. Features

Features dbm

Features. = +25 C, Vdd 1, 2, 3, 4 = +3V

Features. = +25 C, Vdd 1, 2, 3 = +3V

Features. = +25 C, Vdd= +5V

HMC814. GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, GHz OUTPUT. Features. Typical Applications. Functional Diagram. General Description

Features. Parameter Min. Typ. Max. Units. Frequency Range 3 6 GHz Insertion Loss* db. Input Return Loss* 12 db

HMC906A. Amplifiers - Linear & Power - CHIP. Electrical Specifications, T A. Typical Applications. Features. General Description. Functional Diagram

Features. = 25 C, IF = 3 GHz, LO = +16 dbm

Features. = +25 C, 50 Ohm System, Vcc = 5V

HMC994A AMPLIFIERS - LINEAR & POWER - CHIP. GaAs phemt MMIC 0.5 WATT POWER AMPLIFIER, DC - 30 GHz. Features. Typical Applications

HMC576 FREQUENCY MULTIPLIERS - ACTIVE - CHIP. GaAs MMIC x2 ACTIVE FREQUENCY MULTIPLIER, GHz OUTPUT. Features. Typical Applications

Features. = +25 C, Vdd= +5V, Idd = 66mA

HMC650 TO HMC658 v

14 GHz to 32 GHz, GaAs, MMIC, Double Balanced Mixer HMC292A

TEL: FAX: v1.77 HMC64 Insertion Loss, Major States Only Normalized Loss, Major States Only 4 INSERTION LOSS (db)

= +25 C, IF= 100 MHz, LO = +15 dbm*

Features. = +25 C, Vdd = +10V, Idd = 350mA

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

Customised Pack Sizes / Qtys. Support for all industry recognised supply formats: o o o. Waffle Pack Gel Pak Tape & Reel

GaAs, phemt, MMIC, Power Amplifier, HMC1126. Data Sheet FEATURES FUNCTIONAL BLOCK DIAGRAM APPLICATIONS GENERAL DESCRIPTION

Features. = +25 C, With 0/-5V Control, 50 Ohm System

Features. = +25 C, With 0/-5V Control, 50 Ohm System

Features. Parameter Frequency Min. Typ. Max. Units GHz GHz GHz GHz GHz GHz

Features. = +25 C, 50 ohm system. DC - 12 GHz: DC - 20 GHz: DC - 12 GHz: GHz: ns ns Input Power for 0.25 db Compression (0.

GaAs phemt MMIC Low Noise Amplifier, 0.3 GHz to 20 GHz HMC1049

Features. Output Third Order Intercept (IP3) [2] dbm Power Added Efficiency %

Features. = +25 C, With Vdd = +5V & Vctl = 0/+5V (Unless Otherwise Noted)

50 GHz to 95 GHz, GaAs, phemt, MMIC, Wideband Power Amplifier ADPA7001CHIPS

HMC-SDD112 SWITCHES - CHIP. GaAs PIN MMIC SPDT SWITCH GHz. Typical Applications. Features. General Description. Functional Diagram

Features. = +25 C, 50 ohm system. DC - 12 GHz: DC - 20 GHz: DC - 12 GHz: GHz: ns ns Input Power for 0.25 db Compression (0.

Features. Parameter Frequency (GHz) Min. Typ. Max. Units GHz GHz. Attenuation Range GHz 31 db

Features. Parameter Frequency (GHz) Min. Typ. Max. Units. Attenuation Range GHz 31 db. All States db db. 0.

Features OBSOLETE. = +25 C, 5 ma Bias Current

Features. = +25 C, LO Drive = +15 dbm* Parameter Min. Typ. Max. Units Frequency Range, RF & LO 4-8 GHz Frequency Range, IF DC - 3 GHz

Insertion Loss vs. Temperature TEL: FAX: v4.18 Relative Attenuation ATTENUATOR, DC - 2 GHz 1 INSERTION L

GaAs, phemt, MMIC, Power Amplifier, 2 GHz to 50 GHz HMC1126

20 GHz to 44 GHz, GaAs, phemt, MMIC, Low Noise Amplifier HMC1040CHIPS

81 GHz to 86 GHz, E-Band Power Amplifier With Power Detector HMC8142

2 GHz to 30 GHz, GaAs, phemt, MMIC, Low Noise Amplifier HMC8402

71 GHz to 76 GHz, 1 W E-Band Power Amplifier with Power Detector ADMV7710

DC to 28 GHz, GaAs phemt MMIC Low Noise Amplifier HMC8401

71 GHz to 76 GHz, 1 W E-Band Power Amplifier with Power Detector ADMV7710

10Gb/s Wide Dynamic Range Differential TIA

71 GHz to 76 GHz, E-Band Variable Gain Amplifier HMC8120

Analog Devices Welcomes Hittite Microwave Corporation NO CONTENT ON THE ATTACHED DOCUMENT HAS CHANGED

MAAP Power Amplifier, 15 W GHz Rev. V1. Features. Functional Schematic. Description. Pin Configuration 2. Ordering Information

High Isolation GaAs MMIC Doubler

= +25 C, Vcc1 = Vcc2 = Vcc3 = +5V

** Dice/wafers are designed to operate from -40 C to +85 C, but +3.3V. V CC LIMITING AMPLIFIER C FILTER 470pF PHOTODIODE FILTER OUT+ IN TIA OUT-

1.25Gb/s Burst Mode Transimpedance Amplifier with Wide Dynamic

1.25Gbps/2.5Gbps, +3V to +5.5V, Low-Noise Transimpedance Preamplifiers for LANs

2.5Gb/s Burst Mode Trans-impedance Amplifier with Precision Current Monitor

PRODUCT DATASHEET CGY2144UH/C2. DC-54GHz, Medium Gain Broadband Amplifier DESCRIPTION FEATURES APPLICATIONS. 43 Gb/s OC-768 Receiver

FEATURES DESCRIPTION ABSOLUTE MAXIMUM RATINGS. T AMB = +25 C ( Unless otherwise specified )

Parameter Frequency Typ Min (GHz)

CMD GHz Low Noise Amplifier

GaAs MMIC Millimeter Wave Doubler. Description Package Green Status

Non-Linear Transmission Line Comb Generator

+3.3V, 2.5Gbps Quad Transimpedance Amplifier for System Interconnects

Parameter Frequency Typ (GHz) See page 7 for minimum performance specs of AMM7602UC connectorized modules. Description Green Status

PRODUCT DATASHEET CGY2102UH/C Gb/s TransImpedance Amplifier DESCRIPTION FEATURES APPLICATIONS

HMC940LC4B. 13 Gbps, 1:4 FANOUT BUFFER w/ PROGRAMMABLE OUTPUT VOLTAGE. Typical Applications. Features. Functional Diagram. General Description

TGP GHz 180 Phase Shifter. Primary Applications. Product Description. Measured Performance

2.1GHz. 2.1GHz 300nA RMS SFP OPTICAL RECEIVER IN+ MAX3748A IN- RSSI DISABLE LOS DS1858/DS1859 SFP. Maxim Integrated Products 1

Transcription:

Typical Applications The is ideal for: 40 GbE-FR 40 GBps VSR / SFF Short, intermediate, and long-haul optical receivers Features Supports data rates up to 43 Gbps Internal DCA feedback with external adjustment option 4 Kohm differential transimpedance gain Low-power dissipation < 300 mw -10.5 dbm optical input sensitivity +5 dbm optical overload Small die size: 1.15 mm x 1.21 mm x 0.15 mm Functional Diagram General Description The is a high-speed, high gain, low-power limiting transimpedance amplifier (TIA) used in optical receivers with data rates up to 43 Gbps. It features low input referred noise, 36 GHz bandwidth, 4 kohm differential small signal transimpedance and output cross point adjustment. exhibits an optical input dynamic range between -10 dbm and +5 dbm while maintaining 10e-12 BER at 43 Gbps operation. The is available in die form, includes an on-chip VCC bypass capacitor. It requires only supply decoupling capacitor as external component. The requires a single 3.3V ±5% supply and it typically dissipates less than 300 mw. The device is characterized for operation from 5 C to +85 C temperature. 1

Electrical Specifications, T A = +25 C, Vcc = 3.3V Parameter Conditions Min. Typ. Max. Units Max Data Rate NRZ 43 Gbps Z21 Small Signal Bandwidth [3] 3 db cut off 39 GHz z21 3 db Low Cutoff Frequency 50 KHz Transimpedance (Z21) Differential @ 100 MHz 4 KOhm Group Delay Variation Up to 40 GHz ± 15 psec Differential Output Swing @ 43 Gbps (saturated) 450 mvp-p Input Referred RMS Noise Up to 35 GHz 3.3 ua Input Referred Noise Densitiy. RMS noise per 35 GHz 20 pa/ Hz Optical Input Sensitivity [1] (OMA) Responsivity = 0.65A/W, ER = 9 db -10.5 dbm Optical Overload Power [2] (OMA) Responsivity = 0.65 A/W, ER = 9dB +5 dbm Input Overload Current 4 map-p Output Return Loss (S22) Up to 40 Ω GHz -10 db Additive RMS Jitter 40 Gbps 1010... stream 0.5 ps Input DC Voltage Internally generated 1.2 V Operational Supply Voltage Range ± 5% 3.15 3.3 3.45 V Supply Current Vcc = 3.3V 94 ma Operating Temperature Range (Die backside) -5 +85 C [1] Sensitivity depends on photo diode, packaging, BERT sensitivity, input eye quality and optical coupling. [2] Vovlcnt= 1.7V [3] 50 Ω on wafer measurement results. Output Return Loss @ VCC = 3.3V [1] OUTPUT RETURN LOSS (db) -5-10 -15-20 -25 + terminal - terminal -30 0 5 10 15 20 25 30 35 40 45 50 FREQUENCY (GHz) Group Delay @ VCC = 3.3V [1] GROUP DELAY (ps) 120 100 80 60 + terminal - terminal 40 0 5 10 15 20 25 30 35 40 45 50 FREQUENCY (GHz) Transimpedance vs Frequency over Supply [2] TRANSIMPEDANCE (dbohm) 80 70 60 50 3.13V 3.30V 3.47V 40 0 5 10 15 20 25 30 35 40 45 50 FREQUENCY (GHz) [1] 50 Ω on wafer measurement results. [2] Assumes photo diode and assembly model on page 3. 2

Photo Diode Model and Assembly Assumptions Photo diode and assembly diagram model used in Z21 and input referred noise density calculations: C PD = 50 ff R S = 15 Ω L PD +L IN = 0.35 nh L OUT = 0.25 nh L GND = 0.25 nh L VDD = 0.25 nh Assembly Diagram for Using Integrated Photo Diode Supply VPD Suggested assembly configuration for using internal supply for photo-diode. Suggested bond-wire length for optimum performance is as follows: L PD + L IN < 0.35 mm L OUT L GND < 0.25 mm (double-bond for larger pads) L VCC 3

Assembly Diagram for Separate Photo Diode Supply Suggested assembly configuration for separate photo diode supply. Suggested bond-wire length for optimum performance is as follows: L PD + L IN < 0.35 mm L OUT L GND < 0.25 mm (double-bond for larger pads) L VCC Application Circuit 4

Absolute Maximum Ratings Voltage level at the RF input (Vin) -0.6V to 2.5V Current level at the RF input (In) 0 to 10 ma Voltage level at the RF output VCC-1 to VCC+1 Supply Voltage (VCC) -0.6V to 3.75V Max. Junction Temperature 125 C Continuous Pdiss (T=85 C) (Derate 30.23 mw/ C above 85 C) 1.21 W Thermal Resistance R th (Junction to die bottom) 33.08 C/W Storage Temperature -55 to +125 C Operating Temperature (Die backside) -5 to +85 C ESD Sensitivity Level (HBM) Class 0 (>150V) Die Packaging Drawing [1] Standard Alternate GP-1 (Gel Pack) [2] [1] For more information refer to the Packaging Information Document in the Product Support Section of our website. [2] For alternate packaging information contact Hittite Microwave Corporation. Die Pads Dimensions Pads Pad Size 1,23,24 0.0047[0.120] X 0.0033[0.085] 2 0.0033[0.085] X 0.0043[0.110] 3-6,16-20 0.0033[0.085] X 0.0051[0.130] 7 0.0033[0.085] X 0.0039[0.100] 8,9,12,13,22 0.0051[0.130] X 0.0033[0.085] ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS Outline Drawing 10,11 0.0040[0.101] X 0.0033[0.085] 14 0.0033[0.085] X 0.0093[0.100] 15 0.0033[0.085] X 0.0047[0.120] 21 0.0098[0.250] X 0.0033[.085] NOTES: 1. ALL DIMENSIONS ARE IN INCHES [MM] 2. DIE THICKNESS IS.006 3. BOND PAD METALIZATION: ALUMINUM 4. NO BACKSIDE METAL 5. OVERALL DIE SIZE ±.002 5

Pad Descriptions Pad Number Function Description Interface Schematic 1,2,3,5,7,8,10 23,26 GND1 Ground connection for TIA. 4 IN TIA input. 6 VPD Provides bias voltage for photo-diode (PD) through a 50 Ω resistor/capacitor network from VCC1. 9 VCC1 Power supply for input stage and PD. 11,12,14,15,17 19-22,25 GND2 Ground connection for TIA. 13 VCC2 Power supply for output buffers. 16 OUTP Non-inverted data output with 50 Ω back termination. 18 OUTN Inverted data output with 50 Ω back termination. 22 DCA 24 VOVLCNT DC offset control. Voltage at this pad sets output DC offset. When it is floating, DC offset is at 0V. Overload current compensation control. Voltage at this pad sets the strength of the input overload current control. When it is floating, overload control is set to nominal(vcc1/2). Overload performance can be optimized by adjusting VOVLCNT voltage between 1.6V - 3.3V. 6

Mounting & Bonding Techniques for MMICs The die should be attached directly to the ground plane with epoxy (see HMC general Handling, Mounting, Bonding Note). 50 Ω Microstrip transmission lines on 0.254 mm (10 mil) thick alumina thin film substrates are recommended for bringing high speed differential signal from the chip RF to and from the chip (Figure 1). Microstrip substrates should be placed as close to the die as possible in order to minimize bond wire length. Typical die-to-substrate spacing is 0.076 mm to 0.152 mm (3 to 6 mils). Handling Precautions Follow these precautions to avoid permanent damage. Storage: All bare die are placed in either Waffle or Gel based ESD protective containers, and then sealed in an ESD protective bag for shipment. Once the sealed ESD protective bag has been opened, all die should be stored in a dry nitrogen environment. Cleanliness: Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems. Static Sensitivity: Follow ESD precautions to protect against ESD strikes. Transients: Suppress instrument and bias supply transients while bias is applied. Use shielded signal and bias cables to minimize inductive pick-up. General Handling: The chip may be handled by a vacuum collet or with a pair of sharp tweezers. Mounting Epoxy Die Attach: Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip once it is placed into position. Cure epoxy per the manufacturer s schedule. 7