Test Result of 8*56G PAM4 Transmission. Yu Xu, Xi Huang, Zhenwei Cui

Similar documents
Improved Results for both 56 and 112Gb/s PAM4 Signals

PAM-4 Four Wavelength 400Gb/s solution on Duplex SMF

Experimental Demonstration of 56Gbps NRZ for 400GbE 2km and 10km PMD Using 100GbE Tx & Rx with Rx EQ

Feasibility study of 100G/lambda Nyquist-PAM4 with commercially available 1.3um/1.5um EML

Technical Feasibility of 4x25 Gb/s PMD for 40km at 1310nm using SOAs

Proposal for 400GE Optical PMDs for SMF Objectives based on 4 x 100G DMT David Lewis, Sacha Corbeil, Beck Mason

4x100GE through 2 and 10km SMF Using DMT and 1.3mm LAN-WDM EMLs. Winston Way, Trevor Chan, NeoPhotonics, USA

11.1 Gbit/s Pluggable Small Form Factor DWDM Optical Transceiver Module

Performance Analysis of Dwdm System With Different Modulation Techique And Photodiode

Optical Digital Transmission Systems. Xavier Fernando ADROIT Lab Ryerson University

Gb/s, DML, PAM-4 10 km Transmission: FFE Tap Number Perspective

400G-BD4.2 Multimode Fiber 8x50Gbps Technical Specifications

Unit-5. Lecture -4. Power Penalties,

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

Consideration about wavelength allocation in O-band

50Gb/s technical feasibility analysis. Dekun Liu, Huawei Stanley Shuai, Source Sep, 2017

Comment Supporting materials: The Reuse of 10GbE SRS Test for SR4/10, 40G-LR4. Frank Chang Vitesse

MPN Theory Predictions vs. Measurements. Meir Bartur ZONU, Inc. IEEE ah interim January 2002 Raleigh, NC

Emerging Subsea Networks

Introduction of 25 Gb/s VCSELs

100G 4WDM-10 MSA Technical Specifications 10km Optical Specifications Release 1.0

Technology comparison matrix for duplex SMF PMDs. Yoshiaki Sone NTT IEEE802.3bs 400 Gb/s Ethernet Task Force, Ottawa, September 2014.

400G-FR4 Technical Specification

Multiplex, Inc. 8.5Gb/s DWDM 80Km LR2 XFP Transceiver Product. Product Overview. Features

DWDM XENPAK Transceiver, 32 wavelengths, SC Connectors, 80km over Single Mode Fiber

25G TDM PON overview. Ed Harstead, member Fixed Networks CTO Dora van Veen, Vincent Houtsma, and Peter Vetter, Bell Labs

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING. FINAL EXAMINATION, April 2017 DURATION: 2.5 hours

Integrated TOSA with High-Speed EML Chips for up to 400 Gbit/s Communication

Alan Tipper 24 FEB 2015

SOA + PIN-PD receiver performance

Proposal for 4-channel WDM (WDM4) for intermediate reach 100GbE SMF PMD

400G CWDM8 10 km Optical Interface Technical Specifications Revision 1.0

Chapter 8. Digital Links

DS-8G-ZR-Cxx. SFP+, 8/4/2/1 Gbps FC/FICON, CWDM, SM, DDM, 23dB, 70km. DS-8G-ZR-Cxx OVERVIEW PRODUCT FEATURES APPLICATIONS ORDERING INFORMATION

SHF Communication Technologies AG

for SWL and LWL Fiber Systems Chromatic Dispersion Limited Link Lengths David Cunningham, Leonid Kazovsky* and M. Nowell

100G CWDM4 MSA Technical Specifications 2km Optical Specifications

EXAMINATION FOR THE DEGREE OF B.E. and M.E. Semester

A comment on Table 88-7 and 88-8 in Draft 1.0

Product Specification OC-48 LR-2/STM L-16.2 Multirate 2x10 SFF Transceiver FTLF1621S1xCL

SERDES for 100Gbps. May 24, 2017 Bart Zeydel, Francesco Caggioni, Tom Palkert

APSUNY PDK: Overview and Future Trends

Finisar Contributors. Dave Adams Alan Chen Dingbo Chen Shiyun Lin Daniel Mahgerefteh Yasuhiro Matsui Thelinh Nguyen. 19 September

10 GBPS 1310NM PIN + PREAMP LC ROSA PACKAGE N LR-LC

DS-8G-ZR-Dxxxx. SFP+, 8/4/2/1 Gbps FC/FICON, DWDM, SM, DDM, 23dB, 80km. DS-8G-ZR-Dxxxx OVERVIEW PRODUCT FEATURES APPLICATIONS ORDERING INFORMATION

IEEE July 2001 Plenary Meeting Portland, OR Robert S. Carlisle Sr. Market Development Engineer

Analysis of Self Phase Modulation Fiber nonlinearity in Optical Transmission System with Dispersion

Product Features. Applications. Descriptions. Ordering Information. Electrical Pin Description

A3422 XMTDR. Digital Return Optical Transmitter Module. Features

Implementing of High Capacity Tbps DWDM System Optical Network

Performance Limitations of WDM Optical Transmission System Due to Cross-Phase Modulation in Presence of Chromatic Dispersion

10Gb/s CWDM SFP+ Optical Transceiver TR-LXxxL-N00

100G SR4 TxVEC Update. John Petrilla: Avago Technologies May 15, 2014

Specifications. (Tc=-5 to 70 and Vcc= 3.14 to 3.46V) Nominal Wavelength λ nm Side Mode Suppression Ratio. Receiver

DWDM XENPAK Transceivers, 32 wavelengths, SC Connectors, 80km over Single Mode Fiber

MTX510E Series 10Gb/s 1550nm Electro-absorption Modulated Laser (EML) 14 Pin Package with G-S-G RF Input

Signal Conditioning Parameters for OOFDM System

SUBMARINE SYSTEM UPGRADES WITH 25 GHZ CHANNEL SPACING USING DRZ AND RZ-DPSK MODULATION FORMATS

MITSUBISHI (OPTICAL DEVICES) MF-2500STA-xxxxx MF-2500SRA-xxxxx MF-2500SRB-xxxxx SONET / SDH TRANSMITTER / RECEIVER MODULE

Eye-Diagram-Based Evaluation of RZ and NRZ Modulation Methods in a 10-Gb/s Single-Channel and a 160-Gb/s WDM Optical Networks

Product Specification. 10Gb/s 200km Telecom CML TM 13pin-GPO Butterfly Transmitter DM /1/2

X2-10GB-LR-OC Transceiver, 1310nm, SC Connectors, 10km over Single-Mode Fiber.

SHF Communication Technologies AG

SO-SFP-16GFC-ER-Dxxxx

RZ BASED DISPERSION COMPENSATION TECHNIQUE IN DWDM SYSTEM FOR BROADBAND SPECTRUM

40GBd QSFP+ LR4 Optical Transceiver

(Tc=-5 to 70 and Vcc= 3.14 to 3.46V)

SIMULATIVE INVESTIGATION OF SINGLE-TONE ROF SYSTEM USING VARIOUS DUOBINARY MODULATION FORMATS

Light Polarized Coherent OFDM Free Space Optical System

DWDM SFP 4.25Gb/s Transceiver 30Km Hot Pluggable, Duplex LC, 3.3v C Band 100-GHz DWDM DFB-LD PDSFP-96-1XX12-22F

System Impairments Mitigation for NGPON2 via OFDM

MMF Channel Characteristics

Arash Farhood Cortina systems. IEEE Next Gen 100G Optical Ethernet Task Force

INGAAS FAST PIN (RF) AMPLIFIED PHOTODETECTORS

Lecture 8 Fiber Optical Communication Lecture 8, Slide 1

CFORTH-QSFP28-100G-LR4 Specifications Rev. D00B. Product Features

XFP-10G-Z-OC192-LR2-C

BTI-10GLR-XN-AS. 10GBASE-LR XENPAK Transceiver,1310nm, SC Connectors, 10km over Single-Mode Fiber. For More Information: DATA SHEET

TS-GP2512-OLT-C+ GPON OLT Class C+ SFP Transceiver FEATURES

WWDM Transceiver Module for 10-Gb/s Ethernet

BR-43. Dual 20 GHz, 43 Gbit/s Balanced Photoreceiver

4x25-Gb/s 40-km 1310-nm PMD with SOA Pre-Amplifier: Impact of Channel Spacing

SFP-1020-WA/B 10Gbps SFP+ Bi-Directional Transceiver, 20km Reach 1270/1330nm TX / 1330/1270 nm RX

Communications Group - Politecnico di Torino Pirelli Cables Systems Conclusions. Outline Introduction. The origin of Parametric Gain (PG) and its syst

10 Gb/s transmission over 5 km at 850 nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD

Photonics and Optical Communication Spring 2005

CISCO DWDM GBICS. Figure 1. Cisco DWDM GBICs. Main features of the Cisco DWDM GBICs:

DATASHEET 5.2. The 16G-ER-BR2 fiber optical SFP+ (small form pluggable) transceivers are layer 1 tested and approved by Brocade.

Research on Optical Access Network. Assoc. Prof. Dr. Duang-rudee Worasucheep Electrical Engineering Department Chulalongkorn University

Mahendra Kumar1 Navneet Agrawal2

Optical Fiber and PMD. Reach and Economics for EFM

Gb/s 1310 nm DML DFB Laser

Research on Optical Access Network

Experimental results on single wavelength 100Gbps PAM4 modulation. Matt Traverso, Cisco Marco Mazzini, Cisco Atul Gupta, Macom Tom Palkert, Macom

Product Specification. 10Gb/s DWDM 80km XFP Optical Transceiver FTRX xx

Performance Evaluation of 32 Channel DWDM System Using Dispersion Compensation Unit at Different Bit Rates

Specifications. (Tc=-5 to 70 and Vcc= 3.14 to 3.46V)

10GBASE-S Technical Feasibility

XTBxxA-20LY 10 Gbps SFP+ Bi-Directional Transceiver, 20 km Reach

GPON OLT SFP Class C+

Transcription:

Test Result of 8*56G PAM4 Transmission Yu Xu, Xi Huang, Zhenwei Cui

Supporters and Contributors Andy Zhou, AFOP John Petrilla, Avago Technologies Kevin Cheng, Hittite Mike Furlong, Clariphy Peter Starssar, Huawei Technologies Sudeep Bhoja, Inphi Stefano D'Agostino, MACOM Vikas Manan, MACOM Page 2

Background At the Jan 2014 meeting we presented test results of 56G PAM4 over 10km SMF. At that meeting, we got a lot of quite helpful suggestions, based on which we carried out additional testing. This presentation shows our recent test results of an eight wavelength 56G PAM4 configuration, transmitted on 10km G.652 fiber. Page 3

Information The tests cover the following parameters to evaluate their effect on total system performance. Electrical SNR of Transmitter vs. Receiver Linearity of the EML Channel link parameters, like chromatic dispersion, MPI, connecter loss and so on. Sensitivity of the Receiver. etc. Page 4

System Configuration Test Board Experimental Setup Page 5

Key Component RF Driver RF Driver Eye diagram after driver BPG B D DAC DRV P1 EML 10 Km ATT.. PIN+TIA P2 DSA PC Offline Device BER(P1) SNR(P1)/dB BER(P2) SNR(P2)/dB DRV(Vendor1) 3.91E-06 21.63 1.8E-4@-11dBm 17.96 DRV(Vendor2) 0 27.51 1.0E-4@-11dBm 18.25 Eye diagram after EML Page 6

RF Driver test result conclusion 6dB (SNR) improvement of driver output at Transmitter only gives 0.3dB (sensitivity) improvement at Receiver. High SNR in RF devices (such as driver) is NOT a critical parameter in the system performance.

BER EML linearity test result 1.00E-02 BER 1.00E-03 3E-4 1.00E-04 1.00E-05 1.00E-06 1 2 3 4 5 6 7 Device No. System BER out of different test samples with different linearity Device No. 1# 2# 3# 4# 5# 6# 7# ER/dB DC(10%~90%) ER/dB DC(10%~90%) ER/dB DC(10%~90%) ER/dB DC(10%~90%) ER/dB DC(10%~90%) ER/dB DC(10%~90%) ER/dB DC(10%~90%) 9.2 8.3 8.57 7.45 9.72 9.2 7.77 K(mW/V) K(mW/V) K(mW/V) K(mW/V) K(mW/V) K(mW/V) K(mW/V) TOSA Characteristics 1.5361 1.388 1.2739 1.9621 3.5544 2.0574 2.336 K Error(R.M.S) K Error(R.M.S) K Error(R.M.S) K Error(R.M.S) K Error(R.M.S) K Error(R.M.S) K Error(R.M.S) 0.1093 0.1151 0.1201 0.0955 0.0312 0.0909 0.057 ER/dB ER/dB ER/dB ER/dB ER/dB ER/dB ER/dB 15.1716 15.5892 15.1703 15.4463 16.5641 15.272 14.7886 K2(mW/V) K2(mW/V) K2(mW/V) K2(mW/V) K2(mW/V) K2(mW/V) K2(mW/V) 1.5134 1.4221 1.3611 1.9577 3.0691 1.8836 2.2492 K2 Error(R.M.S) K2 Error(R.M.S) K2 Error(R.M.S) K2 Error(R.M.S) K2 Error(R.M.S) K2 Error(R.M.S) K2 Error(R.M.S) 0.112 0.1026 0.0988 0.1042 0.178 0.1571 0.0881 3dB BW/GHz 3dB BW/GHz 3dB BW/GHz 3dB BW/GHz 3dB BW/GHz 3dB BW/GHz 3dB BW/GHz 20.67 20.87 20.59 21.23 20.89 20.56 21.89 System performance varies with different linearity of the EML samples while all the other parameters remain approximately the same Page 8

Output power(mw) K and K2 5 4.5 4 y=k2*x+b2 y=k*x+b 3.5 3 90% Rising edge 2.5 2 1.5 Working region 1 0.5 10% Rising edge 0-2.5-2.4-2.3-2.2-2.1-2 -1.9-1.8-1.7-1.6-1.5-1.4-1.3-1.2-1.1-1 -0.9-0.8-0.7-0.6-0.5-0.4-0.3-0.2-0.1 0 0.1 0.2 0.3 0.4 0.5 DC voltage(v) Page 9

Options for EML wavelength set Option 1 Lane Center Wavelength /nm (λ0=1300) ps/nm/km (λ0=1310) ps/nm/km (λ0=1324) ps/nm/km L0 1286.49 0.04-0.88-2.16 L1 1291.02 0.46-0.46-1.74 L2 1295.56 0.89-0.03-1.32 L3 1300.05 1.30 0.38-0.90 L4 1304.58 1.73 0.81-0.48 L5 1309.14 2.15 1.23-0.06 L6 1313.65 2.57 1.65 0.36 L7 1318.18 2.99 2.07 0.78 Option 2 Lane Center Wavelength /nm (λ0=1300) ps/nm/km (λ0=1310) ps/nm/km (λ0=1324) ps/nm/km L0 1295.56 0.89-0.03-1.32 L1 1300.05 1.30 0.38-0.90 L2 1304.58 1.73 0.81-0.48 L3 1309.14 2.15 1.23-0.06 L4 1313.65 2.57 1.65 0.36 L5 1318.18 2.99 2.07 0.78 L6 1322.70 3.41 2.49 1.20 L7 1327.23 3.83 2.91 1.62 Option 3 Lane Center Wavelength /nm (λ0=1300) ps/nm/km (λ0=1310) ps/nm/km (λ0=1324) ps/nm/km L0 1277.43-0.80-1.72-3.01 L1 1281.96-0.38-1.30-2.59 L2 1286.49 0.04-0.88-2.16 L3 1291.02 0.46-0.46-1.74 L4 1295.56 0.89-0.03-1.32 L5 1300.05 1.30 0.38-0.90 L6 1304.58 1.73 0.81-0.48 L7 1309.14 2.15 1.23-0.06 Option 4 Lane Center Wavelength /nm (λ0=1300) ps/nm/km (λ0=1310) ps/nm/km (λ0=1324) ps/nm/km L0 1295.53 0.88-0.04-1.32 L1 1297.79 1.09 0.17-1.11 L2 1300.05 1.31 0.39-0.90 L3 1302.32 1.52 0.60-0.69 L4 1304.58 1.73 0.81-0.48 L5 1306.84 1.94 1.02-0.27 L6 1309.11 2.15 1.23-0.06 L7 1311.37 2.36 1.44 0.15 G.652 Zero dispersion wavelength: 1300 nm<λ0<1324 nm ; slope(max) S0: 0.092 ps/nm 2 km Option 1 : parameter for L0 : -2.16 ps/nm/km (Max); for L7 : 2.99 ps/nm/km (Max) Option 2: parameter for L0 : -1.32 ps/nm/km (Max); for L7 : 3.83 ps/nm/km (Max) Option 3: parameter for L0 : -3.01 ps/nm/km (Max); for L7 : 2.15ps/nm/km (Max) Option 4: parameter for L0 : -1.32 ps/nm/km (Max); for L7 : 2.36 ps/nm/km (Max) The existing 100G-LR4 wavelengths, the max negative dispersion value is higher than the max positive dispersion value, which is because one can expect that negative dispersion can be easier dealt with than positive dispersion. For 8*56G, we might also consider the omux/odemux wavelength allocation. Page 10

Fiber test result (Experiment) TOSA1(D0=+0.8 ps/nm/km@ λ=1320nm) TOSA2(D0=-2.2 ps/nm/km@λ=1285nm) Fiber loss is 0.39dB/Km (Experimental measurement) Penalty is 0.2 db (CD=8 ps/nm/km) due to fiber dispersion theoretically The measured penalty is 0.05 db @3E-4 at 1320 nm and 0.2 db @3E-4 at 1285 nm (including MPI penalty) The zero dispersion point of the fiber we used in this test is 1310 nm. We are aware that this test is not done under worst case dispersion values and therefore we plan to do additional testing. Page 11

Connector test result (MPI) BPG DAC BER 1.00E-02 1.00E-03 1.00E-04 1.00E-05 B D DRV PIN+TIA EML Connectors Experimental setup for optical connector 1.00E-06-13 -12.5-12 -11.5-11 -10.5-10 -9.5-9 -8.5-8 -7.5-7 AOP(dBm) W/O additional Connectors Add 11 Connectors Add 5 Connectors BER performance in the case of adding connectors DSA 10 Km ATT PC Offline No. of Reflected Connectors power(dbm) 1-35.00 2-32.04 3-30.33 4-29.13 5-28.21 6-27.47 7-26.84 8-26.31 9-25.85 10-25.44 11-25.07 The additional usage of optical connectors (MPI effect) will cause power penalty (0.3dB with 5 connectors and 0.5 db with 11 connectors @3E-4) Page 12

Receiver test results Receiver test results Parameter ROSA1 ROSA2 Unit VPD 3.3 3.3 V VTIA 3.3 3.3 V Vpp 98.69 168.6 mv@-11dbm Noise amplitude 10 15 mv Bandwidth 36 35 GHz Power spectral density (Noise) 3.27E-11 2.54E-11 A/sqrt(Hz) Responsivity 0.55 0.74 A/W Gain 900 2300 V/W Resistance 1636.36 3108.11 Ω ROSA 1 ROSA 2 ROP/dBm BER SNR/dB BER SNR/dB -7 1.02E-05 19.32 1.12E-06 19.74-8 3.16E-06 19.58 2.23E-06 19.68-9 5.77E-06 19.46 5.40E-06 19.43-10 2.29E-05 19.05 1.86E-05 18.98-11 5.99E-05 18.62 8.21E-05 18.37-12 1.91E-04 17.97 2.76E-04 17.67-13 6.36E-04 17.16 1.14E-03 16.62 Eye diagram of signal after ROSA1 (AOP=-8dBm) Eye diagram of signal after ROSA2 (AOP=-8dBm) Page 13

Summary The system performance is not quite sensitive to esnr of transmitter. According to our test results, the linearity of the transmitter is a key parameter for 8*56G PAM4 transmission performance. The MPI effect of connectors of optical link is acceptable. Future works: Character studies for Receiver, sensitivity, linearity and so on. Worst case of fiber dispersion penalty. Further test on wavelength allocation. Evaluation of performance degradation due to worst case connector RL (lower than 35dB). System performance comparison between PIN and APD. Receiver bandwidth relationship with system performance. Study of alternative modulation formats. Page 14

Thank You Page 15