Simulation of MPPT Algorithm Based Hybrid Wind-Solar-Fuel Cell Energy System

Similar documents
Modeling of Hybrid Wind-Photo Voltaic Energy Systems for Grid Connected Applications Based on Conventional and Fuzzy Logic Controllers

ANALYSIS AND DESIGN CONTROL OF SMART DC MICROGRID FOR INTEGRATION OF RENEWABLE ENERGY SOURCES

Integration of CUK and SEPIC Converters for Hybrid Renewable Energy Systems

ABSTRACT I. INTRODUCTION

A Double Input DC to DC Buck-Boost Converter for Low Voltage Photovoltaic/Wind Systems

A Grid Connected Hybrid Fuel Cell-Po Based Mppt For Partially Shaded Solar Pv System

Modeling of Single Stage Grid-Connected Buck-Boost Inverter for Domestic Applications Maruthi Banakar 1 Mrs. Ramya N 2

Simulation and Control of DC/DC Converter for MPPT Based Hybrid PV/Wind Power System

Design And Analysis Of Dc-Dc Converter For Photovoltaic (PV) Applications.

A Pv Fed Buck Boost Converter Combining Ky And Buck Converter With Feedback

CHAPTER 3 MAXIMUM POWER TRANSFER THEOREM BASED MPPT FOR STANDALONE PV SYSTEM

CHAPTER 3 CUK CONVERTER BASED MPPT SYSTEM USING ADAPTIVE PAO ALGORITHM

Maximum Power Extraction from A Small Wind Turbine Using 4-phase Interleaved Boost Converter

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 03, 2016 ISSN (online):

Comparison of Voltage and Efficiency of a Modified SEPIC Converter without Magnetic Coupling and with Magnetic Coupling

ANALYSIS OF POWER QUALITY IMPROVEMENT OF BLDC MOTOR DRIVE USING CUK CONVERTER OPERATING IN DISCONTINUOUS CONDUCTION MODE

,, N.Loganayaki 3. Index Terms: PV multilevel inverter, grid connected inverter, coupled Inductors, self-excited Induction Generator.

A Single Switch DC-DC Converter for Photo Voltaic-Battery System

Study of a 3kW High-Efficient Wide-Bandgap DC- DC Power Converter for Solar Power Integration in 400V DC Distribution Networks

Modeling and Simulation of Multi Input Boost Converter for Renewable Energy Applications

Improvement In Pre-Regulation For Power Factor Using CUK Converter

Figure.1. Block of PV power conversion system JCHPS Special Issue 8: June Page 89

Modeling and Stability Analysis of a New Transformer less Buck-Boost Converter for Solar Energy Application

CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS

MODELING AND SIMULATION OF UNIFIED POWER QUALITY CONDITIONER FOR POWER QUALITY IMPROVEMENT

A Solar Powered Water Pumping System with Efficient Storage and Energy Management

DESIGN OF A WIND POWER GENERATION SYSTEM USING A PERMANENT MAGNET SYNCHRONOUS MACHINE, A BOOST REGULATOR AND A TRANSFORMER-LESS STEP DOWN CIRCUIT

Fig.1. A Block Diagram of dc-dc Converter System

Three Phase Five Level Inverter with SPWM fed from Hybrid Renewable Energy Based Induction Motor Drive

Modeling and Simulation of Synchronizing System for Grid-Connected PV/Wind Hybrid Generation

MAXIMUM POWER POINT TRACKING OF PV ARRAYS UNDER PARTIAL SHADING CONDITION USING SEPIC CONVERTER

Single Phase Bridgeless SEPIC Converter with High Power Factor

New Controller Strategy for Two Switch Dc Voltage Regulator

Analysis and Assessment of DC-DC Converter Topologies for PV Applications

A Variable Step Size MPPT Method for Stand-Alone PV Energy Systems

GRID CONNECTED HYBRID SYSTEM WITH SEPIC CONVERTER AND INVERTER FOR POWER QUALITY COMPENSATION

A High Efficiency and High Voltage Gain DC-DC Converter for Renewable Energy Connected to Induction Motor

Performance Improvement of Bridgeless Cuk Converter Using Hysteresis Controller

Design of Power Inverter for Photovoltaic System

Modelling and Simulation of High Step up Dc-Dc Converter for Micro Grid Application

DESIGN OF NEW POSITIVE OUTPUT SUPER-LIFT LUO CONVERTER FOR SOLAR INPUT IN COMPARISON WITH DIFFERENT DC-DC CONVERTERS

International Journal of Modern Trends in Engineering and Research. An Effective Wind Energy System based on Buck-boost Controller

Comparison Of DC-DC Boost Converters Using SIMULINK

Diode Clamped Multilevel Inverter for Induction Motor Drive

A Modified Single-Phase Quasi z source converter

CHAPTER 3 APPLICATION OF THE CIRCUIT MODEL FOR PHOTOVOLTAIC ENERGY CONVERSION SYSTEM

An Interleaved High-Power Flyback Inverter with Extended Switched-Inductor Quasi-Z-Source Inverter for Pv Applications

Review and Analysis of a Coupled Inductor Based Bidirectional DC-DC Converter

Power Quality Improvement Wind/PV Hybrid System by using Facts Device

Sepic Topology Based High Step-Up Step down Soft Switching Bidirectional DC-DC Converter for Energy Storage Applications

A Unique SEPIC converter based Power Factor Correction method with a DCM Detection Technique

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 01, 2016 ISSN (online):

Design and Analysis of ANFIS Controller to Control Modulation Index of VSI Connected to PV Array

Parallel or Standalone Operation of Photovoltaic Cell with MPPT to DC Load

Modular Grid Connected Photovoltaic System with New Multilevel Inverter

Mechatronics, Electrical Power, and Vehicular Technology

A Three-Phase AC-AC Buck-Boost Converter using Impedance Network

Renewable Energy Integrated High Step-Up Interleaved Boost Converter for DC Microgrid Applications

Seshankar.N.B, Nelson Babu.P, Ganesan.U. Department of Electrical & Electronics Engineering, Valliammai Engineering College, Kattankulathur, Chennai

Delhi Technological University (formerly DCE) Delhi-42, India

DESIGN, SIMULATION AND HARDWARE IMPLEMENTATION OF EFFICIENT SOLAR POWER CONVERTER WITH HIGH MPP TRACKING ACCURACY FOR DC MICROGRID APPLICATIONS

Design and Simulation of Buck Boost Controller of Solar Wind Hybrid Energy System

International Journal of Advance Research in Engineering, Science & Technology

MEASURING EFFICIENCY OF BUCK-BOOST CONVERTER USING WITH AND WITHOUT MODIFIED PERTURB AND OBSERVE (P&O) MPPT ALGORITHM OF PHOTO-VOLTAIC (PV) ARRAYS

IT is well known that the boost converter topology is highly

Improvement of Power Quality using Unified Power Quality Conditioner with Distributed Generation

Design and control of grid connected PV / Wind Hybrid system using 3 level VSC

Reliability of MPPT Converter in Different Operating Modes

Improving the efficiency of PV Generation System Using Soft- Switching Boost Converter with SARC

American International Journal of Research in Science, Technology, Engineering & Mathematics

Levels of Inverter by Using Solar Array Generation System

Enhanced MPPT Technique For DC-DC Luo Converter Using Model Predictive Control For Photovoltaic Systems

Simulation based study of Maximum Power Point Tracking and Frequency Regulation for Stand-alone Solar Photovoltaic Systems

A Single Phase Single Stage AC/DC Converter with High Input Power Factor and Tight Output Voltage Regulation

IJESRT. (I2OR), Publication Impact Factor: (ISRA), Impact Factor: Student, SV University, Tirupati, India.

Matlab Simulation of a High Step-Up DC-DC Converter for a Micro grid Application

Development of a Fuzzy Logic based Photovoltaic Maximum Power Point Tracking Control System using Boost Converter

Speed control of Induction Motor Using Push- Pull Converter and Three Phase SVPWM Inverter

Simulation of Standalone PV System Using P&O MPPT Technique in Matlab/Simulink

A Single-Phase Bidirectional Inverter with Two Buck/Boost MPPTs for DC- Distribution Applications

Design and Simulation of a Solar Regulator Based on DC-DC Converters Using a Robust Sliding Mode Controller

ANALYSIS OF ZVS INTERLEAVED LLC RESONANT CONVERTER FOR CURRENT BALANCING IN DC DISTRIBUTION SYSTEM

A Current Sensor-less Maximum Power Point Tracking Method for PV

Power Factor Correction for Chopper Fed BLDC Motor

High Step up Dc-Dc Converter For Distributed Power Generation

SINGLE PHASE MULTI STRING FIVE LEVEL INVERTER FOR DISTRIBUTED ENERGY SOURCES

Input Current Shaping and Efficiency Improvement of A Three Phase Rectifier by Buck-Boost Regulator

An Interleaved High Step-Up Boost Converter With Voltage Multiplier Module for Renewable Energy System

A Novel 2 - Stage Power Conditioning System for PV Power Generation Using FPGA

A High Voltage Gain DC-DC Boost Converter for PV Cells

CUK Converter Based P Module For Excitation Of Synchronous Machine

Boost Converter with MPPT and PWM Inverter for Photovoltaic system

UNIFIED POWER QUALITY CONDITIONER IN DISTRIBUTION SYSTEM FOR ENHANCING POWER QUALITY

DESIGN OF CUK CONVERTER WITH MPPT TECHNIQUE

Tracking of Maximum Power from Wind Using Fuzzy Logic Controller Based On PMSG

ISSN Vol.07,Issue.06, July-2015, Pages:

Application of Model Predictive Control in PV-STATCOM for Achieving Faster Response

Shunt Active Power Filter connected to MPPT based photo voltaic Array for PQ enhancement

Multilevel inverter with cuk converter for grid connected solar PV system

OPTIMAL DIGITAL CONTROL APPROACH FOR MPPT IN PV SYSTEM

Transcription:

International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Simulation of MPPT Algorithm Based Hybrid Wind-Solar-Fuel Cell Energy System Kalpana. P 1, Venkata Pradeep. G 2 1,2 Department of Electrical and Electronics Engineering, JNTU Anantapur Abstract: This paper presents a new system configuration of the front-end rectifier stage for a hybrid wind/photovoltaic energy system. This configuration allows the two sources to supply the load separately or simultaneously depending on the availability of the energy sources. The inherent nature of this Cuk-SEPIC fused converter, additional input filters are not necessary to filter out high frequency harmonics. Harmonic content is detrimental for the generator lifespan, heating issues, and efficiency. The fused multiinput rectifier stage also allows Maximum Power Point Tracking (MPPT) to be used to extract maximum power from the wind and sun when it is available. An adaptive MPPT algorithm will be used for the wind system and a standard perturb and observe method will be used for the PV system. Operational analysis of the proposed system will be discussed in this paper. Simulation results are given to highlight the merits of the proposed circuit. I. Introduction When a source is unavailable or insufficient in meeting the load demands, the other energy source can compensate for the difference. Several hybrid wind/pv power systems with MPPT control have been proposed and discussed in works [1]- [5]. Most of the systems in literature use a separate DC/DC boost converter connected in parallel in the rectifier stage as shown in Figure 1 to perform the MPPT control for each the renewable energy power sources [1]-[4]. A simpler multiinput structure has been suggested by [5] that combine the sources from the DC-end while still achieving MPPT for each renewable source. The structure proposed by [5] is a fusion of the buck and buck-boost converter. The systems in literature require passive input filters to remove the high frequency current harmonics injected into wind turbine generators [6]. The harmonic content in the generator current decreases its lifespan and increases the power loss due to heating [6]. In this paper, an alternative multi-input rectifier structure is proposed for hybrid wind/solar energy systems. Theproposed design is a fusion of the Cuk and SEPIC converters. The features of the proposed topology are: 1) the inherent nature of these two converters eliminates the need for separate input filters for PFC [7]-[8]; 2) it can support step up/down operations for each renewable source (can support wide ranges of PV and wind input); 3) MPPT can be realized for each source; 4) individual and simultaneous operation is supported.. Figure 1: Hybrid system with multi-connected boost converter II. Proposed Multi-Input Rectifier Stage A system diagram of the proposed rectifier stage of a hybrid energy system is shown in Figure 2, where one of the inputs is connected to the output of the PV array and the other input connected to the output of a generator. The fusion of the two converters is achieved by reconfiguring the two existing diodes from each converter and the shared utilization of the Cuk output inductor by the SEPIC converter. This configuration IJMER ISSN: 2249 6645 www.ijmer.com Vol. 4 Iss.7 July. 2014 11

allows each converter to operate normally individually in the event that one source is unavailable. Figure 3 illustrates the case when only the wind source is available. In this case, D1 turns off and D2 turns on; the proposed circuit becomes a SEPIC converter and the input to output voltage relationship is given by (1). On the other hand, if only the P source is available, then D2 turns off and D1 will always be on and the circuit becomes a Cuk converter as shown in Figure 4 The input to output voltage relationship is given by (2). In both cases, both converters have step-up/down capability, which provide more design flexibility in the system if duty ratio control is utilized to perform MPPT control. V dc (1) = d 2 V W 1 d2 V dc = d 1 Vpv 1 d1 (2) Figure 5 illustrates the various switching states of the proposed converter. If the turn on duration of M1 is longer than M2, then the switching states will be state I,II, IV. Similarly, the switching states will be state I, III, IV if the switch conduction periods are vice versa. To provide a better explanation, the inductor current waveforms of each switching state are given as follows assuming that d2 >d1; hence only states I, III, IV are discussed in this example. In the following, Ii,PVis the average input current from the PV source; Ii,Wis the RMS input current after the rectifier (wind case); and Idcis the average system output current. The key waveforms that illustrate the switching states in this example are shown in Figure 6. The mathematical expression that relates the total output voltage and the two input sources will be illustrated in the next section. State I (M1 on, M2 on): State III (M1 off, M2 on): State IV (M1 off, M2 off): IJMER ISSN: 2249 6645 www.ijmer.com Vol. 4 Iss.7 July. 2014 12

Figure 2: Proposed rectifier stage for a Hybrid wind/pv system, Figure 3: Only wind source is operational (SEPIC) Figure 4: Only PV source is operation (Cuk) Figure 5 (I-IV): switching states within a switching cycle IJMER ISSN: 2249 6645 www.ijmer.com Vol. 4 Iss.7 July. 2014 13

III. Analysis Of Proposed Circuit To find an expression for the output DC bus voltage, Vdc, the volt-balance of the output inductor, L2, is examined according to Figure 6 with d2 >d1. Since the net change in the voltage of L2 is zero, applying voltbalance to L2 results in (3). The expression that relates the average output DC voltage (Vdc) to the capacitor voltages (vc1 and vc2) is then obtained as shown in (4), where vc1 and vc2 can then be obtained by applying volt-balance to L1 and L3 [9]. The final expression that relates the average output voltage and the two input sources (VW and VPV) is then given by (5). It is observed that Vdcis simply the sum of the two output voltages of the Cuk and SEPICconverter. This further implies that Vdccan be controlled by d1 and d2 individually or simultaneously. v c1 + v c2 d 1 T s + V C2 d 2 d 1 T s + (1 d 2 )( v dc )T s =0 (3) v dc = d 1 1 d2 v dc = d 1 1 d1 v c1 + d 2 1 d2 v c2 (4) v pv + d 2 1 d2 v w (5) The switches voltage and current characteristics are also provided in this section. The voltage stress is given by (6) and (7) respectively. As for the current stress, it is observed from Figure 6 that the peak current always occurs at the end of the on-time of the MOSFET. Both the Cuk and SEPIC MOSFET current consists of both the input current and the capacitors (C1 or C2) current. The peak current stress of M1 and M2 are given by (8) and (10) respectively. Leq1 and Leq2, given by (9) and (11), represent the equivalent inductance of Cuk and SEPIC converter respectively. The PV output current, which is also equal to the average input current of the Cuk converter is given in (12). It can be observed that the average inductor current is a function of its respective duty cycle (d1). Therefore by adjusting the respective duty cycles for each energy source, maximum power point tracking can be achieved. V ds1 = V pv 1 + d 1 1 d1 V ds2 = V w 1 + d 2 1 d2 (7) i ds1,pk = I i,pv + I dc,avg + V pv d1ts 2Leq 1 L eq 1 = L 1L2 (9) L1+L2 i ds2,pk = I i,pv + I dc,avg + V pv d2ts 2Leq 1 L eq 2 = L 3L2 I i,pv = P 0 (11) L3+L2 d1 V dc 1 d1 (12) (8) (10) IV. Mppt Control Of Proposed Circuit A common inherent drawback of wind and PV systems is the intermittent nature of their energy sources. Wind energy is capable of supplying large amounts of power but its presence is highly unpredictable as it can be here one moment and gone in another. Solar energy is present throughout the day, but the solar irradiation levels vary due to sun intensity and unpredictable shadows cast by clouds, birds, trees, etc. These drawbacks tend to make these renewable systems inefficient. However, by incorporating maximum power point tracking (MPPT) algorithms, the systems power transfer efficiency can be improved significantly. To describe a wind turbine s power characteristic, equation (13) describes the mechanical power that is generated by the wind. p m = 0.5ρAC P λ, β v W 3 Where Ρ=air density, A=rotor swept area, c p λ, β = power coefficient function, λ=tip speed ratio, β=pitch angle, v w = wind speed The power coefficient (Cp) is a nonlinear function that represents the efficiency of the wind turbine to convert wind energy into mechanical energy. It is dependent on two variables, the tip speed ratio (TSR) and the pitch angle. The TSR, λ, refers to a ratio of the turbine angular speed over the wind speed. The mathematical representation of the TSR is given by (14) [10]. The pitch angle, β, refers to the angle in which the turbine blades are aligned with respect to its longitudinal axis. (6) IJMER ISSN: 2249 6645 www.ijmer.com Vol. 4 Iss.7 July. 2014 14

Figure 6: General MPPT Flow Chart for wind and PV V. Simulation Results In this section, simulation results from MATLAB 7.8 is given to verify that proposed multi-input rectifier stage can support individual as well as simultaneous operation. The specifications for the design example are given in TABLE I. Figure 10 illustrates the system under the condition where the wind source has failed and only the PV source (Cuk converter mode) is supplying power to the load. Figure 11 illustrates the system where only the wind turbine generates power to the load (SEPIC converter mode). Finally, Figure 12 illustrates the simultaneous operation (Cuk-SEPIC fusion mode) of the two sources where M2 has a longer conduction cycle (converter states I, IV and III see Figure 5). TABLE I. Design Specifications Output power(w) 3Kw Output voltage 500V Switching frequency 20kHz Fig 7: Hybrid solar wind IJMER ISSN: 2249 6645 www.ijmer.com Vol. 4 Iss.7 July. 2014 15

Figure 8 : Individual operation with only PV source (Cuk operation) Top: Output power, Bottom: Switch currents (M1 and M2) Figure 9 : Individual operation with only wind source (SEPIC operation) (I) The injected three phase generator current; (II) Top: Output power, Bottom: Switch currents (M1 and M2) IJMER ISSN: 2249 6645 www.ijmer.com Vol. 4 Iss.7 July. 2014 16

Figure 10 : Simultaneous operation with both wind and PV source (Fusion mode with Cuk and SEPIC)(I) The injected three phase generator current; (II) Top: Output power, Bottom: Switch currents (M1 and M2) Figure 11 and 12 illustrates the MPPT operation of the PV component of the system (Cuk operation) and the Wind component of the system (SEPIC operation) respectively. Figure 11 : Solar MPPT PV output current andfigure 12 : Wind MPPT Generator speed and reference reference current signal (Cuk operation)speed signal (SEPIC operation) VI. Conclusion In this paper a new multi-input Cuk-SEPIC rectifier stage for hybrid wind/solar energy systems has been presented. The features of this circuit are: 1) additional input filters are not necessary to filter out high frequency harmonics; 2) both renewable sources can be stepped up/down (supports wide ranges of PV and wind input); 3) MPPT can be realized for each source; 4) individual and simultaneous operation is supported. Simulation results have been presented to verify the features of the proposed topology. IJMER ISSN: 2249 6645 www.ijmer.com Vol. 4 Iss.7 July. 2014 17

REFERENCES [1] S.K. Kim, J.H Jeon, C.H. Cho, J.B. Ahn, and S.H. Kwon, Dynamic Modeling and Control of a Grid-Connected Hybrid Generation Systemwith Versatile Power Transfer, IEEE Transactions on Industrial Electronics, vol. 55, pp. 1677-1688, April 2008. [2] D. Das, R. Esmaili, L. Xu, D. Nichols, An Optimal Design of a Grid Connected Hybrid Wind/Photovoltaic/Fuel Cell System for Distributed Energy Production, in Proc. IEEE Industrial Electronics Conference, pp. 2499-2504, Nov. 2005. [3] N. A. Ahmed, M. Miyatake, and A. K. Al-Othman, Power fluctuations suppression of stand-alone hybrid generation combining solar photovoltaic/wind turbine and fuel cell systems, in Proc. Of Energy Conversion and Management, Vol. 49, pp. 2711-2719, October 2008. [4] S. Jain, and V. Agarwal, An Integrated Hybrid Power Supply for Distributed Generation Applications Fed by Nonconventional Energy Sources, IEEE Transactions on Energy Conversion, vol. 23, June [5] Y.M. Chen, Y.C. Liu, S.C. Hung, and C.S. Cheng, Multi-Input Inverter for Grid-Connected Hybrid PV/Wind Power System, IEEE Transactions on Power Electronics, vol. 22, May 2007. [6] dos Reis, F.S., Tan, K. and Islam, S., Using PFC for harmonic mitigation in wind turbine energy conversion systems in Proc. of the IECON 2004 Conference, pp. 3100-3105, Nov. 2004 [7] R. W. Erickson, Some Topologies of High Quality Rectifiers in the Proc. of the First International Conference on Energy, Power, and Motion Control, May 1997. [8] D. S. L. Simonetti, J. Sebasti an, and J. Uceda, The Discontinuous Conduction Mode Sepic and Cuk Power Factor Preregulators: Analysis and Design IEEE Trans. On Industrial Electronics, vol. 44, no. 5, 1997 [9] N. Mohan, T. Undeland, and W Robbins, Power Electronics: Converters, Applications, and Design, John Wiley & Sons, Inc., 2003. [10] J. Marques, H. Pinheiro, H. Grundling, J. Pinheiro, and H. Hey, A Survey on Variable-Speed Wind Turbine System, Proceedings of Brazilian Conference of Electronics of Power, vol. 1, pp. 732-738, 2003. [11] F. Lassier and T. G. Ang, Photovoltaic Engineering Handbook 1990 [12] Global Wind Energy Council (GWEC), Global wind 2008 report, June 2009. [13] L. Pang, H. Wang, Y. Li, J. Wang, and Z. Wang, Analysis of Photovoltaic Charging System Based on MPPT, Proceedings of Pacific-Asia Workshop on Computational Intelligence and Industrial Application 2008 (PACIIA 08), Dec 2008, pp. 498-501. IJMER ISSN: 2249 6645 www.ijmer.com Vol. 4 Iss.7 July. 2014 18