IBIL setup operation manual for SynerJY software version

Similar documents
Sabeeh Irfan Ahmad, Physlab, 23 July 2016

RENISHAW INVIA RAMAN SPECTROMETER

Renishaw InVia Raman microscope

OPT3: Operating Procedure for Horiba Jobin Yvon LabRam Aramis Raman/PL System See LabSpec_6_2 General User Quick Start Guide on the computer desktop

Horiba LabRAM ARAMIS Raman Spectrometer Revision /28/2016 Page 1 of 11. Horiba Jobin-Yvon LabRAM Aramis - Raman Spectrometer

Applications of Steady-state Multichannel Spectroscopy in the Visible and NIR Spectral Region

Dual-FL. World's Fastest Fluorometer. Measure absorbance spectra and fluorescence simultaneously FLUORESCENCE

SpectraPro 2150 Monochromators and Spectrographs

Aqualog. CDOM Measurements Made Easy PARTICLE CHARACTERIZATION ELEMENTAL ANALYSIS FLUORESCENCE GRATINGS & OEM SPECTROMETERS OPTICAL COMPONENTS RAMAN

Horiba Jobin-Yvon LabRam Raman Confocal Microscope (GERB 120)

SYMPHONY CCD Detection System User s Manual

MS260i 1/4 M IMAGING SPECTROGRAPHS

The only simultaneous absorbance and f uorescence system for water quality analysis! Aqualog

Measurement Method of High Absorbance (Low Transmittance) Samples by UH4150 INTRODUCTION

Oriel MS260i TM 1/4 m Imaging Spectrograph

University of Wisconsin Chemistry 524 Spectroscopic Components *

Confocal Raman Microscopy (WITec Alpha 300R)

WITec Alpha 300R Quick Operation Summary October 2018

Spectroscopy of Ruby Fluorescence Physics Advanced Physics Lab - Summer 2018 Don Heiman, Northeastern University, 1/12/2018

Goodman Cookbook. Goodman Spectrograph. Adapted by D. Sanmartim from L. Fraga's Guide. Sep SOAR Telescope

metcon meteorologieconsultgmbh, Instruments for Atmospheric Research W1aa_Feb_2017_1.doc 1 -

TRAINING MANUAL. Olympus FV1000

Instruction manual for T3DS software. Tool for THz Time-Domain Spectroscopy. Release 4.0

HR2000+ Spectrometer. User-Configured for Flexibility. now with. Spectrometers

Aqualog. Water Quality Measurements Made Easy FLUORESCENCE

Microscopy from Carl Zeiss

VS7550 VUV/UV Mini Spectrograph Operating Manual

LEICA TCS SP5 AOBS TANDEM USER MANUAL

Instruction manual for Bentham DM-150 and DTMc300 spectroradiometers

Training Guide for Carl Zeiss LSM 5 LIVE Confocal Microscope

Information & Instructions

LA-T LED ANALYSER EVALUATION KIT INSTRUCTION MANUAL. rev

Cornerstone 260 1/4 m Monochromators

Quick Start MMRC Nicolet 6700 Revised 10/24/2018

Zeiss 780 Training Notes

Instructions for the Experiment

LSM 800 Confocal Microscope Standard Operation Protocol

Chemistry 61: Instrumental Analysis Building and Operating Your Own Diode Array Spectrometer

Aqualog. Water Quality Measurements Made Easy PARTICLE CHARACTERIZATION ELEMENTAL ANALYSIS FLUORESCENCE

TriVista. Universal Raman Solution

Physics 308 Laboratory Experiment F: Grating Spectrometer

Title: Leica SP5 Confocal User Manual

ECEN. Spectroscopy. Lab 8. copy. constituents HOMEWORK PR. Figure. 1. Layout of. of the

Cathodoluminoscopic Spectroscopy at RPI

Training Guide for Leica SP8 Confocal/Multiphoton Microscope

Kit for building your own THz Time-Domain Spectrometer

Improving the Collection Efficiency of Raman Scattering

1/8 m GRATING MONOCHROMATOR

ALTURA EDS. Rev. 0915

ScanArray Overview. Principle of Operation. Instrument Components

UV-Vis-NIR Spectrophotometer Quick Start Guide

Training Guide for Carl Zeiss LSM 510 META Confocal Microscope

Lab 3: Low-Speed Delta Wing

QE65000 Spectrometer. Scientific-Grade Spectroscopy in a Small Footprint. now with. Spectrometers

A Software Implementation of Data Acquisition Control and Management for Czerny Turner Monochromator

Overview. About other software. Administrator password. 58. UltraVIEW VoX Getting Started Guide

Fire CR Calibration Guide

Experimental Analysis of Luminescence in Printed Materials

Be aware that there is no universal notation for the various quantities.

UltraGraph Optics Design

Cell Biology and Bioimaging Core

Zeiss 880 Training Notes Zen 2.3

Leica SPEII confocal microscope. Short Manual

Simplified Instructions: Olympus Widefield Microscope S1230

Ocean Optics R-2000 Raman Spectrometer Setup and Operating Instructions Arlen Viste and Deanna Donohoue April 2000 Update 2003, DEW

Leica SP8 TCS Users Manual

LSM 710 Confocal Microscope Standard Operation Protocol

Microscope-Spectrometer

Specifications. Offers the best spatial resolution for multi-stripe spectroscopy. Provides the user the choice of either high accuracy slit mechanism

Things to check before start-up.

ZEISS LSM 710 NLO Multiphoton microscope Manual/Quick guide

Performance Comparison of Spectrometers Featuring On-Axis and Off-Axis Grating Rotation

Renishaw InVia Quick Operation Summary October 2018

BEAMAGE KEY FEATURES AVAILABLE MODELS. CMOS Beam Profiling Cameras

CCD User s Guide SBIG ST7E CCD camera and Macintosh ibook control computer with Meade flip mirror assembly mounted on LX200

Detailed Scientific Barrier Filter Discussion

Cerro Tololo Inter-American Observatory. CHIRON manual. A. Tokovinin Version 2. May 25, 2011 (manual.pdf)

SPECTRAL SCANNER. Recycling

Company synopsis. MSU series

CONFIGURING. Your Spectroscopy System For PEAK PERFORMANCE. A guide to selecting the best Spectrometers, Sources, and Detectors for your application

Oriel Cornerstone 130 1/8 m Monochromator

RENISHAW RAMAN MICROSCOPE STANDARD OPERATING PROCEDURE

Wavelength Meter Sensitive and compact wavemeter with a large spectral range for high speed measurements of pulsed and continuous lasers.

Leica TCS SP8 Quick Start Guide

WSM-160 Manual Optical Tunable Filter Quick Reference Guide

LSM 780 Confocal Microscope Standard Operation Protocol

Leica Sp5 II Confocal User Guide

BEAMAGE-3.0 KEY FEATURES BEAM DIAGNOSTICS AVAILABLE MODELS MAIN FUNCTIONS SEE ALSO ACCESSORIES. CMOS Beam Profiling Cameras

Microscopy. The dichroic mirror is an important component of the fluorescent scope: it reflects blue light while transmitting green light.

The equipment used share any common features regardless of the! being measured. Electronic detection was not always available.

Miniature Spectrometer Technical specifications

Vernier SpectroVis Plus Spectrophotometer (Order Code: SVIS-PL)

Ph 3455 The Photoelectric Effect

OPERATING INSTRUCTIONS

PANalytical X pert Pro Gazing Incidence X-ray Reflectivity User Manual (Version: )

Cornerstone 130 1/8 m Monochromators

Educational Spectrophotometer Accessory Kit and System OS-8537 and OS-8539

ThermaViz. Operating Manual. The Innovative Two-Wavelength Imaging Pyrometer

ERS KEY FEATURES BEAM DIAGNOSTICS MAIN FUNCTIONS AVAILABLE MODEL. CMOS Beam Profiling Camera. 1 USB 3.0 for the Fastest Transfer Rates

11Beamage-3. CMOS Beam Profiling Cameras

Transcription:

IBIL setup operation manual for SynerJY software version 1.8.5.0 Manual version 1.0, 31/10/2008 Author: Carlos Marques Equipment Managers: Carlos Marques, +351219946084, cmarques@itn.pt Luís Alves, +351219946112, lcalves@itn.pt Instituto Tecnológico e Nuclear Unidade de Física e de Aceleradores Page 1 of 16

Page 2 of 16

General description The IBIL setup is comprised of a monochromator (TRIAX 190), to which a Peltier cooled CCD detector (Symphony 1024 256 pixel) is coupled, and a cooling unit, as shown in figure 1. From the monochromator to the experimental chamber goes an optical fiber and a coupling and focusing device, detailed in fig. 2. The connections are numbered, each pair cable socket is univocally identified with the same number, from 1 to 7. The available range of measurement is from 200 nm to 1100 nm, with 0.3 nm resolution in the optimum combination of diffraction grating and entrance slit width (software controlled, from 0.002 mm to 2 mm). There are manually switchable filters (cutting up to 385 nm top filter - and up to 630 nm bottom filter, with the central position empty) at the entrance of the monochromator. sample position control knobs optical fiber CCD monochromator filter manual slide CCD power and cooling unit Figure 1 Image of the IBIL setup, with the optical fiber attached to the experimental chamber via mirror based coupling device. Page 3 of 16

Focal lenght adjust (translation) Mirror orientation Binoculars Chamber filament light Figure 2 Photography of the coupling device attached to the experimental chamber. Operation: The operation of the equipment can be divided in three phases: 1 Check connections, power on equipment and start the software (running on Windows XP ); 2 Calibrate the system (zero calibration and wavelength calibration, with fluorescent ambient light) and adjust the coupling device and move the sample in order to focus on the beam spot; 3 Measurements and shut down. Phase 1: 1 Remove black blankets; check all connections: between CCD and monochromator (shutter control, BNC cable 4), between CCD and cooling unit (cables 5 and 6) and between equipment and computer (ethernet RJ45 cable 1 and RS232 cable 2); 2 Power on monochromator (just plug the socket cable 3) and cooling unit (cable 7); turn cooling unit on (red and green light stable for 30 seconds and then blinking at 1 Hz); start computer and enter Windows XP partition; logon; 3 Insert USB disk to allow SynerJY Origin 7.5 based software to run (usually located in the right hand drawer); Page 4 of 16

4 Double click on SynerJY icon located at the computer desktop; 5 Click on the icon shown in fig. 3 to initialize the equipment. The screen of fig. 4 will appear, followed by screens of fig. 5 and fig. 6; SynerJY icons click here Figure 3 Initial screen of SynerJY acquisition ORIGIN 7.5 based software. Page 5 of 16

Figure 4 Hardware configuration selection. Figure 5 Hardware initialization screen. Page 6 of 16

Figure 6 Acquisition menu, for wavelength range selection, as well as acquisition or exposure time. 6 Check temperature, selecting ADVANCED on the screen of fig. 6. Fig. 7 screen will show up; wait for T < 204 K to start acquisition (about 10 minutes) and click OK; temperature Figure 7 Temperature check. This menu also allows cosmic ray removal (removes intense and narrow peaks) and background correction (removes baseline noise, which is 1240 ± 10 counts, check it with the shutter closed on the PREVIEW screen, fig. 11). Page 7 of 16

If you got up to this screen and T is about 202 K 204 K then proceed to phase 2. Lights on the cooling unit should both be green and stable. Phase 2 7 From the acquisition menu shown in fig. 8 choose EXPOSURE TIME (longer times are prone to cosmic ray appearance) and TYPE of scan: CCD RANGE, where the selection is the initial and final wavelength to acquire, or CCD POSITION, where the central wavelength is chosen and side bands are also acquired (around ± 50 nm for the 1200 l/mm grating and ± 200 nm for the 300 l/mm grating); scan type exposure time selection Figure 8 Acquisition screen in the default DETECTORS mode. 8 From the screen of fig. 8 click MONOS on the GENERAL tab and screen of fig. 9 will appear; choose diffraction GRATING (low wavelengths with 1200 l/mm; high wavelengths with 300 l/mm), and front entry slit width (from 0.002 mm to 2 mm, the wider the poorer resolution attainable); the exit slit is not installed; Page 8 of 16

grating selection slit width selection Figure 9 Acquisition screen in the MONOS mode, allowing choosing the grating and slit width. Figure 10 Photography of the optical fiber in the test position to calibrate the system and monitor its sensitivity; also in the picture is the beam current meter. 9 With the optical fiber in the test position (fig. 10) perform an acquisition of light from the fluorescent lamp and check peak positions; from screens of fig. 8 or fig. 9, click PREVIEW, screen in figure 11 appears; Page 9 of 16

cursor coordinates Figure 11 Preview menu, in DETECTORS default, with a 0 order preview acquisition. 10 - Zero order calibration: position at 0 nm and acquire (choosing 0.002 mm entrance slit width and appropriate exposure time in order not to saturate the CCD, which happens over 65536 or 16 bit - counts) by clicking RUN; a Gaussian shaped band should appear centered at 0 nm; calibrate if peak position is different (step 11); adjust CCD and the entrance of the optical fiber if band is not Gaussian (refer to Jobin Yvon manual); repeat for the other grating; 11 If the peak is not centered at 0 nm, click MONOS on screen of fig. 11 and the screen of fig. 12 will appear. Next, click CALIBRATE and fig. 13 shows the expected screen. To the CURRENT POSITION wavelength value subtract the measured peak center (if this is negative add) and input this value on the CALIBRATED POSITION field. Click OK and acquire new spectra; Repeat this step if zero order is not centered at 0 nm. Repeat for the other grating; Page 10 of 16

Figure 12 Preview screen in the MONOS mode. Figure 13 Zero calibration; to the current position subtract the desired peak value. Page 11 of 16

12 Wavelength calibration: acquire a spectrum centered at 550 nm (to monitor Hg line at 546 nm, FWHM about 0.4 nm), again for both gratings, (fig. 14) and confirm that the bands in table 1 are found in their expected positions. Choose exposure times and entrance slit width in order not to saturate the CCD; use top filter to avoid 2 nd order diffractions; Figure 14 Typical emission lines present in common fluorescent lamps. Table 1 Most intense Hg + emission lines (CRC Handbook). Emission lines of Hg +, present in typical fluorescent lamps wavelength (nm) relative intensity wavelength (nm) relative intensity 184.95 1000 407.78 150 253.65 15000 433.92 250 265.20 250 434.75 400 265.37 400 435.83 4000 289.36 150 546.07 1100 296.73 1200 567.59 160 302.15 300 576.92 240 312.57 400 578.97 100 313.16 320 579.07 280 313.18 320 580.38 140 365.02 2800 690.75 250 365.48 300 708.19 250 366.33 240 709.19 250 404.66 1800 1013.97 2000 13 Focus on the beam spot: input the coupling mirror based device with a laser beam; from the binoculars check the laser spot on the sample and make it coincide with the beam spot by adjusting the sample position and the optical coupling (cf. fig. 1); 14 Reconnect the optical fiber to the coupling device; cover the binoculars and the equipment with the black blanket, but allowing for CCD ventilation; Page 12 of 16

Phase 3 15 From the data preview menu optimize wavelength range, exposure time, entrance slit width with several RUNs; then click TRANSFER to send all these parameters to the acquisition menu (otherwise it will keep the last ones), shown in figures 9 and 11. Slide the desired filter, fig. 15; Filter slide Optical fiber entrance Figure 15 Photography of the filter slide (bottom filter on) close to the optical fiber entrance. 16 Click RUN; before displaying the data the software will ask for a project name (for example: TEST), which will correspond a dedicated ORIGIN 7.5 project in the program folder (H:\Program Files\Jobin Yvon\SynerJY Data\TEST.opj; each spectra will be an ORIGIN 7.5 graph named sequentially DefaulfdataX. Use acquisition sheets were all parameters can be written; don t forget to annotate the logbook with the information requested; 17 Click the same icon as in step 5 and make a new measurement; 18 To turn the equipment off, simply close the SynerJY software, turn off cooling unit and unplug cables 3 and 7 from mains. Practical tips: Top filter cuts up to 385 nm and is thus recommended to measure in the 385 nm 770 nm range; Bottom filter cuts up to 630 nm and is thus suitable to measure from 630 nm to 1260 nm; Central filter is vacant and thus choose this position to measure from 200 nm to 400 nm; The above limits are chosen to avoid second-order diffractions. Figure 16 illustrates the filter concept. Page 13 of 16

5000 fluorescent lamp, CCD position 800 nm, 1200 l/mm slit 0.002 mm, time 10 s Intensity (Counts) 4000 3000 2000 2 nd order from 404 nm appears at 808 nm 385 nm cut 630 nm cut 760 770 780 790 800 810 820 830 840 Wavelength (nm) Figure 16 Luminescence spectra of a fluorescent lamp acquired with the 385 nm or the 630 nm filter. The use of the filter prevents some 2 nd order diffractions and while the 385 nm inhibits these diffractions up to 770 nm (and thus allow the 404 nm 2 nd diffraction at 808 nm, cf. table 1) the 630 nm filter extends this effect up to 1260 nm. Use black blankets to avoid stray light, covering essentially the monochromator and filter region, as well as the CCD connection (do not cover the entire CCD or the temperature will not drop to 203 K). Don t forget to cover also the binoculars. Take one spectra without beam in the experimental conditions used to ascertain the absence of any system related features. Take one spectra with the minimum of ambient light possible to exclude the appearance of external light features on the spectra. Considering the efficiency curves of the 1200 l/mm and 300 l/mm gratings (fig. 17) the first should be used for the lower wavelengths while the latter used for higher ones. Each grating has a maximum or blaze wavelength, 250 nm for the 1200 l/mm and 1000 nm for the 300 l/mm. Page 14 of 16

CCD detectable range a) b) Figure 17 Theoretical spectral efficiency curves for a) 300 grooves/mm (transversal electric, TE, and transversal magnetic, TM) and b) 1200 grooves/mm, used in our system. Step 12 should be repeated for every sample or spot analysed. The usable wavelength range is dictated by the efficiency of the CCD, fig. 18. Figure 18 CCD spectral sensitivity at RT. Page 15 of 16

Troubleshooting You don t get the screen shown in figure 6: check connections between PC and equipment (cables 1 and 2); The temperature doesn t reach 203 K: check if CCD ventilation is not obstructed; The noise level is higher than 1240 counts: check CCD temperature and block stray light. User Notes: Manual available online at http://www.itn.pt/facilities/lfi/manual_ibil.pdf Page 16 of 16