Open Access Partial Discharge Fault Decision and Location of 24kV Composite Porcelain Insulator based on Power Spectrum Density Algorithm

Similar documents
Open Access Partial Discharge Fault Decision and Location of 24kV Multi-layer Porcelain Insulator based on Power Spectrum Density Algorithm

Open Access Application of Partial Discharge Online Monitoring Technology in ± 660kV Converter Transformer

Open Access Design of Diesel Engine Adaptive Active Disturbance Rejection Speed Controller

Analysis on Privacy and Reliability of Ad Hoc Network-Based in Protecting Agricultural Data

TRANSFORMER LESS H6-BRIDGE CASCADED STATCOM WITH STAR CONFIGURATION FOR REAL AND REACTIVE POWER COMPENSATION

Open Access Research of Dielectric Loss Measurement with Sparse Representation

Open Access Pulse-Width Modulated Amplifier for DC Servo System and Its Matlab Simulation

Open Access Sparse Representation Based Dielectric Loss Angle Measurement

Design of Meander Antenna for UHF Partial Discharge Detection of Transformers

Open Access Parallel Resonant DC Link Inverter for Thermoacoustic Power Generation

Open Access IMC-PID Controller and the Tuning Method in Pneumatic Control Valve Positioner

Open Access Research on Low-voltage Series Arc Fault Detection Method Based on Least Squares Support Vector Machine

p. 1 p. 6 p. 22 p. 46 p. 58

Suppression of Pulse Interference in Partial Discharge Measurement Based on Phase Correlation and Waveform Characteristics

Open Access AOA and TDOA-Based a Novel Three Dimensional Location Algorithm in Wireless Sensor Network

A Control Scheme Research Based on Sliding Mode and Proportional-Integral Control for Three-phase Rectifier

Virtual Digital Control Experimental System

How to Use the Method of Multivariate Statistical Analysis Into the Equipment State Monitoring. Chunhua Yang

Research on Parallel Interleaved Inverters with Discontinuous Space-Vector Modulation *

The Open Automation and Control Systems Journal, 2015, 7, Application of Fuzzy PID Control in the Level Process Control

Open Access Research on Fast Response Characteristic of Magnetic Control Reactor

REDUCED SWITCHING LOSS AC/DC/AC CONVERTER WITH FEED FORWARD CONTROL

IMPLEMENTATION OF NEURAL NETWORK IN ENERGY SAVING OF INDUCTION MOTOR DRIVES WITH INDIRECT VECTOR CONTROL

Grid Interconnection of Wind Energy System at Distribution Level Using Intelligence Controller

PID Controller Design Based on Radial Basis Function Neural Networks for the Steam Generator Level Control

Performance Analysis of The Simple Low Cost Buck-Boost Ac-Ac Converter

Investigation of Inter-turn Fault in Transformer Winding under Impulse Excitation

The Research on Servo Control System for AC PMSM Based on DSP BaiLei1, a, Wengang Zheng2, b

Antenna Array Layout for the Localization of Partial Discharges in Open-Air Substations

A New Transistor Clamped 5-Level H-Bridge Multilevel Inverter with voltage Boosting Capacity

POWER ISIPO 29 ISIPO 27

Size Selection Of Energy Storing Elements For A Cascade Multilevel Inverter STATCOM

New Direct Torque Control of DFIG under Balanced and Unbalanced Grid Voltage

Time-Frequency Analysis Method in the Transient Power Quality Disturbance Analysis Application

International Journal of Scientific & Engineering Research, Volume 5, Issue 6, June ISSN

SUPERCONDUCTING MAGNETIC ENERGY

International Journal of Modern Engineering and Research Technology

A Compiler Design Technique for EMS Test CS115

A THREE PHASE SHUNT ACTIVE POWER FILTER FOR HARMONICS REDUCTION

The Influence of Antenna Positioning Errors on the Radio-Frequency Localization of Partial Discharge Sources

Design and Analysis of ANFIS Controller to Control Modulation Index of VSI Connected to PV Array

Partial Discharge Patterns in High Voltage Insulation

Improved Active Power Filter Performance for Renewable Power Generation Systems

Simulation of Three Phase Cascaded H Bridge Inverter for Power Conditioning Using Solar Photovoltaic System

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application

Open Access On Improving the Time Synchronization Precision in the Electric Power System. Qiang Song * and Weifeng Jia

An Investigation of Power Converters Fed BLDC Motor for Adjustable Speed

Investigation of PD Detection on XLPE Cables

Development of Multilevel Inverters for Control Applications

Diagnostic testing of cast resin transformers

P. Sivakumar* 1 and V. Rajasekaran 2

Design of double loop-locked system for brush-less DC motor based on DSP

Simulation Of A Three Level Boosting PFC With Sensorless Capacitor Voltage Balancing Control

Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852

Simulation Analysis of Control System in an Innovative Magnetically-Saturated Controllable Reactor

Open Access The Application of Digital Image Processing Method in Range Finding by Camera

Upgrading Power Quality of a Distributed Generation Power System

PERFORMANCE EVALUATION OF THREE PHASE SCALAR CONTROLLED PWM RECTIFIER USING DIFFERENT CARRIER AND MODULATING SIGNAL

Low frequency oscillation characteristics of East China Power Grid after commissioning of Huai-Hu ultra-high voltage alternating current project

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 01, 2016 ISSN (online):

A Sliding Mode Controller for a Three Phase Induction Motor

Design and Development of MPPT for Wind Electrical Power System under Variable Speed Generation Using Fuzzy Logic

Partial Discharge Classification Using Novel Parameters and a Combined PCA and MLP Technique

THE PROPAGATION OF PARTIAL DISCHARGE PULSES IN A HIGH VOLTAGE CABLE

A Unique SEPIC converter based Power Factor Correction method with a DCM Detection Technique

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)

ADVANCES in NATURAL and APPLIED SCIENCES

Performance of Indirectly Controlled STATCOM with IEEE 30-bus System

DETECTION AND CLASSIFICATION OF POWER QUALITY DISTURBANCES

Software for Partial Discharge and Localization

Performance Analysis of ZSI Based UPFC in Transmission System under Faulty Condition

Partial Discharge Monitoring and Diagnosis of Power Generator

H-BRIDGE system used in high power dc dc conversion

Five Level Output Generation for Hybrid Neutral Point Clamped Inverter using Sampled Amplitude Space Vector PWM

A Predictive Control Strategy for Power Factor Correction

A Series-Resonant Half-Bridge Inverter for Induction-Iron Appliances

FAULT DIAGNOSIS AND PERFORMANCE ASSESSMENT FOR A ROTARY ACTUATOR BASED ON NEURAL NETWORK OBSERVER

Three Phase Active Shunt Power Filter with Simple Control in PSIM Simulation

Mitigation of Current Harmonics with Combined p-q and Id-IqControl Strategies for Fuzzy Controller Based 3Phase 4Wire Shunt Active Filter

Usha Nandhini.M #1, Kaliappan.S *2, Dr. R. Rajeswari #3 #1 PG Scholar, Department of EEE, Kumaraguru College of Technology, Coimbatore, India

PERFORMANCE ANALYSIS OF SVPWM AND FUZZY CONTROLLED HYBRID ACTIVE POWER FILTER

MMC based D-STATCOM for Different Loading Conditions

Hybrid Simulation of ±500 kv HVDC Power Transmission Project Based on Advanced Digital Power System Simulator

TYPICALLY, a two-stage microinverter includes (a) the

IDENTIFICATION OF POWER QUALITY PROBLEMS IN IEEE BUS SYSTEM BY USING NEURAL NETWORKS

Study on Synchronous Generator Excitation Control Based on FLC

Research on the Winding Losses Based on Finite Element Method for High Frequency Transformer

CHAPTER 6 UNIT VECTOR GENERATION FOR DETECTING VOLTAGE ANGLE

Cascaded Two Level Electrical Converter-Based Multilevel STATCOM for High Power Utilization

Study on the Technology of Leakage Protection

Anti-IslandingStrategyforaPVPowerPlant

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)

PhD Dissertation Defense Presentation

Design of Dynamic Voltage Restorer for three phase network as steady state device in the Distribution System

Cascaded Connection of Single-Phase & Three-Phase Multilevel Bridge Type Inverter

Multilevel Inverter for Single Phase System with Reduced Number of Switches

A new application of neural network technique to sensorless speed identification of induction motor

A Novel FPGA based PWM Active Power Filter for Harmonics Elimination in Power System

Frequency Hopping Spread Spectrum Recognition Based on Discrete Fourier Transform and Skewness and Kurtosis

Transcription:

Send Orders for Reprints to reprints@benthamscience.ae 342 The Open Electrical & Electronic Engineering Journal, 15, 9, 342-346 Open Access Partial Discharge Fault Decision and Location of 24kV Composite Porcelain Insulator based on Power Spectrum Density Algorithm Shao Zhenhua 1,*, Sun Zelong 2, Chen Tianxiang 3,Chen Li-an 4, Zheng Mei-rong 5 1,3,4 Department of Electrical Engineering and Automation Xiamen University of Technology, Xiamen City, Fujian Province, 361024, China 2,5 Fujian Province Electric Power Maintenance Company, Xiamen City, Fujian Province, 361000, China Abstract: In order to insure the stability of power grid, 24kV composite porcelain insulator PD monitoring system is studied in this paper. With the help of pulse current method detection method, the PD propagation characteristics can be precisely recognized by the power spectrum density (PSD). In order to have a good comparison, the PD experiments on 24kV composite porcelain insulator are in the implementation process under drying conditions. And the comprehensive fault decision based on PSD algorithm is studied in this paper. With the different layer PD faults, the causes and faults can be easily located by PSD algorithm. And the PSD algorithm is introduced in this paper. At last the simulation results show that the proposed method can improve the accuracy and the real-time performance of fault diagnosis in 24kV composite porcelain insulators. Keywords: Partial discharge, power spectrum density (PSD), fault decision and location, comprehensive fault decision, 24kV composite porcelain insulators, pulse current method (PCM). 1. INTRODUCTION According to power system statistics report, more than 37% blackouts on power distribution system is caused by insulation failure [1]. Insulation fault in composite porcelain insulators is a potential threat to flight safety of the 24kV power grid stable operation [2-4]. There is no doubt that composite porcelain insulators play important roles in power transmission. Auto-recognition to discharge types in on-line PD monitoring system could be used to find out internal partial defects and the relevant discharge development degree in time, and then prevents equipment from the coming faults. In general, electromagnetic radiation, high frequency pulse, dielectric loss voice, lighting and heating emitting can be monitored with the profile of PD in power equipment. And there are several PD propagation characteristics method discussed in the references [5-7]. Electric methods and nonelectric methods are to diagnose and correct problem situations for large power transformer. Such as pulse current method (PCM), dielectric loss method (DLM) and electromagnetic radiation method (ERM) have been studied in the past decade. According the IEC standards, PCM is the recommended detection method on PD propagation characteristics. 1.1. PD Models and Experimental Devices According to the internal insulation PD in porcelain insulators and the PD propagation characteristics, there are three *Address correspondence to these authors at the Department of Electrical Engineering and Automation Xiamen University of Technology, Xiamen City, Fujian Province, 361024, China; Tel: +86 18359224182; E-mail: Szh4h@163.com PD models designed in this paper, which are shown in Fig. (1) That is point discharge in transformer oil (P1), Solid Insulation of Power Transformer (P2), and surface discharge in transformer oil (P3). The PD signals are measured by PCM. Test PD detection schematic diagram and experimental devices are shown in Fig. (1) and Fig. (2). 1.2. Power Spectrum Density Analysis PSD analysis is the method which indicates the relation between the power change and the frequency variation. The most part of the PSD is the calculation of spectral density function. With the help of PAD analysis, statistical operator, pulse waveform characteristics, and fractal characteristics in 2 dimensions or 3 dimensions can be considered. As can be shown in Equation 1, the frequency of PD and the maximum PD value can be calculated by the different windows spectral density functions (such as Boxcar data sampling, Hamming data sampling and Blackman window data sampling etc.) [8, 9]. +" # s(t) 2 dt = # S( f ) 2 df (1)!" +"!" 2. EXPERIMENTAL PROCEDURE 2.1.PD Experimental Requirements In order to have a good contrast effect, starting discharge voltage VS. extinction voltage mode are studied in this experiment. With the study of surface discharge in 24kV composite porcelain insulators, the source voltage is gradually 1874-1290/15 15 Bentham Open

Partial Discharge Fault Decision The Open Electrical & Electronic Engineering Journal, 15, Volume 9 343 Fig. (1). PD models of artificial defects. Fig. (2). Detection Circuit on PD of 24kV composite Porcelain Insulators. Table 1. Starting Discharge VS. Extinction Under the Drying Condition. Layer Number Starting /kv Max /kv Extinction /kv 7 52 57.9 48 6 38.8 44 32.7 5 34.1 38.9 28.3 4 28.1 32.4 22 3 24.2 28.4 15.6 2 18.7 22.6 10.1 1 14.5 19.3 8.1 increased by 1kV,2kV and 3kV separately. When the surface of 24kV composite porcelain insulators is under the drying condition, the surface discharge experiments are implemented with different layers from 1 to 7. Moreover, the starting discharge voltage VS extinction voltage modes are shown in Table 1. With the study of surface discharge in 24kV 7-layer porcelain insulators the source voltage is gradually increased from 52 to 57.8 kv by 0.48kV step. In this way, we can get 12PRPD patterns(from t=0.1to 1.2s, with time interval of 0.1s) as shown in Fig. (3). In order to have a quick and accurate calculation on power spectrum density, the 3-D colorful 12PRPD patterns are converted to the 2-D gray PD images, as can be shown in Fig. (4). With the help of MATLAB 7.0, the 24kV composite Porcelain Insulators PSD values in different PRPD gray images of PD can be obtained, which are shown in Fig. (5). With the consideration of random disturbance and statistical characteristics in different PRPD gray images of PD, the experimental results should be considered in one cycle. Furthermore, the PRPD gray images of PD are also varied with different electromagnetic environments. Compared with Fig. (3) and Fig. (4), we know that the big fluctuation on PRPD patterns may not be the characteristic value for different operation conditions [10, 11]. 2.2. PD Data Analysis with PSD Method In this way, some classification methods should be considered, such as SVM, fuzzy clustering method and some ANN methods. In this paper, PSD method are proposed in PD data's-analysis. With help of MATLAB 7.0 and PSD tool, the PRPD gray images of PD are converted in Fig. (5). As can be seen from the Fig. (5), the PSD mean value and variance value of 24kV 7-layer Porcelain Insulators are shown in Table 2. When the variance value is more large, the PSD mean value

344 The Open Electrical & Electronic Engineering Journal, 15, Volume 9 Zhenhua et al. Fig. (3). 24kV composite Porcelain Insulators PRPD patterns of PD (from left to right and from top to bottom, the 0.1s to 1.2s PRPD patterns under drying condition and layer number =7, the same to Fig. 4 and Fig. 5). Fig. (4). 24kV composite Porcelain Insulators PRPD gray images of PD. PSD1 PSD2 PSD3 PSD4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PSD5 PSD6 PSD7 PSD8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PSD9 PSD10 PSD11 PSD12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Fig. (5). 24kV composite Porcelain Insulators PSD values in different PRPD gray images of PD.

Partial Discharge Fault Decision The Open Electrical & Electronic Engineering Journal, 15, Volume 9 345 Table 2. PSD Mean Value and Variance Value of 24kV 7-layer Porcelain Insulators. Mean Value/ Variance Value K1:33.3163/41.732 K2:37.8148/17.1364 K3:39.7116/15.717 K4:37.4712/21.3663 K5:41.1662/16.244 K6:37.8365/16.1358 K7:39.3415/16.0575 K8:37.7466/16.3457 K9:34.6511/18.3673 K10:36.8939/18.6764 K11:38.4485/15.6617 K12:41.0732/15.6617 Table 3. PSD and Increment Curve of Different Layers Porcelain Insulators PRPD Patterns. 7 Layer 6 layer 5 Layer 4 Layer 3 Layer 2 Layer e 1 Layer 52 0.1 38.8 0.1 34.1 0.1 28.1 0.1 24.2 0.1 18.7 0.1 14.5 0.1 53 0.4 39.8 0.3 35 0.25 29 0.4 25 0.2 0.2 16 0.15 54 0.5.8 0.35 36 0.4 0.45 26 0.4 21 0.25 17 0.2 55 0.55 42 0.5 37 0.5 31 0.48 27 0.55 22 0.35 18 0.3 56 0.6 43 0.6 38 0.55 32.4 0.6 28.2 0.57 22.6 0.45 19.3 0.4 57 0.8 44 0.7 38.9 0.65 31 0.55 27 0.55 22 0.4 18 0.37 58 0.9 43 0.65 38 0.6 0.5 26 0.48 21 0.38 17 0.35 57 0.85 42 0.6 37 0.55 29 0.48 25 0.45 0.36 16 0.3 56 0.7 41 0.55 36 0.5 28 0.45 24 0.33 19 0.32 15 0.28 55 0.65 0.5 35 0.45 27 0.42 23 0.28 18 0.3 14 0.25 54 0.6 39 0.45 34 0.4 26 0.38 22 0.25 17 0.28 13 0.22 53 0.5 38 0.43 33 0.3 25 0.35 21 0.22 16 0.25 12 0.2 52 0.4 37 0.4 32 0.29 24 0.3 0.2 15 0.24 11 0.15 51 0.3 36 0.35 31 0.28 23 0.2 19 0.18 14 0.2 10 0.15 is more variable with voltage fluctuation. And the results have more typical resolution on patterns of PD, except the special changes on the first data and the fourth data (which is shown with yellow color background). As can be concluded according to the Table 2 and equation 2, the mean PRPD gray images value can be obtained (M stands for typical value of PSD): M = 1 (k2 + k3+ k5+ k6 + k7 + k8 + 9 k9 + k10 + k11+12) where K1 and K4 are singular value for the calculation of PSD values. Then the PSD and Increment curve of 7 and 6 layers porcelain insulators PRPD patterns can be shown in Fig. (6). (2) As can be seen form the Fig. (6), PSD and Increment curve of different layer porcelain insulators PRPD patterns have different PSD values. in this way, we can locate the position and the value of PD faults. The detailed data are shown in Table 3. CONCLUSION In this paper, the comprehensive fault decision based on PSD algorithm is studied. Furthermore, the PD experiments on 24kV composite porcelain insulator are in the implementation process under drying conditions and the PSD values are obtained by image recognition. With the help of MATLAB 7, he simulation results show that the proposed method can improve the accuracy and the real-time performance of fault diagnosis in 24kV composite porcelain insulators.

346 The Open Electrical & Electronic Engineering Journal, 15, Volume 9 Zhenhua et al. Fig. (6). PSD and voltage increment curve of 7 layer and 6 layer porcelain insulators PRPD patterns (delta Q: Y-axis,U :X-axis). CONFLICT OF INTEREST The authors confirm that this article content has no conflict of interest. ACKNOWLEDGEMENTS The Project Supported by Fujian Provincial Major Scientific and Technological Projects under grant 14H28, Scientific Research Items of XMUT under grant XYK11, XMUT Initializing Foundation under grant YKJ110R, and Fujian Natural Science Foundation under grant 16J01267. REFERENCES [1] T.C. Green, J.H. Marks, Control techniques for active power filters, IEE Procedings, vol. 125, no. 2, pp. 369-381, 05. [2] H.M. John, and T.C. Green, Predictive Transient-Following Control of Shunt and Series Active Power Filters, IEEE Transactions On Industrial Electronics, vol. 17, no. 4, pp. 574-583, 02. [3] J. W. Dixon, and B. T. Ool, Indirect current control of a unity power factor sinusoidal current boost type three-phase rectifier, IEEE Trans. on Industrial Electronics, vol. 35, no. 4, pp. 8-515, 1998. [4] Y. A.R. I. Mohamed, and E. F.EI-Saadany, An Improved Deadbeat Current Control Scheme With a Novel Adaptive Self-Tuning Load Model for Three-Phase PWM -Source Inverter, IEEE Transactions On Industrial Electronics, vol. 54, no. 2, pp. 747-758, 07. [5] W. Yi, Birkhoff normal forms for the wave equations with nonlinear terms depending on the time and space variables, Computer Modeling and New Technologies, vol. 18, no. 4, pp. 42-49, 14. [6] S. Satieo, R. Devaraj, and D. A. Torrey, The design and implementation of a three-phase active power filter based on sliding mode control, IEEE Trans. on Industrial Application, vol. 31, no. 5, pp. 993-999, 1995. [7] R. Ding, C. Ma, Y. Zhao, Y. Lu, and J. Liu, Anti-synchronization of a class of fractional-order chaotic system with uncertain parameters, Computer Modeling and New Technologies, vol. 18, no. 11, pp. 109-112, 14. [8] B. N. Singh, B. Shigh, A. A. Chandra, Active power filter with sliding mode control, IEE. Proc. Generation A Transmission and Distribution, vol. 144, no. 6, pp. 564-568, 1997. [9] J. M. E. Huerta, J. Castello-Moreno, J. R. Fischer, and R. Garcia- Gil, A Synchronous Reference Frame Robust Predictive Current Control for Three-Phase Grid-Connected Inverters, IEEE Transactions On Industrial Electronics, vol. 57, no. 3, pp. 954-961, 10. [10] P. Cortes, A. Wilson, S. Kouro, J. Rodriguez, and H. Abu-Rub, Model Predictive Control of Multilevel Cascaded H-Bridge Inverters, IEEE Transactions On Industrial Electronics, vol. 57, no. 8, pp. 2692-2698, 10. [11] W. Tang, J. Wu, and M. Liu, Interleaving semantics and action refinement in event structures, Computer Modeling and New Technologies, vol. 18, no. 6, pp. 44-51, 14. Received: February 18, 15 Revised: March 22, 15 Accepted: March 31, 15 Zhenhuaet al.; Licensee Bentham Open. This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.