Sensitivity enhancement of Faraday effect based heterodyning fiber laser magnetic field sensor by lowering linear birefringence

Similar documents
Ultra-short distributed Bragg reflector fiber laser for sensing applications

Low-Frequency Vibration Measurement by a Dual-Frequency DBR Fiber Laser

Simultaneous strain and temperature fiber grating laser sensor based on radio-frequency measurement

Optical RI sensor based on an in-fiber Bragg grating. Fabry-Perot cavity embedded with a micro-channel

VCSEL-powered and polarization-maintaining fiber-optic grating vector rotation sensor

Stable dual-wavelength oscillation of an erbium-doped fiber ring laser at room temperature

CHAPTER 5 FINE-TUNING OF AN ECDL WITH AN INTRACAVITY LIQUID CRYSTAL ELEMENT

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

Thermal treatment method for tuning the lasing wavelength of a DFB fiber laser using coil heaters

Single-Frequency, 2-cm, Yb-Doped Silica-Fiber Laser

I. INTRODUCTION II. FABRICATION AND OPERATION OF SLM FIBER LASER

Tunable single frequency fiber laser based on FP-LD injection locking

Single-longitudinal mode laser structure based on a very narrow filtering technique

Multi-wavelength laser generation with Bismuthbased Erbium-doped fiber

Silicon Photonic Device Based on Bragg Grating Waveguide

A novel tunable diode laser using volume holographic gratings

Linear cavity erbium-doped fiber laser with over 100 nm tuning range

Optical fiber-fault surveillance for passive optical networks in S-band operation window

R. J. Jones Optical Sciences OPTI 511L Fall 2017

3550 Aberdeen Ave SE, Kirtland AFB, NM 87117, USA ABSTRACT 1. INTRODUCTION

Stabilisation of Linear-cavity Fibre Laser Using a Saturable Absorber

CHIRPED FIBER BRAGG GRATING (CFBG) BY ETCHING TECHNIQUE FOR SIMULTANEOUS TEMPERATURE AND REFRACTIVE INDEX SENSING

Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection

Broadband photonic microwave phase shifter based on controlling two RF modulation sidebands via a Fourier-domain optical processor

Supplementary Figures

LOPUT Laser: A novel concept to realize single longitudinal mode laser

Intensity-modulated and temperature-insensitive fiber Bragg grating vibration sensor

Elimination of Self-Pulsations in Dual-Clad, Ytterbium-Doped Fiber Lasers

Multiwavelength Single-Longitudinal-Mode Ytterbium-Doped Fiber Laser. Citation IEEE Photon. Technol. Lett., 2013, v. 25, p.

High stability multiplexed fibre interferometer and its application on absolute displacement measurement and on-line surface metrology

Opto-VLSI-based reconfigurable photonic RF filter

Tunable single-frequency fiber laser based on the spectral narrowing effect in a nonlinear semiconductor optical amplifier

Current-induced Phase Demodulation Using a PWM Sampling for a Fiber-optic CT

A tunable and switchable single-longitudinalmode dual-wavelength fiber laser with a simple linear cavity

Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach- Zehnder interferometer couplers

Cost-effective wavelength-tunable fiber laser using self-seeding Fabry-Perot laser diode

Plane wave excitation by taper array for optical leaky waveguide antenna

AN EXPERIMENT RESEARCH ON EXTEND THE RANGE OF FIBER BRAGG GRATING SENSOR FOR STRAIN MEASUREMENT BASED ON CWDM

Title: Laser marking with graded contrast micro crack inside transparent material using UV ns pulse

Visible to infrared high-speed WDM transmission over PCF

Wavelength switching using multicavity semiconductor laser diodes

Passive Fibre Components

soliton fiber ring lasers

R. J. Jones College of Optical Sciences OPTI 511L Fall 2017

RECENTLY, studies have begun that are designed to meet

Vertical External Cavity Surface Emitting Laser

Electronically tunable fabry-perot interferometers with double liquid crystal layers

Active mode-locking of miniature fiber Fabry-Perot laser (FFPL) in a ring cavity

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides

A broadband fiber ring laser technique with stable and tunable signal-frequency operation

Fibre Optic Sensors: basic principles and most common applications

Fang-Wen Sheu *, Yi-Syuan Lu Department of Electrophysics, National Chiayi University, Chiayi 60004, Taiwan ABSTRACT

Two-Mode Frequency Stabilization of an Internal-Mirror 612 nm He-Ne Laser

Ring cavity tunable fiber laser with external transversely chirped Bragg grating

101 W of average green beam from diode-side-pumped Nd:YAG/LBO-based system in a relay imaged cavity

High-power semiconductor lasers for applications requiring GHz linewidth source

Longitudinal mode selection in laser cavity by moiré volume Bragg grating

Novel fiber Bragg grating fabrication system for long gratings with independent apodization and with local phase and wavelength control

Channel wavelength selectable singleõdualwavelength erbium-doped fiber ring laser

CONTROLLABLE WAVELENGTH CHANNELS FOR MULTIWAVELENGTH BRILLOUIN BISMUTH/ERBIUM BAS-ED FIBER LASER

Design and Analysis of Resonant Leaky-mode Broadband Reflectors

Silicon photonic devices based on binary blazed gratings

SUPPLEMENTARY INFORMATION DOI: /NPHOTON

Will contain image distance after raytrace Will contain image height after raytrace

Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers

Characteristics of point-focus Simultaneous Spatial and temporal Focusing (SSTF) as a two-photon excited fluorescence microscopy

Optical Communications and Networking 朱祖勍. Sept. 25, 2017

Wavelength spacing tenable capability of optical comb filter using Polarization Maintaining Fiber

Optical MEMS pressure sensor based on a mesa-diaphragm structure

Lecture 6 Fiber Optical Communication Lecture 6, Slide 1

SSRG International Journal of Electronics and Communication Engineering (SSRG-IJECE) Volume 2 Issue 6 June 2015

Mechanism of intrinsic wavelength tuning and sideband asymmetry in a passively mode-locked soliton fiber ring laser

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

Bragg and fiber gratings. Mikko Saarinen

Design of Vibration Sensor Based on Fiber Bragg Grating

Optical Isolator Tutorial (Page 1 of 2) νlh, where ν, L, and H are as defined below. ν: the Verdet Constant, a property of the

Realization of Polarization-Insensitive Optical Polymer Waveguide Devices

A miniature all-optical photoacoustic imaging probe

Research on the mechanism of high power solid laser Wenkai Huang, Yu Wu

Development of a High Sensitivity DFB Fibre Laser Hydrophone Work in Progress at National University of Singapore

Frequency Noise Reduction of Integrated Laser Source with On-Chip Optical Feedback

Ultra-stable flashlamp-pumped laser *

Exposure schedule for multiplexing holograms in photopolymer films

An Optical Characteristic Testing System for the Infrared Fiber in a Transmission Bandwidth 9-11μm

Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise

To generate a broadband light source by using mutually injection-locked Fabry-Perot laser diodes

Integrated into Nanowire Waveguides

Supplementary Figure 1. Effect of the spacer thickness on the resonance properties of the gold and silver metasurface layers.

Orthogonally Polarized Lasers

Rogério Nogueira Instituto de Telecomunicações Pólo de Aveiro Departamento de Física Universidade de Aveiro

Swept Wavelength Testing:

Thin-Core-Fiber-Based Long-Period Fiber Grating for High-Sensitivity Refractive Index Measurement

Photonic Microwave Filter Employing an Opto- VLSI-Based Adaptive Optical Combiner

RADIO-OVER-FIBER TRANSPORT SYSTEMS BASED ON DFB LD WITH MAIN AND 1 SIDE MODES INJECTION-LOCKED TECHNIQUE

High-power diode-end-pumped laser with multisegmented Nd-doped yttrium vanadate

Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform

The Theta Laser A Low Noise Chirped Pulse Laser. Dimitrios Mandridis

Introduction and concepts Types of devices

Construction and Characterization of a Prototype External Cavity Diode Laser

Differential measurement scheme for Brillouin Optical Correlation Domain Analysis

Transcription:

Sensitivity enhancement of Faraday effect based heterodyning fiber laser magnetic field sensor by lowering linear birefringence Linghao Cheng, Jianlei Han, Long Jin, Zhenzhen Guo, and Bai-Ou Guan * Institute of Photonics Technology, Jinan University, Guangzhou, 510632 China * tguanbo@jnu.edu.cn Abstract: In this paper, we demonstrate that the sensitivity of Faraday effect based heterodyning fiber laser sensors for magnetic field can be effectively enhanced by lowering the intrinsic linear birefringence inside the fiber laser cavity. Well explained by theoretical analysis and confirmed by birefringence tuning through transversal force, it shows that the sensitivity to magnetic field intensity is inversely proportional to the linear birefringence. A CO 2 -laser treatment is therefore proposed to tune the intracavity linear birefringence. With CO 2 -laser treatment, the intra-cavity linear birefringence can be lowered permanently to effectively enhance the sensitivity of a heterodyning fiber laser sensor to magnetic field. 2013 Optical Society of America OCIS codes: (060.2370) Fiber optics sensors; (280.3420) Laser sensors. References and links 1. L. Cheng, J. Han, Z. Guo, L. Jin, and B.-O. Guan, Faraday-rotation-based miniature magnetic field sensor using polarimetric heterodyning fiber grating laser, Opt. Lett. 38(5), 688 690 (2013). 2. M. Yang, J. Dai, C. Zhou, and D. Jiang, Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials, Opt. Express 17(23), 20777 20782 (2009). 3. B.-O. Guan and S.-N. Wang, Fiber grating laser current sensor based on magnetic force, IEEE Photonics Technol. Lett. 22(4), 230 232 (2010). 4. G. A. Cranch, G. M. H. Flockhart, and C. K. Kirkendall, High-resolution distributed-feedback fiber laser dc magnetometer based on the Lorentzian force, Meas. Sci. Technol. 20(3), 034023 (2009). 5. J. Noda, T. Hosaka, Y. Sasaki, and R. Ulrich, Dispersion of Verdet constant in stress-birefringent silica fibre, Electron. Lett. 20(22), 906 907 (1984). 6. T. Yoshino, T. Hashimoto, M. Nara, and K. Kurosawa, Common path heterodyne optical fiber sensors, J. Lightwave Technol. 10(4), 503 513 (1992). 7. B.-O. Guan, L. Jin, Y. Zhang, and H.-Y. Tam, Polarimetric heterodyning fiber grating laser sensors, J. Lightwave Technol. 30(8), 1097 1112 (2012). 8. Y. Zhang, B.-O. Guan, and H. Y. Tam, Ultra-short distributed Bragg reflector fiber laser for sensing applications, Opt. Express 17(12), 10050 10055 (2009). 9. M. L. Lee, J. S. Park, W. J. Lee, S. H. Yun, Y. H. Lee, and B. Y. Kim, A polarimetric current sensor using an orthogonally polarized dual-frequency fibre laser, Meas. Sci. Technol. 9(6), 952 959 (1998). 10. R. Ulrich and A. Simon, Polarization optics of twisted single-mode fibers, Appl. Opt. 18(13), 2241 2251 (1979). 11. M. J. Freiser, A survey of magnetooptic effects, IEEE Trans. Magn. 4(2), 152 161 (1968). 12. Y. Zhang, Y. N. Tan, T. Guo, and B. O. Guan, Beat frequency trimming of dual-polarization fiber grating lasers for multiplexed sensor applications, Opt. Express 19(1), 218 223 (2011). 13. M.-P. Li, L. Jin, and B.-O. Guan, Wavelength/frequency-division multiplexing of heterodyning fiber grating laser sensors with the assistance of CO2-laser treatment, Proc. SPIE 8421, 84211N (2012). 14. K. Morishita and Y. Miyake, Fabrication and resonance wavelengths of long-period gratings written in a puresilica photonic crystal fiber by the glass structure change, J. Lightwave Technol. 22(2), 625 630 (2004). 15. Y. Li, T. Wei, J. A. Montoya, S. V. Saini, X. Lan, X. Tang, J. Dong, and H. Xiao, Measurement of CO 2 -laserirradiation-induced refractive index modulation in single-mode fiber toward long-period fiber grating design and fabrication, Appl. Opt. 47(29), 5296 5304 (2008). 16. L. Jin, W. Jin, and J. Ju, Directional bend sensing with a CO 2 -laser-inscribed long period grating in a photonic crystal fiber, J. Lightwave Technol. 27(21), 4884 4891 (2009). 17. H. M. Chan, F. Alhassen, I. V. Tomov, and H. P. Lee, Fabrication and mode identification of compact longperiod gratings written by CO 2 laser, IEEE Photonics Technol. Lett. 20(8), 611 613 (2008). (C) 2013 OSA 16 December 2013 Vol. 21, No. 25 DOI:10.1364/OE.21.030156 OPTICS EXPRESS 30156

1. Introduction Fiber-optic magnetic field sensors are more attractive than their electronic counterparts in immunity to electromagnetic interference, light weight, compact size and large bandwidth and therefore have been actively explored over years [1 4]. Although many mechanisms can be employed to implement fiber-optic magnetic field sensors, such as magnetostrictive effect, magnetic force, Lorentzian force, etc, Faraday effect based schemes are frequently preferred for many applications as they measure magnetic fields directly without external transducers. However, because the Verdet constant of silica fibers is quite small [5], their sensitivities are generally fairly low. Therefore, very long sensing fiber or magneto-optic crystals have to be employed usually to enhance the sensitivities [6], which results in some disadvantages such as unreliability due to environment disturbances. Dual-polarization fiber grating laser based sensors have been attracting many attentions these years [7 9]. Recently, we have proposed a novel miniature fiber-optic magnetic field sensor based on a dual-polarization fiber grating laser less than 20 mm [1]. The dualpolarization fiber grating laser produces two orthogonally polarized lasing modes to generate a radio-frequency (RF) beat signal after a polarizer with the beat frequency proportional to the intra-cavity birefringence. A magnetic field parallel to the laser can induce a circular birefringence into the laser cavity through Faraday effect, which combines with the intracavity intrinsic linear birefringence to form an elliptical birefringence. The magnetic field can therefore be sensed through measuring the beat frequency resulted by the elliptical birefringence. A distinct advantage of the sensor is that the sensitivity is irrelevant to fiber laser length, which then permits miniaturizing the size of fiber-optic magnetic field sensors by use of short-cavity fiber lasers. However, the sensitivity of the proposed prototype is still fairly low for practical applications, which therefore need to be enhanced further. In this paper, we demonstrate that the sensitivity of a Faraday effect based heterodyning fiber laser magnetic field sensor can be effectively enhance by lowering the intra-cavity intrinsic linear birefringence. A theoretical explanation is given, which is verified by experiments. CO 2 -laser heat treatment of fiber laser is also experimentally demonstrated as a practical technique to lower the birefringence and enhance the sensitivity. 2. Principle It has been shown that the beat frequency generated by the two orthogonally polarized laser outputs of a dual-polarization fiber grating laser is given by [7] c Δ ν = B (1) n λ where c is the light speed in vacuum, λ 0 is the laser wavelength, n0 and B are the average refractive index and the birefringence of the optical fiber, respectively. Normally an intrinsic linear birefringence β (rad/m) is presented in a fiber laser cavity, resulting in two eigenpolarization modes of linear polarization. When a magnetic field parallel to the fiber laser cavity is applied, a uniform circular birefringence α (rad/m) is induced into the cavity through Faraday effect. The resultant birefringence of the combination of the linear and the circular birefringence is an elliptical birefringence Ω (rad/m) with its magnitude given by [10] 0 0 2 2 Ω= α + β (2) The circular birefringence induced by a magnetic field is written as [11] α = 2VH (3) where H is the magnetic field and V is the Verdet constant. When α << β, the beat frequency is then simply related to the magnetic field by (C) 2013 OSA 16 December 2013 Vol. 21, No. 25 DOI:10.1364/OE.21.030156 OPTICS EXPRESS 30157

c c Δν β + ( VH ) 2 (4) 2πn πn β 0 0 Therefore, when the circular birefringence is far less than the intra-cavity intrinsic linear birefringence, the beat frequency is simply increased from its intrinsic beat frequency by an amount proportional to the intensity of the magnetic field. It also shows that the beat frequency increment due to the magnetic field is inversely proportional to the intra-cavity intrinsic linear birefringence. Therefore, a lower intra-cavity intrinsic linear birefringence can result in a higher sensitivity to magnetic field. The most straightforward method to lower linear birefringence may be to apply a transversal force to the laser cavity although the induced birefringence is not permanent and an external transducer is required. Permanent birefringence modification can also be induced by ultraviolet post-processing [12]. However, the capability of birefringence tuning in this way is somewhat limited. Heat treatment by use of a CO 2 -laser is a more powerful method to permanently change birefringence because the CO 2 -laser irradiation can induce a significant refractive index change and/or deformation of fiber geometry in silica fibers. With CO 2 -laser treatment, large birefringence tuning could be realized and has been demonstrated to enhance the capability of multiplexing for heterodyning fiber laser sensors [13]. 3. Linear birefringence tuning Fig. 1. Experiment setup to tune the intra-cavity intrinsic linear birefringence of fiber lasers through (a) transversal force and (b) CO 2 -laser treatment. Dual-polarization fiber grating lasers were fabricated by inscribing pairs of wavelengthmatched Bragg gratings in an Er-doped fiber (Fibercore, M-12) by use of a 193 nm excimer laser and phase masks with grating lengths of 7.5 and 5.5 mm, respectively, and a grating spacing of 6 mm. The absorption of the Er-doped fiber is 11.3 db/m at 979 nm. To continuously tune the linear birefringence, a setup as shown in Fig. 1(a) was employed to tune the linear birefringence by transversal force. The fiber grating laser for test was supported by a glass plate and positioned with the fiber polarization axis aligned to the force direction. A dummy fiber was placed near and parallel to the fiber grating laser. Another glass plate was then placed on the dummy fiber and the fiber grating laser to support a load. Different weights of load resulted in different levels of transversal force to tune the intracavity intrinsic linear birefringence, which manifested as different beat frequencies of the fiber grating laser at its free state of no magnetic field. To permanently change the intra-cavity birefringence, heat treatment of the fiber grating laser by use of a CO 2 -laser was introduced. Figure 1(b) shows the experiment setup. The CO 2 - laser emitted pulses at a repetition rate of 3 khz with the laser beam focused to a spot of about 100 μm in diameter by a ZnSe lens. The fiber grating laser cavity was fixed at the focal plane before the CO 2 -laser treatment. The CO 2 -laser beam transversely scanned across the fiber (along y axis) by a computer-controlled galvanometric mirror with a longitudinal step (along z axis) of 40 μm. As a result, a continuous index modification can be formed between the two Bragg gratings since the moving step was much smaller than the diameter of the laser spot. The length of the laser-irradiated region was 4 mm. The output energy and the scanning (C) 2013 OSA 16 December 2013 Vol. 21, No. 25 DOI:10.1364/OE.21.030156 OPTICS EXPRESS 30158

speed were 5 W and 150 mm/s, respectively. The scanning speed was quite high to avoid geometrical deformation of the treated fiber laser. The CO 2 -laser treatment process can be repeated for a number of cycles to induce required beat-frequency shift. During the CO 2 -laser scanning process, the silica fiber absorbed the 10.6 μm light and released a great deal of heat. The silica fiber softened and then rapidly cooled down to room temperature [14]. As a result, the volume of the material expanded and its refractive index decreased. The induced index decrease has been characterized by measuring the change in phase difference by composing a Fabry-Perot interferometer [15]. Note that the index modification is non-uniform over the fiber cross section due to the laser side irradiation, which has been verified by observing the near-field profile of the coupled LP 1n modes at the resonance wavelengths for long period gratings fabricated by CO 2 -laser side irradiation [16, 17]. Generally speaking, the part facing the incident direction of the CO 2 -laser experiences a larger index reduction. The index gradient can be enhanced by repeating the scanning cycles and optimizing the irradiation parameters, e. g., the scanning speed and the laser output energy. Therefore, due to the induced non-uniform index distribution, an additional birefringence can be introduced into the fiber laser cavity to make the output beat frequency tuning possible. The operation to tune the beat frequency by CO 2 -laser treatment has been detailed in [13]. Basically, the beat frequency can be tune to higher or lower frequencies depending on the CO 2 -laser irradiation direction and dosage. 4. Experiment results Solenoid DBR Fiber Laser Solenoid Electrical Current Axial Magnetic Field Electrical Current WDM 980 nm Pump 980 nm 1550 nm ISO PC Polarizer PD RF Spectrum Analyzer Fig. 2. Experiment setup for magnetic field sensing by a dual-polarization fiber grating laser through Faraday effect. ISO: Isolator; WDM: Wavelength division multiplexer; PC: Polarization controller. PD: Photodetector. The experiment setup for magnetic field sensing is shown in Fig. 2. A magnetic field was generated by the electric current injecting into two solenoids. A dual-polarization fiber grating laser was placed in the magnetic field with the laser cavity parallel to the magnetic field. A conventional magnetic field meter was placed near the dual-polarization fiber grating laser to measure the magnitude of the magnetic field applied to the fiber grating laser. The fiber grating laser operates in single-longitudinal mode with two orthogonally polarized laser outputs according to the intra-cavity birefringence. The two orthogonally polarized outputs mixed on a photodetector to generate an RF beat note with its frequency equal to the frequency difference between the two laser outputs, which was then monitored by an RF spectrum analyzer. The method to measure the beat frequency shift due to magnetic field has been shown in [1]. Basically, the beat frequency was continuously monitored. A magnetic field was applied to the laser cavity at the beginning of the measurement. After a while, the magnetic field was removed and the fiber laser restored to its free state, resulting in an abrupt beat frequency transition. According to the theoretical analysis, the magnetic field induced beat frequency can then be measured by subtracting the beat frequency with the magnetic field applied by the beat frequency without the magnetic field. (C) 2013 OSA 16 December 2013 Vol. 21, No. 25 DOI:10.1364/OE.21.030156 OPTICS EXPRESS 30159

The intra-cavity intrinsic linear birefringence was tuned by applying a transversal force to a dual-polarization fiber grating laser lasing at 1529.79 nm at first. Without magnetic field and load, the beat frequency is around 395 MHz. The magnetic field induced frequency shifts for 5.5 Frequency Shift (MHz) 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 Tuning by transversal force Tuning by CO 2 -laser treatment Theoretical results 0.5 0.0 0 50 100 150 200 250 300 350 400 450 500 550 600 650 Beat Frequency (MHz) Fig. 3. Measured frequency shifts in a 4500 G magnetic field for various beat frequencies. Calculations by theory are shown as solid lines. -30-40 Beat Note Power (dbm) -50-60 -70-80 -90-100 0 50 100 150 200 250 300 350 400 450 500 550 600 650 Beat Frequency (MHz) Fig. 4. The measured spectrums of the beat notes before (solid line) and after (shot dot line) CO 2 -laser treatment of the dual-polarization fiber grating laser. various beat frequencies of free state were then measured for a magnetic field of 4500 G, which is shown in Fig. 3. About 20 times sensitivity enhancement has been achieved by tuning the beat frequency of free state from 395 MHz to 19 MHz. A curve of theoretical calculations according to inverse proportion is also plotted with Verdet constant of 0.5 rad/t/m obtained by the measurement at 395 MHz. An inverse proportion relation of the magnetic field induced frequency shifts to the beat frequencies of free state is clearly identified, which confirms the theoretical analysis and indicate that the sensitivity to magnetic field can be enhanced by lowering the intra-cavity intrinsic linear birefringence. In the limit of the linear birefringence tuned to 0, the beat frequency will be linearly dependent on the magnetic field [1], reaching a maximum sensitivity of 3.25 khz/g in theory for the fiber laser (C) 2013 OSA 16 December 2013 Vol. 21, No. 25 DOI:10.1364/OE.21.030156 OPTICS EXPRESS 30160

used in this experiment. Although the linear birefringence is critical to the sensitivity, the disturbances to the linear birefringence, such as those caused by temperature variations, should not impose significant impact on the sensitivity because the disturbances are normally much smaller than the linear birefringence, making the inverse proportional coefficient determined mainly by the linear birefringence. Another dual-polarization fiber grating laser lasing at 1551.4 nm was then processed by CO 2 -laser treatment for demonstration. The beat note is at around 396 MHz, which is shown as the solid curve in Fig. 4. The other curves in Fig. 4 illustrate the resulted spectrum of the beat notes after CO 2 -laser treatment of the fiber grating laser which was tune to a higher beat frequency at around 625 MHz and two lower frequencies at around 237 MHz and around 51 MHz, respectively. The sensitivities of the dual-polarization fiber grating laser to magnetic field after tuning to those beat frequencies were then measured in a magnetic field of 4500 G 5.5 Frequency Shift (MHz) 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 Tuning by transversal force Tuning by CO 2 -laser treatment Theoretical results 19 MHz 51 MHz 238 MHz 0.0 396 MHz -0.5 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Magnetic Field Magnitude (G) Fig. 5. Measured beat frequency shifts for various magnetic field magnitudes. Calculations by theory are shown as the solid lines. and shown in Fig. 3. A theoretical curve of inverse proportion is also plotted with Verdet constant of 0.56 rad/t/m obtained by the measurement at 396 MHz, which matches the experiment results very well. Another observation is that the CO 2 -laser treatment does not change Verdet constant since all measurements follow the inverse proportion exactly. Therefore, the CO 2 -laser treatment exhibits the same effect as transversal force to modify the linear birefringence of the fiber grating laser, which effectively tunes the sensitivity according to an inverse proportion relation. Moreover, this modification is permanent. The beat frequency change along with a magnetic field from 0 to 4500 G in a step of 500 G was then measured and shown in Fig. 5. The solid squares and triangles are for beat frequencies obtained by tuning through transversal force and CO 2 -laser treatment, respectively, which match the calculated curves by Eq. (4) quite well, confirming the validity of the theoretical model. The measured results are slightly smaller than theoretical calculations for the beat frequency of 19 MHz and magnetic field greater than 3500 G because the beat frequency shift is comparable to the beat frequency of free state, resulting in a fairly large overestimation due to the approximation used by Eq. (4). Therefore, for larger magnetic field induced beat frequency, Eq. (2) should be used to give more accurate theoretical results [1]. 5. Conclusion In this paper, we propose to enhance the sensitivity of Faraday effect and dual-polarization fiber grating laser based fiber-optic magnetic field sensors by lowering the intra-cavity intrinsic linear birefringence, which is demonstrated and confirmed by tuning the linear (C) 2013 OSA 16 December 2013 Vol. 21, No. 25 DOI:10.1364/OE.21.030156 OPTICS EXPRESS 30161

birefringence through transversal force. Heat treatment of the fiber laser cavity by CO 2 -laser irradiation is also proposed to permanently modify the linear birefringence and tune the sensitivity. The theoretical principle for this proposal is presented and confirmed by experiment results. The proposed technique makes this novel fiber-optic magnetic field sensor promising for practical applications. Acknowledgments This work was supported in part by the National Natural Science Foundation of China under Grants 61007048 and 61235005, and the Guangdong Natural Science Foundation under Grant S2013030013302. The authors are grateful to Dr. Song Yue, Associate Professor in the Department of Physics, Jinan University, for his enthusiastic support on the facilities for magnetic field generation and measurement. (C) 2013 OSA 16 December 2013 Vol. 21, No. 25 DOI:10.1364/OE.21.030156 OPTICS EXPRESS 30162