Narrow- and wideband channels

Similar documents
Narrow- and wideband channels

Written Exam Channel Modeling for Wireless Communications - ETIN10

Mobile Radio Propagation Channel Models

Revision of Lecture One

UWB Channel Modeling

Channel models and antennas

Channel. Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Multi-Path Fading. Dr. Noor M Khan EE, MAJU

Revision of Lecture One

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

Multi-Path Fading Channel

Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Fading Channel. Base Station

Channel Modeling ETI 085

Mobile Radio Propagation: Small-Scale Fading and Multi-path

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 6: Fading

EENG473 Mobile Communications Module 3 : Week # (12) Mobile Radio Propagation: Small-Scale Path Loss

Digital Communications over Fading Channel s

EITN85, FREDRIK TUFVESSON, JOHAN KÅREDAL ELECTRICAL AND INFORMATION TECHNOLOGY. Why do we need UWB channel models?

Propagation mechanisms

Channel Modelling ETIM10. Channel models

WIRELESS COMMUNICATION TECHNOLOGIES (16:332:546) LECTURE 5 SMALL SCALE FADING

Wireless Channel Propagation Model Small-scale Fading

Wideband Channel Characterization. Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1

Channel Models. Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1

Small-Scale Fading I PROF. MICHAEL TSAI 2011/10/27

Lecture 7/8: UWB Channel. Kommunikations

Channel models and antennas

Unit 5 - Week 4 - Multipath Fading Environment

Exam 3 is two weeks from today. Today s is the final lecture that will be included on the exam.

CHAPTER 2 WIRELESS CHANNEL

The Radio Channel. COS 463: Wireless Networks Lecture 14 Kyle Jamieson. [Parts adapted from I. Darwazeh, A. Goldsmith, T. Rappaport, P.

Wireless Physical Layer Concepts: Part II

UNIK4230: Mobile Communications Spring 2013

Channel modelling repetition

Part 4. Communications over Wireless Channels

EITN85, FREDRIK TUFVESSON ELECTRICAL AND INFORMATION TECHNOLOGY

Mobile Communications

Antennas and Propagation. Chapter 6b: Path Models Rayleigh, Rician Fading, MIMO

WIRELESS COMMUNICATIONS PRELIMINARIES

Wireless Communication Fundamentals Feb. 8, 2005

Performance Evaluation Of Digital Modulation Techniques In Awgn Communication Channel

Mobile Radio Propagation Channel Models

Selected answers * Problem set 6

Empirical Path Loss Models

Lecture 1 Wireless Channel Models

Project = An Adventure : Wireless Networks. Lecture 4: More Physical Layer. What is an Antenna? Outline. Page 1

TEMPUS PROJECT JEP Wideband Analysis of the Propagation Channel in Mobile Broadband System

Chapter 3. Mobile Radio Propagation

Elham Torabi Supervisor: Dr. Robert Schober

9.4 Temporal Channel Models

Diversity. Spring 2017 ELE 492 FUNDAMENTALS OF WIRELESS COMMUNICATIONS 1

MSIT 413: Wireless Technologies Week 3

NETW 701: Wireless Communications. Lecture 5. Small Scale Fading

EC 551 Telecommunication System Engineering. Mohamed Khedr

Testing c2k Mobile Stations Using a Digitally Generated Faded Signal

King Fahd University of Petroleum & Minerals Computer Engineering Dept

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FADING CHANNEL CHARACTERIZATION AND MODELING

Chapter 5 Small-Scale Fading and Multipath. School of Information Science and Engineering, SDU

Remote Reflector p. Local Scattering around Mobile. Remote Reflector 1. Base Station. θ p

RECOMMENDATION ITU-R P The prediction of the time and the spatial profile for broadband land mobile services using UHF and SHF bands

UNIVERSITY OF SOUTHAMPTON

Effects of multipath propagation on design and operation of line-of-sight digital radio-relay systems

Index. offset-qpsk scheme, 237, 238 phase constellation, 235

Revision of Wireless Channel

Radio channel modeling: from GSM to LTE

RRC Vehicular Communications Part II Radio Channel Characterisation

Wireless Sensor Networks 4th Lecture

Implementation of a MIMO Transceiver Using GNU Radio

Antennas and Propagation. Chapter 6a: Propagation Definitions, Path-based Modeling

Noncoherent Communications with Large Antenna Arrays

Ultra Wideband Radio Propagation Measurement, Characterization and Modeling

Problem Set. I- Review of Some Basics. and let X = 10 X db/10 be the corresponding log-normal RV..

IEEE Working Group on Mobile Broadband Wireless Access <

Chapter 2 Channel Equalization

Lab 3.0. Pulse Shaping and Rayleigh Channel. Faculty of Information Engineering & Technology. The Communications Department

Experimental Evaluation Scheme of UWB Antenna Performance

Chapter 3. System Theory and Technologies. 3.1 Physical Layer. ... How to transport digital symbols...?

Wireless Communication System

3/26/18. Lecture 3 EITN STRUCTURE OF A WIRELESS COMMUNICATION LINK

MSIT 413: Wireless Technologies Week 3

MEASUREMENT AND MODELING OF INDOOR UWB CHANNEL AT 5 GHz

ANALOGUE TRANSMISSION OVER FADING CHANNELS

A simple and efficient model for indoor path-loss prediction

Mobile Communications

Structure of the Lecture

Aalto University School of Electrical Engineering. ELEC-E4750 Radiowave Propagation and Scattering Session 10: Cellular links (3)

The Measurement and Characterisation of Ultra Wide-Band (UWB) Intentionally Radiated Signals

Microwave Seminar. Noise and Bit Error Ratio. J. Richie. Spring 2013

EXAM QUESTION EXAMPLES

Objectives. Presentation Outline. Digital Modulation Revision

ELT Receiver Architectures and Signal Processing Fall Mandatory homework exercises

Propagation Channels. Chapter Path Loss

1. MIMO capacity basics

Multipath Path. Direct Path

MSIT 413: Wireless Technologies Week 4

STATISTICAL DISTRIBUTION OF INCIDENT WAVES TO MOBILE ANTENNA IN MICROCELLULAR ENVIRONMENT AT 2.15 GHz

Analysis of Fast Fading in Wireless Communication Channels M.Siva Ganga Prasad 1, P.Siddaiah 1, L.Pratap Reddy 2, K.Lekha 1

Noise and Propagation mechanisms

EE3723 : Digital Communications

ECE5984 Orthogonal Frequency Division Multiplexing and Related Technologies Fall Mohamed Essam Khedr. Fading Channels

Transcription:

RADIO SYSTEMS ETIN15 Lecture no: 3 Narrow- and wideband channels Ove Edfors, Department of Electrical and Information technology Ove.Edfors@eit.lth.se 2012-03-19 Ove Edfors - ETIN15 1

Contents Short review NARROW-BAND CHANNELS Radio signals and complex notation Large-scale fading Small-scale fading Combining large- and smallscale fading Noise- and interferencelimited links WIDE-BAND CHANNELS What makes a channel wide-band? Delay (time) dispersion Narrow- versus wide-band channels 2012-03-19 Ove Edfors - ETIN15 2

SHORT REVIEW 2012-03-19 Ove Edfors - ETIN15 3

What do we know so far about propagation losses? P TX db POWER [db] G TX db L db G RX db P RX db Two theoretical expressions for the deterministic propagation loss as functions of distance: L db d ={ 20 log 10 4 d, free space 20 log 10 d 2, ground plane h TX h RX There are other models, which we will discuss later. We have discussed shadowing/ diffraction and reflections, but not really made any detailed calculations. 2012-03-19 Ove Edfors - ETIN15 4

Statistical descriptions of the mobile radio channel P TX db POWER [db] G TX db The propagation loss will change due to movements. L db These changes of the propagation loss will take place in two scales: G RX db P RX db Large-scale: shadowing, slow changes over many wavelengths. Small-scale: interference, fast changes on the scale of a wavelength. Now we are going to approach these variations from a statistical point of view. 2012-03-19 Ove Edfors - ETIN15 5

RADIO SIGNALS AND COMPLEX NOTATION 2012-03-19 Ove Edfors - ETIN15 6

Simple model of a radio signal A transmitted radio signal can be written ( ) = cos ( 2 + φ ) s t A π ft Amplitude Frequency Phase By letting the transmitted information change the amplitude, the frequency, or the phase, we get the tree basic types of digital modulation techniques ASK (Amplitude Shift Keying) FSK (Frequency Shift Keying) PSK (Phase Shift Keying) Constant amplitude 2012-03-19 Ove Edfors - ETIN15 7

The IQ modulator I-channel (in-phase) si sq Q-channel (quadrature) ( t ) ( t ) -90 o cos 2 f c ( π f t ) sin 2 c ( π f t ) c Transmited radio signal ( ) = I ( ) cos ( 2π c ) s ( t ) sin ( 2π f t ) s t s t f t Q c Take a step into the complex domain: Complex envelope Carrier factor s t =s I t j s Q t j2 fct e π s t =Re { s t e j 2 f c t } 2012-03-19 Ove Edfors - ETIN15 8

Interpreting the complex notation Complex envelope (phasor) sq ( t ) Q A ( t ) φ ( t ) si ( t ) s t I Transmitted radio signal s t = Re { s t e j 2 f t c } = Re {A t e j t e j 2 f c t } = Re {A t e j 2 f t t c } = A t cos 2 f c t t Polar coordinates: s t =s I t j s Q t = A t e j t By manipulating the amplitude A(t) and the phase Φ(t) of the complex envelope (phasor), we can create any type of modulation/radio signal. 2012-03-19 Ove Edfors - ETIN15 9

Example: Amplitude, phase and frequency modulation s ( t ) = A ( t ) cos 2π f t + φ ( t ) A ( t ) φ ( t ) 00 01 11 00 10 ( ) c Comment: 4ASK - Amplitude carries information - Phase constant (arbitrary) 00 01 11 00 10 4PSK - Amplitude constant (arbitrary) - Phase carries information 4FSK 00 01 11 00 10 - Amplitude constant (arbitrary) - Phase slope (frequency) carries information 2012-03-19 Ove Edfors - ETIN15 10

A narrowband system described in complex notation (noise free) Transmitter Channel Receiver x ( t ) y ( t ) ( j π f ) α ( ) θ ( ) ( j π f ) exp 2 c t exp ( j t ) exp 2 c In: Out: Attenuation ( ) = ( ) φ ( ) ( ) ( ) ( ) c = A ( t ) α ( t ) j φ ( t ) + θ ( t ) x t A t j t Phase exp ( ) exp ( φ ) exp ( 2π ) α ( ) exp ( θ ( ) ) exp ( 2π c ) exp ( ( ) ) y t = A t j t j f t t j t j f t It is the behaviour of the channel attenuation and phase we are going to model. 2012-03-19 Ove Edfors - ETIN15 11

LARGE-SCALE FADING 2012-03-19 Ove Edfors - ETIN15 12

Large-scale fading Basic principle Received power D C Position d A B Movement A B C C 2012-03-19 Ove Edfors - ETIN15 13

Large-scale fading More than one shadowing object Signal path in terrain with several diffraction points adding extra attenuation to the pathloss. α N This is ONE explanation α 1 α 2 Total pathloss: L tot =L d 1 2 N L tot db =L d db 1 db 2 db N db Deterministic If these are considered random and independent, we should get a normal distribution in the db domain. 2012-03-19 Ove Edfors - ETIN15 14

Large-scale fading Log-normal distribution Measurements confirm that in many situations, the large-scale fading of the received signal strength has a normal distribution in the db domain. POWER [db] pdf ( L db ) Note db scale P TX db L db P RX db Deterministic mean value of path loss, L 0 db db 1 pdf L db = 2 F db exp L db L 0 db 2 2 2 F db Standard deviation F db 4 10 db 2012-03-19 Ove Edfors - ETIN15 15

Large-scale fading Fading margin We know that the path loss will vary around the deterministic value predicted. We need to design our system with a margin allowing us to handle higher path losses than the deterministic prediction. This margin is called a fading margin. Increasing the fading margin decreases the probability of outage, which is the probability that our system receive a too low power to operate correctly. 2012-03-19 Ove Edfors - ETIN15 16

Large-scale fading Fading margin (cont.) pdf ( L db ) M db Fading margin Designing the system to handle an M db db higher loss than predicted, lowers the probability of outage. P out =Pr {L db L 0 db M db }=Q M db F db L 0 db db The upper tail probability of a unit variance, zero-mean, Gaussian (normal) variable: 1 Q y = y 2 exp x 2 2 dx= 1 2 erfc y 2 The complementary error-function can be found in e.g. MATLAB 2012-03-19 Ove Edfors - ETIN15 17

The Q(.)-function Upper-tail probabilities x Q(x) x Q(x) x Q(x) 4.265 0.00001 4.107 0.00002 4.013 0.00003 3.944 0.00004 3.891 0.00005 3.846 0.00006 3.808 0.00007 3.775 0.00008 3.746 0.00009 3.719 0.00010 3.540 0.00020 3.432 0.00030 3.353 0.00040 3.291 0.00050 3.239 0.00060 3.195 0.00070 3.156 0.00080 3.121 0.00090 3.090 0.00100 2.878 0.00200 2.748 0.00300 2.652 0.00400 2.576 0.00500 2.512 0.00600 2.457 0.00700 2.409 0.00800 2.366 0.00900 2.326 0.01000 2.054 0.02000 1.881 0.03000 1.751 0.04000 1.645 0.05000 1.555 0.06000 1.476 0.07000 1.405 0.08000 1.341 0.09000 1.282 0.10000 0.842 0.20000 0.524 0.30000 0.253 0.40000 0.000 0.50000 2012-03-19 Ove Edfors - ETIN15 18

Large-scale fading A numeric example How many db fading margin, against σ F db = 7 db log-normal fading, do we need to obtain an outage probability of 0.5%? P out =Q M db F db = 0.5% = 0.005 Consulting the Q(.)-function table (or using a numeric software), we get M db F db =2.576 M db 7 =2.576 M db =18 2012-03-19 Ove Edfors - ETIN15 19

SMALL-SCALE FADING 2012-03-19 Ove Edfors - ETIN15 20

Small-scale fading Ilustration shown during Lecture 1 Received power [log scale] Illustration of interference pattern from above A Movement B A Position B Transmitter Reflector Many reflectors... let s look at a simpler case! 2012-03-19 Ove Edfors - ETIN15 21

Small-scale fading Two waves Wave 1 Wave 1 + Wave 2 Wave 2 λ At least in this case, we can see that the interference pattern changes on the wavelength scale. 2012-03-19 Ove Edfors - ETIN15 22

Small-scale fading Many incoming waves Many incoming waves with independent amplitudes and phases Add them up as phasors r1, φ1 r2, φ2 r 3 3 φ r 2 2 r1 1 r3, φ3 r4, φ4 r, φ 4 r 4 r ( φ ) = ( φ ) + ( φ ) + ( φ ) + ( φ ) r exp j r exp j r exp j r exp j r exp j 1 1 2 2 3 3 4 4 2012-03-19 Ove Edfors - ETIN15 23

Small-scale fading Rayleigh fading No dominant component (no line-of-sight) TX X RX Tap distribution 2D Gaussian (zero mean) Amplitude distribution 0.8 Rayleigh 0.6 Im ( a ) Re ( a ) r = a 0.4 0.2 No line-of-sight component 0 0 1 2 3 pdf r = r exp r 2 2 2 2 2012-03-19 Ove Edfors - ETIN15 24

Small-scale fading Rayleigh fading Fading margin Rayleigh distribution r min 0 r r rms pdf r = r 2 exp r 2 2 2 = 2σ Probability that the amplitude r is below some threshold r min : r Pr r r = min min 0 Fading margin 2 M = r rms pdf r dr=1 exp r 2 min 2 r rms 2 r min 2 2 r min M db =10 log 10 r rms 2012-03-19 Ove Edfors - ETIN15 25

Small-scale fading A numeric example How many db fading margin, against Rayleigh fading, do we need to obtain an outage probability of 1%? Some manipulation gives 1 0.01=exp r 2 min 2 Pr r r min =1 exp r min r rms 2 r rms 2 ln 0.99 = r 2 min 2 r rms M db =20 = 1% = 0.01 r 2 min = ln 0.99 =0.01 M = r 2 rms =1/0.01=100 2 2 r rms r min 2012-03-19 Ove Edfors - ETIN15 26

Small-scale fading Doppler shifts θ s RX Receiving antenna moves with speed s RX at an angle θ relative to the propagation direction of the incoming wave, which has frequency f 0. [c = speed of light = 3x10 8 m/s] c Frequency of received signal: f = f 0 where the Doppler shift is = f 0 s RX c cos The maximal Doppler shift is max = f 0 s RX c 2012-03-19 Ove Edfors - ETIN15 27

Small-scale fading Doppler spectrum Incoming waves from several directions (relative to movement or RX) Spectrum of received signal when a f 0 Hz signal is transmitted. RX movement 2 1 3 2 4 1 RX 4 3 All waves of equal strength in this example, for simplicity. f 0 ν max f 0 f0 + ν max 2012-03-19 Ove Edfors - ETIN15 28

Small-scale fading Doppler spectrum Isotropic uncorrelated scattering RX movement 1 Time correlaion RX 0.5 0 Uncorrelated amplitudes and phases Uniform incoming power distribution (isotropic) -0.5 0 0.5 1 1.5 2 ν max t t =E {a t a * t t }~J 0 2 max t 2012-03-19 Ove Edfors - ETIN15 29

Small-scale fading The Doppler spectrum For the uncorrelated scattering with uniform angular distribution of incoming power (isotropic scattering), we obtain the Doppler spectrum by Fourier transformation of the time correlation of the signal: SD Doppler spectrum at center frequency f 0. ( ν f ) 0 S D = t e j 2 t d t ~ 1 2 max 2 for ν max < ν < ν max f 0 ν max f 0 f0 + ν max This is the classical Doppler spectrum, a.k.a. the Jakes doppler spectrum. 2012-03-19 Ove Edfors - ETIN15 30

Small-scale fading Fading dips r rms Received amplitude [db] M db The larger the fading margin, the rarer the fading dips, and the shorter they are. r min r min The length and the frequency of fading dips can be important for the functionality of a radio system. Time Can we quantify these? 2012-03-19 Ove Edfors - ETIN15 31

Small-scale fading Statistics of fading dips Frequency of the fading dips (normalized dips/second) Length of fading dips (normalized dip-length) These curves are for Rayleigh fading and isotropic uncorrelated scattering (Jakes doppler spectrum). 2012-03-19 Ove Edfors - ETIN15 32

Small-scale fading Rice fading Tap distribution 2D Gaussian (non-zero mean) A Im ( a ) Re ( a ) A dominant component (line of sight) r= a Amplitude distribution 2.5 2 1.5 1 0.5 Rice k = 30 k = 10 k = 0 TX RX Line-of-sight (LOS) component with amplitude A. 0 0 1 2 3 I 0 r A pdf r = r 2 exp r 2 A 2 2012-03-19 Ove Edfors - ETIN15 33 2 2 2 Power in LOS component k= Power in random components = A2 2 2

COMBINING LARGE- AND SMALL-SCALE FADING 2012-03-19 Ove Edfors - ETIN15 34

Large- and small-scale fading Combining the two We will start using Alternative 1 We have seen examples of how we can compute the required fading margins, due to large- and small-scale fading, given certain criteria (e.g. outage probability). There are basically two options: 1) Calculate the fading margins separately and add them up. 2) Derive the pdf (or cdf) of the total fading and calculate a single fading margin for both. If we have both types of fading, how do we combine them into a total fading margin? Alternative 1 is the simple solution, but it will overdimension the system a bit. Alternative 2 is a much more complex operation. 2012-03-19 Ove Edfors - ETIN15 35

NOISE- AND INTERFERENCE- LIMITED LINKS 2012-03-19 Ove Edfors - ETIN15 36

Noise-limited system Fading margin and the link budget POWER [db] We use some propagation model to calculate a deterministic propagation loss. P TX db Fading L 0 db C 0 db M db C min db Fading ( C / N ) min db Variations in the environment and movements will cause variations in the the propagation loss, which will propagate to the instantaneous received power. To protect the receiver from too low received power, we add a fading margin. Noise reference level N db Requirement for the receiver to operate properly. 2012-03-19 Ove Edfors - ETIN15 37

Interference-limited system Interference fadning margin TX-A ( C / I ) min RX-A Received power [db] C db dmax Taking fading into account Without taking fading into account I TX-B ( C I ) + M / min db db Distance In interference limited systems, we are preliminary interested in how far from the transmitter we can be, without receiveing too much interference. Depending on the system design and requirements on quality, our receiver can tolerate a certain (C/I) min. Assuming fading on the wanted and interfering signal we can calculate a fading margin M db required to fulfill som criterion on e.g. outage. For independent log-normal fading, we can add the variances of the two fading characteristics and get a total lognormal fading with standard deviation: 2 2 σ = σ + σ tot db C db I db 2012-03-19 Ove Edfors - ETIN15 38

DELAY (TIME) DISPERSION 2012-03-19 Ove Edfors - ETIN15 39

Delay (time) dispersion A simple case Transmitted impulse τ h ( τ ) ( τ ) = δ ( τ τ ) + δ ( τ τ ) + δ ( τ τ ) h a a a 1 1 2 2 3 3 Received signal (channel impulse response) τ 1 a 1 τ 2 a 2 a 3 τ 3 τ 2012-03-19 Ove Edfors - ETIN15 40

Delay (time) dispersion A simple case Transmitted impulse τ h ( τ ) ( τ ) = δ ( τ τ ) + δ ( τ τ ) + δ ( τ τ ) h a a a 1 1 2 2 3 3 Received signal (channel impulse response) τ 1 a 1 τ 2 a 2 a 3 τ 3 τ 2012-03-19 Ove Edfors - ETIN15 41

Delay (time) dispersion One reflection/path, many paths Since each bin consists of contributions from several waves, each bin will fade if we introduce movement. Impulse response 0 τ 2 τ 3 τ 4 τ Delay in excess of direct path Each bin consists of incoming waves that are too close in time to resolve. What do we mean by too close in time? 2012-03-19 Ove Edfors - ETIN15 42

Delay (time) dispersion Bandwidth and time-resolution Radio systems are band-limited, which makes our infinitely short impulses become waveforms with a certain width in time. τ Band-limiting to B Hz The time-width of the pulses is inversely proportional to the bandwidth. τ τ = 1 B 2012-03-19 Ove Edfors - ETIN15 43

NARROW- VERSUS WIDE-BAND 2012-03-19 Ove Edfors - ETIN15 44

Narrow- versus wide-band Channel impulse response The same radio propagation environment is experienced differently, depending on the system bandwidth. High BW Medium BW Low BW h ( τ ) h ( τ ) h ( τ ) τ τ τ 2012-03-19 Ove Edfors - ETIN15 45

Narrow- versus wide-band Channel frequency response H ( f ) db A narrow-band system (bandwidth B 1 ) will not experience any significant frequency selectivity or delay dispersion. A wide-band system (bandwidth B 2 ) will however experience both frequency selectivity and delay dispersion. B 1 B 2 f Note that narrow- or wide-band depends on the relation between the channel and the system bandwidth. It is not an absolute measure. 2012-03-19 Ove Edfors - ETIN15 46

Narrow- versus wide-band Let s not forget the time-dependence! We need to take absolute time t into consideration, as the channel will change when things move. Measurement in hilly terrain at 900 MHz. The channel impulse response becomes: h ( t, τ ) [Liebenow & Kuhlmann 1993] 2012-03-19 Ove Edfors - ETIN15 47

Narrow- versus wide-band Doppler spectrum and delay Since the channel at each delay τ is the result of different propagation paths, we can have different Doppler spectra for each delay. Measurement in hilly terrain at 900 MHz. This effect is shown by the scattering function: P ν, τ S ( ) (received power as function of doppler shift and delay) 2012-03-19 Ove Edfors - ETIN15 48

Summary NARROW-BAND CHANNELS Complex notation with amplitude, phase and complex envelope (phasor). Large-scale fading with log-normal distribution and calculation of fading margin. Small-scale fading with Rayleig and Rice distribution, calculation of fading margin. Received signal maximal Doppler shift, Doppler spectrum and time characteristics. Fading margin in the link-budget of noise limited systems. Fading margin and maximal distance for interference limited systems. WIDE-BAND CHANNELS Instead of one (time varying) channel coefficient, we have an entire (time varying) impulse response Channel delay (time) dispersion and frequency selectivity Doppler spectrum as function of delay, i.e. the scattering function There is MUCH MORE to learn about this which many of you have done in in the Channel Modeling course (ETIN10)! 2012-03-19 Ove Edfors - ETIN15 49