HIGH CURRENT PWM BIPOLAR STEPPER MOTOR CONTROL AND DRIVE

Similar documents
Unipolar Driver for Stepper Motor Control

STUDY ON MODELLING AND SIMULATION OF PERMANENT MAGNET STEPPING MOTOR BY MATLAB/SIMULINK

L297 L297A STEPPER MOTOR CONTROLLERS

Contributions Concerning the Command of the Brushless D.C. Servomotor

LSI/CSI LS8297 LS8297CT STEPPER MOTOR CONTROLLER

LS7362 BRUSHLESS DC MOTOR COMMUTATOR / CONTROLLER

Experiment#6: Speaker Control

DUAL STEPPER MOTOR DRIVER

HIGH-POWER, DUAL-BRIDGE ICs EASE STEPPER-MOTOR-DRIVE DESIGN

LSI/CSI LS7290 STEPPER MOTOR CONTROLLER. LSI Computer Systems, Inc Walt Whitman Road, Melville, NY (631) FAX (631)


EDE1204 Bi-Polar Stepper Motor IC

LSI/CSI LS8397 STEPPER MOTOR CONTROLLER. LSI Computer Systems, Inc Walt Whitman Road, Melville, NY (631) FAX (631)

USING THE L6204, A BIPOLAR STEPPER AND DC MOTOR DRIVER IN BCD TECHNOLOGY

Dual Full-Bridge PWM Motor Driver AMM56219

DISCONTINUED PRODUCT FOR REFERENCE ONLY. See A3967 or A3977 for new design. BiMOS II UNIPOLAR STEPPER-MOTOR TRANSLATOR/DRIVER FEATURES

PBL 3774/1. Dual Stepper Motor Driver PBL3774/1. February Key Features. Description PBL 3774/1

Stepper Motor Drive Circuit

NJM3777 DUAL STEPPER MOTOR DRIVER NJM3777E3(SOP24)

Half stepping techniques

Dual Full-Bridge PWM Motor Driver AM2168

PBL3717A STEPPER MOTOR DRIVER

Designated client product

Assembly Language. Topic 14 Motion Control. Stepper and Servo Motors

L6219 STEPPER MOTOR DRIVER

Simulation of Stepper Motor using Quasi Square Wave Input

A5832. BiMOS II 32-Bit Serial Input Latched Driver. Discontinued Product

EEE3410 Microcontroller Applications Department of Electrical Engineering Lecture 11 Motor Control

TEA3717 STEPPER MOTOR DRIVER

User's Manual. Step Motor Driver

L6219DS STEPPER MOTOR DRIVER

PBL 3775/1 Dual Stepper Motor Driver

NJM37717 STEPPER MOTOR DRIVER

NJM3773 DUAL STEPPER MOTOR DRIVER

UNISONIC TECHNOLOGIES CO., LTD

TA8435H/HQ TA8435H/HQ PWM CHOPPER-TYPE BIPOLAR STEPPING MOTOR DRIVER. FEATURES TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

User's Manual. Step Motor Driver L E V E L

LSI/CSI LS8292 LS8293. PRELIMINARY MICRO-STEPPING MOTOR CONTROLLER June 2013

HARDWARE IMPLEMENTATION OF DIGITAL SIGNAL CONTROLLER FOR THREE PHASE VECTOR CONTROLLED INDUCTION MOTOR

Buletinul AGIR nr. 3/2012 iunie-august. Assis. Eng. Ciprian AFANASOV PhD. University "Ştefan cel Mare" Suceava

Fig 1: The symbol for a comparator

PHASE BRUSHLESS DC MOTOR CONTROLLER/DRIVER FEATURES

DM8010 tm. Hardware Reference Manual. Document Revision B3 May 16, 2018

NJM3771 DUAL STEPPER MOTOR DRIVER

Designated client product

STEPPER MOTOR DRIVING

Inter-Ing 2005 INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC CONFERENCE WITH INTERNATIONAL PARTICIPATION, TG. MUREŞ ROMÂNIA, NOVEMBER 2005.

Conventional transistor overview and special transistors

STEPPER MOTOR DRIVER CONSIDERATIONS COMMON PROBLEMS & SOLUTIONS

Figure 1.1 Mechatronic system components (p. 3)

Embedded Systems Lab Lab 7 Stepper Motor Application

AN243 Application note

combine regular DC-motors with a gear-box and an encoder/potentiometer to form a position control loop can only assume a limited range of angular

Testra Corporation ss483 Series Microstepping Motor Driver. Specifications Sep SoftStep FIRMWARE FEATURES

Op Amp Booster Designs

The NMIH-0050 H-Bridge

Basic of PCD Series Pulse Control LSIs

DISCONTINUED PRODUCT FOR REFERENCE ONLY

DUAL FULL-BRIDGE PWM MOTOR DRIVER

MEGORAS Technology - TB6600 STEP MOTOR Driver.

Speed Control Of Transformer Cooler Control By Using PWM

A4970. Dual Full-Bridge PWM Motor Driver

PREREQUISITES: MODULE 10: MICROCONTROLLERS II; MODULE 14: DISCRETE COMPONENTS. MODULE 13 (SENSORS) WOULD ALSO BE HELPFUL.

Lock Cracker S. Lust, E. Skjel, R. LeBlanc, C. Kim

DESIGNING A POSITION REGULATOR FOR AN ACTUATOR POWERED BY A CONTINUOUS CURRENT MOTOR USING THE PIC16F73 MICROCONTROLLER

L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G

Data Sheet. Stepper Motor Drive Boards. Features

ELM313 Stepper Motor Controller

AN Industrial Stepper Motor Driver. Application Note Abstract. Introduction. Stepper Motor Control Method

CONVERTING 1524 SWITCHING POWER SUPPLY DESIGNS TO THE SG1524B

PART 2 - ACTUATORS. 6.0 Stepper Motors. 6.1 Principle of Operation

5800 AND AND BiMOS II LATCHED DRIVERS UCN5800L UCN5800A

NJM2671 NJM 2671E2 STEPPER MOTOR CONTROLLER / DRIVER

MDM5253 DC Motor Driver Module with Position and Current Feedback User Manual

L297 L297D STEPPER MOTOR CONTROLLERS

PBL 3717/2 Stepper Motor Drive Circuit

The Mechatronics Sorter Team Members John Valdez Hugo Ramirez Peter Verbiest Quyen Chu

Lab Exercise 9: Stepper and Servo Motors

Contents NUDRIVE ACCESSORY USER GUIDE

o What happens if S1 and S2 or S3 and S4 are closed simultaneously? o Perform Motor Control, H-Bridges LAB 2 H-Bridges with SPST Switches

ML4818 Phase Modulation/Soft Switching Controller

PWM BASED DC MOTOR SPEED CONTROLLER USING 555 TIMER

EXPERIMENT 6: Advanced I/O Programming

D.C. DRIVE SYSTEM USING FOUR-QUADRANT CHOPPER

Applications of the LM392 Comparator Op Amp IC

Four Quadrant Speed Control of DC Motor with the Help of AT89S52 Microcontroller

AN457 APPLICATION NOTE

MICROCONTROLLERS Stepper motor control with Sequential Logic Circuits

BLOCK DIAGRAM OF THE UC3625

Design of Ultra-low-end Controllers for Efficient Stepper Motor Control

USER S GUIDE POLOLU A4988 STEPPER MOTOR DRIVER CARRIER USING THE DRIVER POWER CONNECTIONS

TOSHIBA Bi CMOS INTEGRATED CIRCUIT SILICON MONOLITHIC TB6526AF

1 Second Time Base From Crystal Oscillator

High-Voltage High-Current Stepper Motor Driver IK6019A TECHNICAL DATA

LM193/LM293/LM393/LM2903 Low Power Low Offset Voltage Dual Comparators

Design and Development of an Innovative Advertisement Display with Flipping Mechanism

Semiconductor 9/21/2015

INTEGRATED CIRCUITS. AN1221 Switched-mode drives for DC motors. Author: Lester J. Hadley, Jr.

Speed and Torque Control of Stepper Motor using Voltage and Current Control

DPFHP451 HIGH PERFORMANCE BILEVEL STEP MOTOR / MANUAL PRESET INDEXER DRIVER PACK

Transcription:

The 5 th Edition of the Interdisciplinarity in Engineering International Conference Petru Maior University of Tîrgu Mureş, Romania, 0 HIGH CURRENT PWM BIPOLAR STEPPER MOTOR CONTROL AND DRIVE Alexandru MORAR Petru Maior University of Tîrgu Mureş, N. Iorga st., No., 5400, Tîrgu Mureş, Romania morar@engineering.upm.ro ABSTRACT The paper presents some investigations and research results concerning the general purpose PWM (pulse-width modulation) with applications to stepper motor control and drive. In order to improve the dynamic performances of the motor, a PWM inverter has been realised using dedicateded ICs. The bridges are capable of sustaining 4V and include internal pulse-widht modulation(pwm) control of the output curent to A. The laboratory prototype of the implemented digital control system, and experimentally results are also presented in the paper. Keywords: stepper motor, PWM control, stepper controller, LEM modules, chopper, dedicated ICS.. Introduction The bipolar stepper motor is very similar to the unipolar stepper, except that the motor coils lack center taps. Because of this, the bipolar motor requires a different type of controller, one that reverses the current flow through the coils by alternating polarity of the terminals, giving us the name: bipolar. A bipolar motor is capable of higher torque since entire coil (s) may be energized, not just half-coils. Where 4-wire steppers are strictly bipolar, 5 and wire motors with center-taps can be used with the bipolar controller. The bipolar stepper motor has coils. The coils are identical and are not electrically connected. The bipolar controller must be able to reverse the polarity of the voltage across either coil, so current can flow in both direction. And, it must be able to energize these coils in sequence. This circuit is called an H-bridge. Two such circuits are needed to drive both coils of bipolar stepper motor, and is commonly called a dual H- bridge. The most remarkable effect of the integrated circuits increasing complexity and functions number is represented by, as it is widely accepted, its intelligence. There is almost no applications domain in which the microelectronic devices intelligence shouldn t have played a majore role, one of the fields enjoying its advantages being the low power electric drives []. By introducing the intelligence in the drives command, this one will take over some complex functions usually accomplished by the human factor. In the automatic regulation systems, the electric motors are utilized as execution elements. The stepper motor was and still is the most utilized motor in low power adjustable electrical drives, due to relatively simpe methodes of speed control.the most typical application for these drives is represented by precision positioning systems. These ones must satisfy relatively exacting dynamic conditions, generally difficult to be fulfilled, sometimes even contradictory, fact that partially explains why it is necessary that the command devices must be intelligent. Taking into consideration the above mentioned aspects, the autor present in this paper the comand and drive stepper motor with L9+ L9+L0 specialized integrated circuits.[][4][5].. The l9 stepper motor controller The L9 [4][5][] Stepper Motor Controller integrates all the control circuitry required to control bipolar and unipolar stepper motor. Used with a dual bridge driver such as the L9 forms a complete microprocessor-to-bipolar stepper motor interface. Unipolar stepper motor can be driven with an L9 plus a quad darlington array. It receives control signals from the system s controller, usually a microcomputer chip, and provides all the necessary drive signals for the power stage. Aditionally, it includes two PWM chopper circuits to regulate the current in the motor windings. The heart of the L9 block diagram is a block called the translator which generates suitable phase 05

sequences for half step, one-phase-on full step and two-phase-on full step operation. This block is controlled by two mode inputsdirection ( CW / CCW ) and ( HALF /FULL ) and a step clock ( CLOCK ) which advances the translator from one step to the next. Four outputs are provided by the translator for subsequent processing by the output logic block which implements the inhibit and chopper functions. Internally the translator consists of a -bit counter plus some combinational logic which generates a basic eight-step gray code sequence as shown in figure. All three drive sequences can be generated easily from this master sequence. This state sequence corresponds directly to half step mode, selected by a high level on the HALF /FULL input. The output waweforms for this sequence are shon in figure. Note that two other signals, INH and INH are generated in this sequence. 000 00 00 Fig. - the basic eight step gray code sequence The full step modes are both obtained by skipping alternate states in the eight-step sequence. What happens is that the step clock bypasses the first stage of the -bit counter in the translator.the least significant bit ot this counter is not affected therefore the sequence generated depends on the state of the translator when full step mode is selected (the HALF /FULL input brought low). HOME 000 000 00 00 000 CLOCK A 00 000 00 B 000 000 C 00 HOME 000 00 D INH INH Fig. - State sequence and output waveforms corresponding to the half step sequence. If full step mode is selected when the translator is at any odd-numbered state we get the two- phaseon full step sequence shown in figure. By contrast, one-phase-on full step mode is obtained by selecting full step mode when the translator is an evennumbered state (figure 4). In half step and one-phase-on full step modes two other signals are generated: INH and INH. These are inhibit signals which are coupled to the L9 s enable inputs and serve to speed the current decay when a winding is switched off. Since both windings are energized continuously in two-phase-on full step mode no winding is ever switched off and these signals are not generated. The chopper oscillator frequency is determined by the RC network on pin. The frequency is roughly /0,RC and R must be more than 0 KΩ. The L9 is a high voltage, high current dual fullbridge driver designed to accept standard TTL logic levels and drive inductive loads. Two enable inputs are provided to enable or disable the device independently of the input signals. The emitters of the lower transistors of each bridge ate connected together and the corresponding external terminal can be used for the connection of an external sensing resistor. 0

5 5 5 CLOCK A 00 00 B C 00 00 D INH INH Fig. - State sequence and output waveforms for the two phase on sequence. CLOCK 4 4 4 A 000 B 000 000 C D 000 INH INH Fig. 4 - State sequence and output waveforms for wave drive (one phase on).. The experimental laboratory system The experimental research was performed in Electrical Drives Laboratory from the Engineering Faculty, Petru Maior University of Târgu-Mureş, where it was implemented an electrical drive system using stepper motor. The electrical schematic of the realized board ( L 9+L9 +L0) is shown in figure 5. In figure is presented the general view of the realized board. The general view of experimental laboratory test system is shown in figure.[][4][5]. As experimental results, the phase current of a two-phase bipolar stepper motor, are shown in figure. These currents were measured in the following operating mode of stepper motor[][]: normal drive mode (also called two-phaseon drive), low frequency and high frequency; wave drive mode (also called one-phaseon drive), low frequency and high frequency; half step mode, low frequency and high frequency; In order to currents measurement, two Hall sensors[] (LEM modules, LA-5NP) were used, owing to their performances, such as: precision: ± 0,5 % ; response time: µs; bandwidth: 0 50 khz; liniarity: : %; current output (turns ratio 5/000); 0

Fig. 5 - The electrical schematic of the realized board (L9+L9+L0) 0

Fig. - General view of the realized board ( L9+L9+L0) Fig. - General view of experimental laboratory test system 09

Fig. - Experimental results, the phase currents of a two-phase bipolar stepper motor. 4. Conclusion dedicated to the stepper motor command presented in The modern solution involve new power this paper has the following advantages: semiconductor devices with high performances, dramatically simplified stepper motor dedicated command circuits with multiple specific driving small-and medium-sized motors; function and new control techniques. The test stand 0

complete microprocesor (microcontroller, PC) to - bipolar stepper motor; low cost assembly; very few components are required; software development is simplified; flexibility in selecting constant-speed running frequencies; References [] Acarnley, P.P.,: Stepping Motors: a Guide to Modern Theory and Practice. Peter Peregrinus Ltd., ISBN: 0 40, London, 99; [] Takasaki, K., Sugawara, A.,: Stepping Motors and Their Microprocessor Controls. Clarendon Prsss, ISBN: 0 9 59 4 hbk, Oxford, 994; [] Morar, A.,: Sisteme electronice de comandă şi alimentare a motoarelor pas cu pas implementate pe calculatoare personale (Electronic systems for stepping motor control implemented on personal computers). Teză de doctorat, Universitatea Tehnică din Cluj-Napoca, 00; [4] Morar, A. Comanda inteligenta a actionarilor electrice cu motoare pas cu pas, Editura Mediamira, Cluj-Napoca, 00. [5] Morar,A., Interfeţe avansate de comandă şi control. Curs. Lito Universitatea Petru Maior din Tg.-Mureş, Tg.-Mureş, 00; [] Kuo, B. C., Kelemen, A., Crivii, M., Trifa, V.,: Sisteme de comandă şi reglare incrementală a poziţiei (The incremental motion control systems), Editura Tehnică, Bucureşti, 9; [] *** SGS-THOMSON, Microelectronics, Data on disc, 00; [] *** Portescap: Motion Systems, 00. [9] Baluta, Gh., Actionari electrice de mica putere aplicatii-, Editura Politehnium, Iasi, 004. [0] Baluta, Gh,. Actionari electrice cu motoare pas cu pas, Editura Gheorghe Asachi, iasi, 00. [] *** Stepping Motors and Associated Electronics, PHILIPS, Data Book, 00. [] *** Industrial and Computer Peripheral ICs, SGS-THOMSON, Data Book, 005. [] *** LEM Module, Data Book, Geneve, 00. [4] *** Hybrid Step Motor System Catalog, PACIFIC SCIENTIFIC, Data Book, 009.